Link State Routing

Brad Karp
UCL Computer Science

CS 3035/GZ01
3rd December 2013
Outline

• Link State Approach to Routing
• Finding Links: Hello Protocol
• Building a Map: Flooding Protocol
• Healing after Partitions: Bringing up Adjacencies
• Finding Routes: Dijkstra’s Shortest-Path-First Algorithm
• Properties of Link State Routing
Link State Approach to Routing

- Finding shortest paths in graph is classic theory problem
- Classic centralized single-source shortest paths algorithm: Dijkstra’s Algorithm
 - requires map of entire network
- Link State Routing:
 - push a copy of whole network map to every router
 - each router learns link state database
 - each router runs Dijkstra’s algorithm locally
Finding Links: Hello Protocol

- Each router configured to know its interfaces
- On each interface, every period P transmit a hello packet containing
 - sender’s ID
 - list of neighbors from which sender has heard hello during period D
 - $D > P$ (e.g., $D = 3P$)
- Link becomes **up** if have received hello containing own ID on it in last period D
- Link becomes **down** if no such hello received in last period D
- Screens out unidirectional links
Building a Map: Flooding Protocol

• Whenever node becomes up or becomes down, flood announcement to whole network
 – two link endpoint addresses
 – metric for link (configured by administrator)
 – sequence number

• Sequence number stored in link state database; incremented on every changed announcement
 – prevents old link states from overwriting new ones
Building a Map: Flooding Protocol

- Whenever node becomes up or becomes down, flood announcement to whole network
 - two link endpoint addresses
 - metric for link (configured by administrator)
 - sequence number

- Sequence number stored in link state database; incremented on every changed announcement
 - prevents old link states from overwriting new ones

- Upon receiving new link state message on interface i:
 - if link not in database, add it, flood elsewhere
 - if link in database, and seqno in message higher than one in database, write into database, flood elsewhere
 - if link in database and seqno in message lower than one in database, send link state from database on interface i
Outline

• Link State Approach to Routing
• Finding Links: Hello Protocol
• Building a Map: Flooding Protocol
• Healing after Partitions: Bringing up Adjacencies
• Finding Routes: Dijkstra’s Shortest-Path-First Algorithm
• Properties of Link State Routing
Healing Network Partitions

- Recall example from Distance Vector routing where network partitions
- Consider flooding behavior when partitions heal
Healing Network Partitions

- Recall example from Distance Vector routing where network partitions
- Consider flooding behavior when partitions heal
Healing Network Partitions

- Recall example from Distance Vector routing where network partitions
- Consider flooding behavior when partitions heal

```
A_1
0
1
0
D_1
```
```
B_2
0
1
1
E_2
B
1
C
1
0
```
Healing Network Partitions

- Recall example from Distance Vector routing where network partitions
- Consider flooding behavior when partitions heal

![Diagram showing network partitions and flooding behavior](image-url)
Healing Network Partitions (II)

- D detects link (D, E), floods link state to A
- A and D may still think link (C, E) exists!
- If first time link (D, E) comes up, how will A learn about links (B, E), (B, C)?
- Flooding to report changes only in neighboring links not always sufficient!
- Bringing up adjacencies:
 - when link comes up, routers at ends exchange short summaries (link endpoints, sequence numbers) of their whole databases
 - routers then request missing or newer entries from one another
 - saves bandwidth; real LS database entries contain more than link endpoints, seqnos
Outline

• Link State Approach to Routing
• Finding Links: Hello Protocol
• Building a Map: Flooding Protocol
• Healing after Partitions: Bringing up Adjacencies
• Finding Routes: Dijkstra’s Shortest-Path-First Algorithm
• Properties of Link State Routing
Link State Database \rightarrow Routing Table

• After flooding each router holds map of entire network graph in memory
• Need to transform network map into routing table
• How: single-source shortest paths algorithm
• Router views itself as source s, all other routers as destinations
Shortest Paths: Definitions

- Each router is a vertex, $v \in V$
- Each link is an edge, $e \in E$, also written (u, v)
- Each link metric an edge weight, $w(u, v)$
- Series of edges is a path, whose cost is sum of edges’ weights
- Single-source shortest paths: seek path with least cost from s to all other vertices
- Data structures:
 - $\pi[v]$ is predecessor of v: $\pi[v]$ is vertex before v along shortest path from s to v
 - $d[v]$ is shortest path estimate: least cost found from s to v so far
Shortest Paths: Definitions

• Each router is a vertex, \(v \in V \)
• Each link is an edge, \(e \in E \), also written \((u, v)\)
• Each link metric an edge weight, \(w(u, v) \)
• Series of edges is a path, whose cost is sum of edges’ weights

Assume all edge weights nonnegative
(Doesn’t make sense for a link to have negative cost...)

– \(\pi[v] \) is predecessor of \(v \): \(\pi[v] \) is vertex before \(v \) along shortest path from \(s \) to \(v \)
– \(d[v] \) is shortest path estimate: least cost found from \(s \) to \(v \) so far
Shortest Paths: Initialization

• When we start, we know little:
 – no estimate of cost of any path from s to any other vertex
 – no predecessor of v along shortest path from s to any v

initialize-single-source(V, s)
 for each vertex v ∈ V do
 d[v] ← infinity
 π[v] ← NULL
 d[s] = 0
Shortest Paths Building Block: Relaxation

• Relaxation:
 – Suppose we have current estimates $d[u], d[v]$ of shortest path cost from s to u and v
 – Does it reduce cost of shortest path from s to v to reach v via (u, v)?

```
relax(u, v, w)
  if d[v] > d[u] + w(u, v) then
    d[v] ← d[u] + w(u, v)
    π[v] ← u
```
Relaxation: Example

- Suppose
 - $d[u] = 5$
 - $d[v] = 9$
 - $w(u, v) = 2$

- $relax(u, v, w)$ computes:
 - $d[v] > d[u] + w(u, v)$
 - $9 > 5 + 2$
 - Yes, so reaching v via (u, v) reduces path cost
 - $d[v] = d[u] + w(u, v)$
 - $\pi[v] = u$
Relaxation: Example

• Suppose
 – \(d[u] = 5\)
 – \(d[v] = 9\)
 – \(w(u, v) = 2\)

• \(\text{relax}(u, v, w)\) computes:
 – \(d[v] \rightarrow d[u] + w(u, v)\)
 – \(9 \rightarrow 5 + 2\)
 • Yes, so reaching \(v\) via \((u, v)\) reduces path cost
 – \(d[v] = d[u] + w(u, v)\)
 – \(\pi[v] = u\)
Relaxation: Example

• Suppose
 – \(d[u] = 5\)
 – \(d[v] = 9\)
 – \(w(u, v) = 2\)

• \(\text{relax}(u, v, w)\) computes:
 – \(d[v] \geq d[u] + w(u, v)\)
 – \(9 \geq 5 + 2\)
 • Yes, so reaching \(v\) via \((u, v)\) reduces path cost
 – \(d[v] = d[u] + w(u, v)\)
 – \(\pi[v] = u\)
Dijkstra’s Algorithm: Overall Strategy

• Maintain running estimates of costs of shortest paths to all vertices (initially all infinity)

• Keep a set S of vertices that are “finished”; shortest paths to these vertices already found (initially empty)

• Repeatedly pick the unfinished vertex v with least shortest path cost estimate

• Add v to set S

• Relax all edges leaving v
Dijkstra’s Algorithm: Overall Strategy

• Maintain running estimates of costs of shortest paths to all vertices (initially all infinity)

• Keep a set S of vertices that are finished; shortest paths to these vertices already found (initially empty)

• Repeatedly pick the unfinished vertex v with least shortest path cost estimate

• Add v to set S

• Relax all edges leaving v

N.B. only correct for graphs where edge weights nonnegative!

23
Dijkstra’s Algorithm: Pseudocode

Dijkstra(V, E, w, s)

initiate-single-source(V, s)

S ← ∅
Q ← V

while Q ≠ ∅ do

u ← extract-min(Q)
S ← S ∪ {u}

for each vertex v that neighbors u do
relax(u, v, w)
Dijkstra’s Algorithm: Pseudocode

Dijkstra(V, E, w, s)
 initialize-single-source(V, s)
 S ← ∅
 Q ← V
 while Q ≠ ∅ do
 u ← extract-min(Q)
 S ← S ∪ {u}
 for each vertex v that neighbors u do
 relax(u, v, w)

extract-min(Q): return vertex v in Q with minimal shortest-path estimate d[v]
Dijkstra’s Algorithm: Example

• \(s \): source
• \(d[i] \): number inside of vertex \(i \)
• \(\pi[b] \): if (a, b) red, then \(\pi[b] = a \)
• members of set \(S \): blue-shaded vertices
• members of priority queue \(Q \): non-shaded vertices
Dijkstra’s Algorithm Example (cont’d)
Dijkstra’s Algorithm Example (cont’d)

- At termination, know shortest-path routes from s to all other routers
- **Shortest-path tree**, rooted at s
Dijkstra’s Algorithm: Efficiency

• Most networks are sparse graphs
 – far fewer edges than $O(N^2)$

• Implement Q with **binary heap**
 – for N items in heap, cost of extract-min() is $O(\log_2 N)$

• Begin with $|V|$ entries in Q, call extract-min() once for each
 – Cost: $O(V\log_2 V)$

• Total cost to insert $|V|$ entries into Q: $O(V)$

• Each call to relax() reduces $d[]$ value for vertex in Q
 – Cost: $O(\log_2 V)$

• At most $|E|$ calls to relax()

• Total cost: $O((V + E) \log_2 V)$, or $O(E \log_2 V)$ when all vertices reachable from source
Outline

• Link State Approach to Routing
• Finding Links: Hello Protocol
• Building a Map: Flooding Protocol
• Healing after Partitions: Bringing up Adjacencies
• Finding Routes: Dijkstra’s Shortest-Path-First Algorithm
• Properties of Link State Routing
Link State Routing: Properties

- At first glance, flooding status of all links seems costly
 - It is! Doesn’t scale to thousands of nodes without other tricks, namely hierarchy (more when we discuss BGP)
 - Cost reasonable for networks of hundreds of routers
- In practice, for intra-domain routing, LS has won, and DV no longer used
 - LS: after flooding, no loops in routes, provided all nodes have consistent link state databases
 - LS: flooding offers fast convergence after topology changes
- LS more complex to implement than DV
 - Sequence numbers crucial to protect against stale announcements
 - Bringing up adjacencies
 - Maintains both link state database and routing table