
Network Security:
Internet Worms and Firewalls

Brad Karp
UCL Computer Science

CS 3035/GZ01
11th December 2014

2

Outline

•  Internet worms
–  Self-propagating, possibly malicious code spread over

Internet

•  Firewalls:
–  Simple, perimeter-based security

3

What’s a Worm?

•  Vast numbers of Internet-attached hosts
run vulnerable server software

•  Worm: self-replicating code, containing
– Exploit for widely used, vulnerable server

software
– Payload: code that executes after exploit

succeeds
•  Payload connects to other Internet hosts,

sends copy of {exploit, payload} to each…
•  Unlike virus, spread not human-mediated

4

What’s in the Payload?

•  Could be anything…arbitrary code execution
allowed by many exploits

•  Install login facility for attacker, to allow use at
will in botnet
–  Botnets used widely today to launch DDoS attacks,

send spam
–  Market in botnets exists today (3-10 US cents/host/

week for spam proxy in 2005 [Paxson])

•  Send sensitive files to attacker
•  Destroy or corrupt data
•  Enormous possibility for harm, in financial,

privacy, and inconvenience terms

5

Code-RedI Worm

•  June 18th, 2001: eEye releases description
of buffer overflow vulnerability in Microsoft
IIS (web server)

•  June 26th, 2001: Microsoft releases patch
•  July 12th, 2001: Code-RedI worm released

(i.e., first sent to vulnerable host)
•  Estimated number hosts infected: 360,000
•  Estimated damages: $2.6 billion from loss

of service availability, downtime, cleanup…

6

Code-RedI Behavior

•  Payload: defaces web site
–  If language == English

•  HELLO! Welcome to http://www.worm.com!
Hacked By Chinese!

•  1st – 19th of every month: spread
–  Connect to random 32-bit IP address, send copy of

self (exploit+payload)
•  20th through end of every month:

–  Flood traffic to 198.137.240.91
(www.whitehouse.gov)

•  Bug: fixed seed for random number generator
–  All hosts generate same sequence of IPs!
–  Result: only linear growth in infected population

•  Only memory-resident; vanishes on reboot

7

Code-RedI v2: “Bugfix” Release

•  July 19th, 2001: new variant (“v2”)
released
– Uses random seed
– Now all infected hosts try different targets

•  White House changes IP address of its
server to avoid DDoS attack
– Result: July 20th, Code-RedI v2 dies out

•  360K hosts infected in 14 hours

8

Growth of Code-RedI v2

•  Source:
Vern Paxson,
ICSI/UC Berkeley

9

Network Telescopes

•  Monitor traffic arriving at sizeable regions of
Internet address space. Reveals, e.g.,:
–  “Backscatter” (responses to randomly source-spoofed

DDoS attacks)
–  Worms’ random scanning of IP addresses
–  Attackers’ random scanning for servers running

particular service

•  LBNL: 2 /16 networks, or 1/32768th of Internet
address space

•  UCSD/Univ. Wisconsin: 1 /8 network, or 1/256th
of Internet address space

10

Spread of Code-RedI v2

•  Network telescope estimate of infected host
count:
–  Count unique source IPs that attempt to connect to

port 80 on non-used addresses

•  Infected population over time fits logistic
function
–  S-shaped curve: exponential growth at start, then

slowing growth after most vulnerable nodes infected

•  Worm dies just as 20th starts
–  But even one host with wrong clock can keep trying

to infect others
–  On August 1st, worm begins to spread again!

11

Return of Code Red Worm

•  Source: Vern Paxson, ICSI/UC Berkeley

12

A Competitor: Code-Red II

•  Targets same IIS vulnerability; unrelated code
•  Released August 4th, 2001
•  Installs superuser backdoor; persists after

reboot
•  Spreads preferentially to local addresses:

– ½ probability generates address on same /8
–  3/8 probability generates address on same /16
–  1/8 probabliity generates random non-class-D, non-

loopback address

•  Result: squeezes out Code-Red I v2!

13

Slammer: A Fast UDP Worm

•  Exploit: buffer overflow vulnerability in Microsoft
SQL Server 2000
–  Vulnerability reported in June 2002
–  Patch released July 2002

•  SQL service uses connectionless UDP (rather
than connection-oriented TCP)

•  Entire worm fit in one packet!
–  No need to wait for RTT; send single packet, try next

target address

•  Slammer infected over 75K hosts in 10 minutes
•  Growth rate limited by Internet’s capacity

14

Slammer’s Behavior

•  Peak address scanning rate: 55 million
scans / second
– Reached in 3 minutes
– Beyond that point, congestion-limited

•  Payload non-malicious, apart from
aggressive scanning

•  Outages in 911 (emergency telephone)
service, Bank of America ATM network
– Purely from traffic load; crashed some

network equipment, saturated some
bottleneck links

15

Slammer’s Growth Limited by
Internet Bandwidth (!)

•  Source: Vern Paxson, ICSI/UC Berkeley

16

Worm Propagation Methods

•  Random scanning (e.g., Code-Red, Slammer)
•  Meta-server worm: query a service for hosts to

infect (e.g., ask Google, “powered by phpbb”)
•  Topological worm: find candidates from files on

infected host’s disk (e.g., web server logs,
bookmark files, email address books, ssh known
hosts files, …)
–  Very fast; stealthy—no random scanning behavior to

attract attention
•  Contagion worm: piggyback worm on

application’s usual connections
–  Connection patterns appear normal!

17

Firewalls: Perimeter-Based Defense

•  Define trusted perimeter (typically boundary of
own infrastructure)

•  All packets between Internet and trusted
perimeter flow through firewall

•  Firewall inspects, filters traffic to limit access to
non-secure services by remote, untrusted hosts

Internet
Local
Site

Network

Firewall

18

Firewall: Physical Topology vs.
Filtering Policies

•  Topological placement of firewall depends on
perimeter at which defense desired, e.g.,
–  Firewall between company’s net and Internet
–  Firewall between secret future product group’s LAN

and rest of company’s net
–  Firewall A between Internet and public servers,

firewall B between servers and rest of company’s net
–  Software personal firewall on desktop machine

•  Filtering policy depends on which attacks want
to defend against, e.g.,
–  Packet filtering router
–  Application-level gateway (proxy for ftp, HTTP, &c.)
–  Personal firewall disallows Internet Explorer from

making outbound SMTP connections

19

Background: Internet Services and
Port Numbers

•  Recall that UDP and TCP protocols identify
service by destination 16-bit port number

•  Well-known services: typically listen on ports <=
600
–  UNIX: must be root to listen on or send from port <

1024

•  Outgoing connections typically use high source
port numbers
–  App can ask OS to pick unused port number

•  See /etc/services on UNIX host for list of well-
known ports

20

Non-Secure Services
•  NFS server (port 2049)

–  Recall: can read/write entire file system given file
handle for any directory

–  File handles guessable on many platforms
•  Portmap (port 111)

–  Relays RPC requests, so they appear to come from
localhost

•  FTP (port 21)
–  Client instructs server to connect to self; can instead

direct server to connect to 3rd party (“bounce” attack)
•  Yellow pages/NIS

–  Allows remote retrieval of password database
•  Any server with a vulnerability

–  MS SQL (UDP 1434), DNS (53), rlogin (513), lpd
(515), …

21

Firewalls: Packet Filtering

•  Examine protocol fields of individual packets;
filter according to rules
–  IP source, destination addresses
–  IP protocol ID
–  TCP/UDP source, destination ports
–  TCP packet flags (e.g., SYN, FIN, …)
–  ICMP message type

•  Example: to prevent remote lpd exploit, block all
inbound TCP packets to destination port 515
–  Remote users shouldn’t be printing at your site

anyway

22

Firewall Example:
Blocking Source Spoofing

•  Block traffic from
outside your site with
a source address in
your site’s address
block

•  Egress filtering: block
traffic from within
your site with a source
address not in your
site’s address block
–  e.g., rule:
“deny ip not from
128.16/16 recv
em0 xmit em1”

Internet

Local
Site

(128.16/
16)

IP src
128.16.1.13

IP src
192.150.187.61

em0

em1

23

Firewall Example:
Blocking Outbound Mail

•  Worms often use infected hosts to send spam or
confidential documents

•  Defense: authorize only a few servers at site to
send outbound mail; filter all outbound mail
connections from others

•  e.g., rules:
 allow tcp from 128.16.1.20 not to
128.16/16 dst-port 25
 deny tcp from 128.16/16 not to
128.16/16 dst-port 25

24

Firewall Example:
Block All Inbound Traffic by Default

•  Little control over what software users run on
desktops (including servers) at most sites

•  May wish to avoid remote exploits of any
software run on users’ desktops

•  Policy:
–  disallow all inbound TCP connections but those to

known legitimate servers (e.g., one public web
server, one mail server)

–  allow all outbound TCP connections
•  Implementation:

–  Stateless way: drop all inbound TCP packets with SYN
flag set, but not ACK flag

25

Stateful Firewalling

•  Stateful way to implement “outbound TCP only”:
–  Firewall stores state for every active TCP connection

(src IP, src port, dst IP, dst port)
–  Only forwards “legal” packets for current state

•  e.g., if connection unknown, only allow outbound packets
with SYN flag set, but not ACK flag

•  e.g., if connection known, only allow inbound packets with
data after SYN/ACK seen

–  Time out connection state for long-idle connections

•  Also used to block inbound UDP only
–  No standard SYN, ACK fields in UDP to support

stateless filtering

•  Risk: state memory exhaustion on firewall

26

Firewalling Complex Protocols

•  Consider FTP
•  Client connects to server, instructs server to

open TCP connection back to client on specified
client-side port

•  Client’s firewall won’t allow inbound connection!
•  One solution: application-level proxy

–  Client’s firewall starts FTP application-level proxy
upon detecting FTP session

–  Proxy on firewall acts as client for TCP connections
with remote server, server for TCP connections with
local client

–  Can enforce policy for many protocols (SMTP, HTTP,
&c.)

–  But not used for encrypted protocols (SSL, SSH, &c.)

