Distributed Systems and Security Revision Lecture

Brad Karp
UCL Computer Science

CS M030 / GZ03
27th April, 2010
Marking Scheme

• Coursework 1: 10%
• Coursework 2: 5%
• Final exam: 85%

• Must average $\geq 50\%$ across all to pass
Coursework 2 Results

![Histogram showing absolute number of marks across different mark ranges. The x-axis represents mark ranges from 0 to 50, and the y-axis represents the absolute number of marks ranging from 0 to 20. The bars show the distribution of marks within each range.]
Exam Rubric

• Four multi-part short-answer questions
 – you must answer two of your choice
 – questions on past papers for M030/GZ03 are representative

• One set of multiple-choice questions that you must answer
 – new this year

• Each question worth 33 marks
Multiple-Choice Questions

• A scenario followed by up to five lettered statements
• You must fill in only the letters of the correct statements
• Answers go on multiple-choice answer sheet, must be written in HB pencil
• Anywhere between zero and all five lettered statements may be true
• Marking scheme:
 – Gain a mark for each correct answer filled in
 – Lose a mark for each incorrect answer filled in
 – Lowest total multiple-choice mark possible is zero
 – Marks normalized into [0, 33]
Exam Style

- Questions will test understanding of concepts and system designs taught in lecture
 - Not just memorization, but *why and how the systems work, and when they don’t*

- Questions will ask you to apply knowledge to solve problems you haven’t seen before
What We Won’t Ask You

• “Write out this pseudocode from memory.”
 – No point, doesn’t test how well you think, nor how well you’ve mastered ability to apply material!

• “Explain how System X will behave in this utterly bizarre corner case that is insignificant in reality, and was never mentioned in lecture.”
 – We’re trying to determine whether you understand central themes in the papers, and how to apply the ideas in the papers.
What We Might Ask You

• “How does this system behave in this common situation?”
• “What happens when you make this change to this system’s design?”
• “Why does this system do this task in this way?”

• Questions may span multiple topics!
What We Might Ask You

• “How does this system behave in this common situation?”
• “What happens when you make this change to this system’s design?”

Substantiate your answers! The right conclusion must be supported by relevant details.

• Questions may span multiple topics!
How Should You Study?

• **Re-read lecture notes, re-read papers**

• For distributed systems topics, be sure you understand full details of examples worked through in lecture
 – Try perturbing an example; see if you can solve perturbed form
 – Understand why each part of algorithm/system needed

• Accumulate your questions on material, discuss in group
 – Surprisingly time-efficient
 – Pool your understanding; likely >= one of you understands each aspect of each topic
 – Only works if you prepare by re-reading lecture notes and working through examples first!