The Collateral Damage of Internet Censorship by DNS Injection

Brad Karp UCL Computer Science

CS 3035/GZ01 11th December 2014

Internet Censorship: Background

- Some nations' governments block their citizens' access to Internet content deemed politically sensitive or "indecent"
- Widely known example: Great Firewall of China (GFC)
 - Blocks access to sites such as twitter.com,
 facebook.com
 - Major implementation approach: prevent DNS queries for these domain names from returning correct IP addresses for sites

Today's Topic: Collateral Damage in Censorship

The Collateral Damage of Internet Censorship by DNS Injection *

Sparks Hovership Nebuchadnezzar Zion Virtual Labs zion.vlab@gmail.com Neo' Hovership Nebuchadnezzar Zion Virtual Labs zion.vlab@gmail.com

Tank Hovership Nebuchadnezzar Zion Virtual Labs zion.vlab@gmail.com

Smith Hovership Nebuchadnezzar Zion Virtual Labs zion.vlab@gmail.com Dozer Hovership Nebuchadnezzar Zion Virtual Labs zion.vlab@gmail.com

- GFC sends forged DNS responses with incorrect IP addresses to queries for domain names it wishes to censor
- Anonymous paper presented at SIGCOMM 2012 offered experimental finding: GFC causes collateral damage to Internet access by users outside China—it often censors content for Internet users outside China

Censorship Mechanism: DNS Injection

- Install injector on ISP's link that sees all DNS query packets that traverse that link
- Note that DNS queries always contain full domain name queried for, regardless of server to which query addressed
- Injector configured with domain names for which to block correct resolution
 - For these domain names, injector replies to query with incorrect ("lemon") IP address
 - Injector doesn't prevent DNS query from reaching real target DNS server; but injector's reply reaches querier first

DNS Injection Works at All Query Stages

 Queries to root, TLD server, authoritative server all liable to injection if Internet path incorporates DNS injector

Questions

- How does collateral damage occur?
- Which ISPs practice DNS injection?
- Which domain names and resolvers (resolver locations) are affected by collateral damage?

Causes of Collateral Damage

- Iterative queries create multiple opportunities for collateral damage:
 - Caching name server to root DNS server
 - Caching name server to TLD DNS server
 - Caching name server to authoritative DNS server
- Censored transit: DNS injector may target all DNS queries on link; caching name server's route to target server may transit censored AS!
- Redundant, anycasted DNS servers
 - 13 anycasted root servers, 13 anycasted global TLD servers
 - Path to any of these 26 IPs may pass through censored network

Experiment: Finding Paths Affected by Injection

- Randomly select one IP address in each /24 of IP address space; verify doesn't respond to DNS queries
- Probe the resulting 14 million IP addresses with a DNS query for a likely censored DNS name (e.g., facebook.com, twitter.com, youtube.com, etc.)
- Launch probes from server in AS 40676 in US
- If response received, must be from injector: record domain name as blacklisted; record target IP address as poisoned; remember IP address in response ("lemon IP")

Many Paths Affected by DNS Injection

Region	IP Count	%age	AS	Region	IP Count	%age
CN	388206	99.8	4134	CN	140232	36.05
CA	363	0.09	4837	CN	88573	22.77
US	127	0.03	4538	CN	35217	9.05
ΗK	111	0.03	9394	CN	24880	6.40
IN	94	0.02	4812	CN	14913	3.83

- 388,988 IP addresses poisoned in 16 regions (CN, CA, US, HK, IN, AP, KR, JP, TW, DE, PK, AU, SG, ZA, SE, FI)
- 6 domain names blacklisted (<u>www.facebook.com</u>, <u>twitter.com</u>, <u>www.youtube.com</u>, <u>www.appspot.com</u>, <u>www.xxx.com</u>, <u>www.urltrends.com</u>)
- 28 distinct IPs in list of lemon IPs

Experiment: Locating Injecting ISPs

- Generate DNS query for blacklisted name sent to known poisoned target IP
- Send queries with successively increasing IP header TTL field values
 - Observe IP addresses in "ICMP time exceeded" replies to learn locations of routers on path
 - Observe DNS replies—they are from injectors
- Result: learn ASes where injectors located

Injector Locations

- 3120 router IPs associated with DNS injectors
- All these IPs in 39 ASes in China
- Implication: poisoned IP addresses not in China caused by DNS queries transiting China (or by errors in geolocating those IP addresses)

Experiment: Assessing Effect of Injection on Real Resolvers

- Send queries for blacklisted names to 43,842 non-censored open recursive resolvers in 173 countries
- If reply gives a lemon IP address, conclude queries handled by that open resolver censored
- Injectors tend to censor queries in which any part of domain name string is blacklisted
- So can force tests of path from open resolver to root and TLD servers with queries like:
 - www.facebook.com.{random string}
 - www.facebook.{random string}.com

Incidence of Collateral Damage Censorship

- DNS queries to root almost never censored; implication: DNS queries to root seldom transit ASes in China
- TLDs suffer substantial collateral damage; among all 312 TLDs:
 - 99.53% of resolvers (43,322) censored for TLDs in China
 - 26.4% of resolvers (11,573) censored for one or more of 16 other TLDs

TLD Servers on Censored Paths from Open Resolvers

Top Level Domain

- Left: number of censored resolvers in various countries when looking up names in .de
- Right: percentage of censored resolvers in various countries when looking up names in .de

Summary

- Evidence of collateral damage of censorship: even when resolver and target nameserver outside censored network, users can be censored
- DNS injectors in 39 ASes located in China
- 26.41% of open recursive resolvers around the world could be affected by collateral censorship damage
- Primary mechanism of collateral damage: paths between resolvers and TLD servers