Misuses of RSA Break Secrecy

- When encrypting, what if plaintext drawn from very small set (e.g., \{"yes", "no"\})?
- Employees escrow secret documents, encrypted with company’s public key
 - Upon firing or death of one employee, company releases plaintext to another
 - Employee E takes employee A’s ciphertext \(c = m^e \mod n \), escrows \(c^{2e} \mod n \)
 - Employee E fired; co-conspirator F gets \(2m \)
- **Chosen ciphertext attack (CCA):** eavesdrop a ciphertext \(c \); submit specially concocted messages for decryption; study resulting plaintexts; learn plaintext, \(m = c^d \mod n \)
RSA: Not Quite Exponentiation

- At first glance, RSA operations appear to be raising a message to a power
- But they’re not, really...the mod n means RSA in fact a trap-door permutation
 - Map one element, m, of set \{0, \ldots, n-1\} to another, c
 - Not invertible without knowing d
- Non-invertibility applies to whole of m and c; not to individual bits of m and c, or other properties over m and c, e.g., parity of m
 - In escrow attack, multiplicative relationship among RSA ciphertexts exists, despite non-invertibility
- It’s possible that learning even one bit of m may help recover all of m from c
Adaptive Chosen Ciphertext Attack on RSA in SSL 3.0

- SSL 3.0 encrypted with RSA by padding plaintext into blocks using PKCS #1 standard, as follows:
 - 0x00 | 0x02 |
 - 8 or more non-zero random bytes | 0x00 |
 - plaintext block

- SSL decrypts received ciphertext, checks if result in this format; returns “format error” if not!

- Bleichenbacher’s adaptive CCA attack: with about one million messages to server, attacker can recover \(m \) for previously eavesdropped ciphertext \(c = m^e \mod n \)
 - When chosen ciphertext accepted by server, attacker knows first two plaintext bytes with certainty!
Making RSA Secure Against Adaptive CCA Attacks

• Intuition: want plaintext input to RSA to be all-or-nothing transform of actual message
 – e.g., so that multiplicative property over ciphertexts doesn’t reveal message, and knowing one bit doesn’t reveal anything about whole message

• Desirable transform properties:
 – Randomness: unique ciphertext for repeated identical messages
 – Redundancy: make most strings invalid ciphertexts
 – Entanglement: knowing partial information about input to RSA should reveal nothing about message
 – Invertibility: of course, must be able to recover original message when decrypting
Practical Padding for RSA: OAEP+ [Shoup]

- Transforms message M into RSA input M'
- Not proven adaptive CCA secure, but heuristically so
Digital Signatures with RSA

- RSA trap-door permutation also useful for digital signatures
- Public-key signature operations:
 - Sign: $S(K^{-1}, m) \rightarrow \{m\}_{K^{-1}}$
 - Verify: $V(K, \{m\}_{K^{-1}}, m) \rightarrow \{\text{true, false}\}$
- Provides integrity, like a MAC:
 - Cannot produce valid $<m, \{m\}_{K^{-1}}>$ pair without knowing K^{-1}
- With RSA:
 - Sign using private key, using trap-door applied when decrypting
 - Verify using public key, using permutation applied when encrypting
Multiplicative Attack Against RSA Signatures

- As in CCA, attacker may try to exploit multiplicative relationship among RSA permutation inputs and outputs, to decrypt eavesdropped ciphertexts
- Eve stores ciphertext c encrypted for Alice, wants to recover corresponding m
- Using Alice’s public key, $\{n, e\}$, Eve:
 - Chooses random number $r < n$
 - Computes $y = c^e \mod n$
 - Eve asks Alice to sign y
 - Alice sends Eve $y^d \mod n = c^{r \cdot d} \mod n = r c^d \mod n$
 - Eve computes $r^{-1} \mod n$, then recovers
 $$m = c^d \mod n = r^{-1} r c^d \mod n$$
Multiplicative Attack Against RSA Signatures

- As in CCA, attacker may try to exploit multiplicative relationship among RSA permutation inputs and outputs, to decrypt eavesdropped ciphertexts.

 * Eve stores ciphertext c encrypted for Alice, wants to recover corresponding m.
 * Using Alice’s public key, $\{n, e\}$, Eve:
 - Chooses random number $r < n$
 - Computes $y = cr^e \mod n$
 - Eve asks Alice to sign y
 - Alice sends Eve $y^d \mod n = c^{r^e d} \mod n = rc^d \mod n$
 - Eve computes $r^{-1} \mod n$, then recovers $m = c^d \mod n = r^{-1}rc^d \mod n$.

Lesson:
Don’t sign whole messages presented to you by others!
Only Sign Message Hashes with RSA!

• Again, want all-or-nothing transform over message before signing with trap door

• Full-domain hash:
 – Before signing message, compute hash of message sized to be same number of bits as RSA modulus n
 – Sign the hash, not the message
 – Hash reveals nothing about underlying message, nor messages arithmetically related to it
Costs of Cryptography

- Public-key operations significantly more computationally expensive than symmetric-key ones
- Modern CPU can symmetrically encrypt and MAC faster than 1 Gbps
- Public-key encryption typically 100X slower than symmetric crypto
 - This relationship changes as hardware changes!
- Result: tend to use public-key encryption and signatures only on short messages
Hybrid Cryptography

• Goal: mix speed of symmetric-key flexibility of public-key cryptography
• Send symmetric key encrypted with public key; message encrypted with symmetric key
Pitfall: Public Key Provenance

• Suppose client wishes to know it’s talking to particular server
• Where does client get server’s public key?
• How does client know it has correct public key for real server, and not attacker?
• Man-in-the-middle attack:
 – Client connects to attacker
 – Attacker gives client attacker’s public key
 – Client believes communicating with real server
Further Reading

- The MIT Guide to Picking Locks
- Bleichenbacher, Daniel, Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1, in *CRYPTO 1998*