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Part I: Transport Concepts 

•  Layering context 
•  Transport goals 
•  Transport mechanisms 
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Context: Transport Layer 
•  Best-effort network layer 

–  drops packets 
–  delays packets 
–  reorders packets 
–  corrupts packet contents 

•  Many applications want 
reliable transport 
–  all data reach receiver… 
–  …in order they were sent 
–  no data corrupted 
–  “reliable byte stream” 

•  Need a transport protocol, 
e.g., Internet’s Transmission 
Control Protocol (TCP) 
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Ports: 
Identifying Senders and Receivers 

•  Host may run multiple, concurrent apps 
•  Typical layered multiplexing: transport protocol 

multiplexed by applications above 
•  Transport protocol must identify sending and 

receiving application instance 
•  Application instance ID: port 
•  Port owned by one application instance on host 
•  Servers often run on well-known ports 

–  e.g., HTTP tcp/80, SMTP tcp/25, ssh tcp/22 
•  TCP port number: 16 bits, one each for sender 

and receiver 
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TCP: Connection-Oriented, 
Reliable Byte Stream Transport 

•  Sending application offers a sequence of bytes: 
d0, d1, d2, … 

•  Receiving application sees all bytes arrive in 
same sequence: d0, d1, d2… 
–  not all applications need in-order behavior (e.g., ssh 

does, but does file transfer, really?) 
–  result: reliable byte stream transport 

•  Each byte stream: connection, or flow 
•  Each connection uniquely identified by: 

–  <sender IP, sender port, receiver IP, receiver port> 
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TCP’s Many End-to-End Goals 

•  Recover from data loss 
•  Avoid receipt of duplicated data 
•  Preserve data ordering 
•  Provide integrity against corruption 
•  Avoid sending faster than receiver can 

accept data 
•  Prevent (most) third party hosts from 

originating connections as other hosts 
•  Avoid congesting network 
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Fundamental Problem: 
Ensuring At-Least-Once Delivery 

•  Network drops packets 
•  Strategy to ensure delivery: 

–  Sender attaches unique number, or nonce, to each 
data packet sent; keeps copy of sent packet 

–  Receiver returns acknowledgement (ACK)  to sender 
for each data packet received, containing nonce 

–  Sender sets timer on each transmission 
•  if timer expires before ACK returns, retransmit that packet 
•  if ACK returns, cancel timer, discard saved copy of that packet 

–  Sender limits maximum number of retransmissions 

•  How long should retransmit timer be? 
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Fundamental Problem: 
Estimating RTT 

•  Expected time for ACK to return is round-trip 
time (RTT) 
–  end-to-end delay for data to reach receiver and ACK 

to reach sender 
–  propagation delay on links 
–  serialization delay at each hop 
–  queuing delay at routers 

•  Straw man: use fixed timer (e.g., 250 ms) 
–  what if the route changes? 
–  what if congestion occurs at one or more routers? 

•  Too small a value: needless retransmissions 
•  Too large a value: needless delay detecting loss 
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Fundamental Problem: 
Estimating RTT 

•  Expected time for ACK to return is round-trip 
time (RTT) 
–  end-to-end delay for data to reach receiver and ACK 

to reach sender 
–  propagation delay on links 
–  serialization delay at each hop 
–  queuing delay at routers 

•  Straw man: use fixed timer (e.g., 250 ms) 
–  what if the route changes? 
–  what if congestion occurs at one or more routers? 

•  Too small a value: needless retransmissions 
•  Too large a value: needless delay detecting loss 

Fixed timer violates end-to-end argument; 
details of link behavior should be left to link 
layer! 
Hard-coded timers lead to brittle behavior as 
technology evolves 
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Estimating RTT: Exponentially 
Weighted Moving Average (EWMA) 

•  Measurements of RTT readily available 
– note time t when packet sent 
– corresponding ACK returns at time t’ 
– RTT measurement = m = t’-t 

•  Single sample too brittle 
– queuing, routing dynamic 

•  Adapt over time, using EWMA: 
– measurements: m0, m1, m2, … 
–  fractional weight for new measurement, α 
– RTTi = ((1-α) x RTTi-1 + α x mi) 
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Estimating RTT: Exponentially 
Weighted Moving Average (EWMA) 

•  Measurements of RTT readily available 
– note time t when packet sent 
– corresponding ACK returns at time t’ 
– RTT measurement = m = t’-t 

•  Single sample too brittle 
– queuing, routing dynamic 

•  Adapt over time, using EWMA: 
– measurements: m0, m1, m2, … 
–  fractional weight for new measurement, α 
– RTTi = ((1-α) x RTTi-1 + α x mi) 

EWMA weights newest samples most 
How to choose α? (TCP uses 1/8) 
Is mean sufficient to capture RTT behavior 
over time? (more later) 



 
12 

Retransmission and Duplicate Delivery 

•  When sender’s retransmit timer expires, 
two indistinguishable cases: 
– data packet dropped en route to receiver, or 
– ACK dropped en route to sender 

•  In both cases, sender retransmits 
•  In latter case, duplicate data packet 

reaches receiver! 
•  How to prevent receiver from passing 

duplicates to application? 
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Eliminating Duplicates: 
Exactly Once Delivery 

•  Each packet sent with unique nonce 
•  Straw man: receiver remembers nonces previously seen 

–  if received packet seen before, drop, but resend ACK to sender 
•  How many tombstones must receiver store? 

–  Longest gap between duplicates unknown! 
–  Unbounded storage… 

•  Better plan: sequence numbers 
–  sender marks each packet with monotonically increasing 

sequence number (non-random nonce) 
–  sender includes greatest ACKed sequence number in its packets 
–  receiver remembers only greatest received sequence number, 

drops received packets with smaller ones 
–  still results in one tombstone per connection 
–  (partial) fix: expire state at receiver after maximum retry delay 
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Eliminating Duplicates: 
Exactly Once Delivery 

•  Each packet sent with unique nonce 
•  Straw man: receiver remembers nonces previously seen 

–  if received packet seen before, drop, but resend ACK to sender 
•  How many tombstones must receiver store? 

–  Longest gap between duplicates unknown! 
–  Unbounded storage… 

•  Better plan: sequence numbers 
–  sender marks each packet with monotonically increasing 

sequence number (non-random nonce) 
–  sender includes greatest ACKed sequence number in its packets 
–  receiver remembers only greatest received sequence number, 

drops received packets with smaller ones 
–  still results in one tombstone per connection 
–  (partial) fix: expire state at receiver after maximum retry delay 

Doesn’t guarantee delivery! 
Properties: 
If delivered, then only once. 
If undelivered, sender will not think delivered. 
If ACK not seen, data may have been delivered, 
but sender will not know. 
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End-to-End Integrity 

•  Achieved by using transport checksum 
•  Protects against things link-layer reliability 

cannot: 
–  router memory corruption, software bugs, &c. 

•  Covers data in packet, transport protocol header 
•  Also should cover layer-3 source and 

destination! 
–  misdelivered packet should not be inserted into data 

stream at receiver, nor should be acknowledged 
–  receiver drops packets w/failed transport checksum 
–  TCP “pseudo header” covers IP source and 

destination (more later) 
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Segmentation and Reassembly 

•  Application data unbounded in length 
•  Link layers typically enforce maximum length 
•  Transport layer must 

–  at sender, segment data too long for one packet into 
multiple packets 

–  at receiver, reassemble these packets into original 
data 

•  Segmentation: divide into packets; mark each 
with range of bytes in original data 

•  Reassembly: buffer received packets in correct 
order; track which have arrived; pass to 
application only when all received 
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Window-Based Flow Control: 
Motivation 

•  Suppose sender sends one packet, awaits ACK, repeats… 
•  Result: one packet sent per RTT 
•  e.g., 70 ms RTT, 1500-byte packets 

–  Max throughput: 171 Kbps 
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Fixed Window-Based Flow Control 

•  Pipeline transmissions to “keep pipe full”; overlap ACKs with data 
•  Sender sends window of packets sequentially, without awaiting 

ACKs 
•  Sender retains packets until they are ACKed, tracks which have 

been ACKed 
•  Sender sets retransmit timer for each window; when expires, 

resends all unACKed packets in window 
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Fixed Window-Based Flow Control 

•  Pipeline transmissions to “keep pipe full”; overlap ACKs with data 
•  Sender sends window of packets sequentially, without awaiting 

ACKs 
•  Sender retains packets until they are ACKed, tracks which have 

been ACKed 
•  Sender sets retransmit timer for each window; when expires, 

resends all unACKed packets in window 

1 RTT idle time between grant of new 
window and arrival of data at receiver 
Better approach, used by TCP: sliding window, 
extends on-the-fly as ACKs return; no idle time! 
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Choosing Window Size: 
Bandwidth-Delay Product 

•  How large a window is required at sender 
to keep the pipe full? 

•  Network bottleneck: point of slowest rate 
along path between sender and receiver 

•  To keep pipe full 
– window size ≥ RTT × bottleneck rate 

•  Window too small: can’t fill pipe 
•  Window too large: unnecessary network 

load/queuing/loss 
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Choosing Window Size: 
Bandwidth-Delay Product 

•  How large a window is required at sender 
to keep the pipe full? 

•  Network bottleneck: point of slowest rate 
along path between sender and receiver 

•  To keep pipe full 
– window size ≥ RTT × bottleneck rate 

•  Window too small: can’t fill pipe 
•  Window too large: unnecessary network 

load/queuing/loss 

Goal: window size = RTT × bottleneck rate 
e.g., to achieve bottleneck rate of 1 Mbps, across 
a 70 ms RTT, need window size: 

W = (106 bps × .07 s) = 70 Kbits = 8.75 KB 
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Closing of Connections 

•  Connection life cycle: 
–  Open connection 
–  Send/receive data 
–  Close connection 

•  Criteria for connection 
close: 
–  Receiver must know all 

data received 
–  Sender and receiver 

must agree last 
packet reached 
receiver, and 
connection ended 

Sender Receiver 

last data 

ACK time 

end 

end ACK 

done 
forgets 
conn 
state 

forgets 
conn 
state 
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Closing of Connections 

•  Connection life cycle: 
–  Open connection 
–  Send/receive data 
–  Close connection 

•  Criteria for connection 
close: 
–  Receiver must know all 

data received 
–  Sender and receiver 

must agree last 
packet reached 
receiver, and 
connection ended 

Sender Receiver 

last data 

ACK time 

end 

end ACK 

done 
forgets 
conn 
state 

forgets 
conn 
state 

Risk: new connection opened; delayed data 
from old connection arrive at receiver during 
new one 
Fix: one endpoint remembers connection for 
longer than maximum packet delay; disallows 
new connections from other endpoint during this 
period 
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Part II: TCP Protocol 

•  Packet header format 
•  Connection establishment 
•  Data transmission 
•  Retransmit timeouts 
•  RTT estimator 
•  AIMD Congestion control 
•  Throughput, loss, and RTT equation 
•  Connection teardown 
•  Protocol state machine 
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TCP Packet Header 

•  TCP packet: IP header + TCP header + data 
•  TCP header: 20 bytes long 
•  Checksum covers header + “pseudo header” 

–  IP header source and destination addresses, protocol 
–  Length of TCP segment (TCP header + data) 
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TCP Header Details 

•  Connections inherently bidirectional; all TCP 
headers carry both data and ACK sequence 
numbers 

•  32-bit sequence numbers are in units of bytes 
•  Source and destination ports 

–  multiplexing of TCP by applications 
–  UNIX: local ports below 1024 reserved (only root may 

use them) 
•  Window: advertisement of number of bytes 

advertiser willing to accept 
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TCP Connection Establishment: 
Motivation 

•  Goals: 
–  Start TCP connection between two hosts 
–  Avoid mixing data from old connection in new 

connection 
–  Avoid confusing previous connection attempts with 

current one 
–  Prevent (most) third parties from impersonating 

(spoofing) one endpoint 
•  SYN packets (SYN flag in TCP header set) 

used to establish connections 
•  Use retransmission timer to recover from lost 

SYNs 
•  What protocol meets above goals? 
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TCP Connection Establishment: 
Non-Solution (I) 

•  Use two-way handshake 
•  A sends SYN to B 
•  B accepts by returning 

SYN to A 
•  A retransmits SYN if not 

received 
•  A and B can ignore 

duplicate SYNs after 
connection established 

•  What about delayed data 
packets from old 
connection? 

SYN 

SYN 

data, seqno = 1 

time 

data, seqno = 512 

A B 

closed SYN 

SYN 

data, seqno = 1 data, seqno = 512 

data, seqno = 1024 
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TCP Connection Establishment: 
Non-Solution (I) 

•  Use two-way handshake 
•  A sends SYN to B 
•  B accepts by returning 

SYN to A 
•  A retransmits SYN if not 

received 
•  A and B can ignore 

duplicate SYNs after 
connection established 

•  What about delayed data 
packets from old 
connection? 

SYN 

SYN 

data, seqno = 1 

time 

data, seqno = 512 

A B 

closed SYN 

SYN 

data, seqno = 1 data, seqno = 512 

data, seqno = 1024 

Connections shouldn’t start with constant 
sequence number; risks mixing data 
between old and new connections 
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TCP Connection Establishment: 
Non-Solution (II) 

•  Two-way handshake, 
as before 

•  But enclose random 
initial sequence 
numbers on SYNs 

•  What about delayed 
SYNs from old 
connection? 
–  A wrongly believes 

connection 
successfully 
established 

–  B will drop all of A’s 
data! 

time 
A B 

closed 
SYN, seqno = k 

data, seqno = k+1 data 
ignored! 
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TCP Connection Establishment: 
Non-Solution (II) 

•  Two-way handshake, 
as before 

•  But enclose random 
initial sequence 
numbers on SYNs 

•  What about delayed 
SYNs from old 
connection? 
–  A wrongly believes 

connection 
successfully 
established 

–  B will drop all of A’s 
data! 

time 
A B 

closed 
SYN, seqno = k 

data, seqno = k+1 data 
ignored! 

Connection attempts should explicitly 
acknowledge which SYN they are accepting! 
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TCP Connection Establishment: 
3-Way Handshake 

•  Set SYN on 
connection request 

•  Each side chooses 
random initial 
sequence number 

•  Each side explicitly 
ACKs the sequence 
number of the SYN 
it’s responding to 

SYN, seqno = i 

SYN, seqno = j, 

ACK = i+1 

seqno = i+1, 
ACK = j+1 

time 

A B 
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Robustness of 3-Way Handshake: 
Delayed SYN 

•  Suppose A’s SYN i 
delayed, arrives at B 
after connection 
closed 

•  B responds with SYN/
ACK for i+1 

•  A doesn’t recognize i
+1; responds with 
reset, RST flag set in 
TCP header 

•  A rejects connection 

SYN, seqno = i 

SYN, seqno = j, 

ACK = i+1 

RST, ACK = j+1 

time 

A B 

closed 
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Robustness of 3-Way Handshake: 
Delayed SYN/ACK 

•  A attempts connection 
to B 

•  Suppose B’s SYN k/
ACK p delayed, arrives 
at A during new 
connection attempt 

•  A rejects SYN k; sends 
RST to B 

•  Connection from A to 
B succeeds unimpeded 

SYN, seqno = i 

seqno = i+1, 
ACK = j+1 

time 

A B 

closed 

RST, ACK = k 
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Robustness of 3-Way Handshake: 
Source Spoofing 

•  Suppose host B trusts 
host A, based on A’s IP 
address 
–  e.g., allows any account 

creation request from host 
A 

•  Adversary M may not 
control host A, but may 
seek to impersonate, or 
spoof, host A 
–  Adversary may not need to 

receive data from B; only 
send data (e.g., “create an 
account l33thax0r”) 

•  Can M establish a 
connection to B as A? 

A B 

M 
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Robustness of 3-Way Handshake: 
Source Spoofing 

•  Suppose host B trusts 
host A, based on A’s IP 
address 
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A 
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A B 
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SYN, seqno = j, 
ACK = i+1 
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Robustness of 3-Way Handshake: 
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address 
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Robustness of 3-Way Handshake: 
Source Spoofing 

•  Suppose host B trusts 
host A, based on A’s IP 
address 
–  e.g., allows any account 

creation request from host 
A 

•  Adversary M may not 
control host A, but may 
seek to impersonate, or 
spoof, host A 
–  Adversary may not need to 

receive data from B; only 
send data (e.g., “create an 
account l33thax0r”) 

•  Can M establish a 
connection to B as A? 

A B 

M 

SYN, seqno = j, 
ACK = i+1 

Unless he is on path between A and B, adversary 
cannot spoof A to B or vice-versa! 
Why: random ISNs on SYNs 
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TCP: Data Transmission (I) 

•  Each byte numbered sequentially, mod 232 

•  Sender buffers data in case retransmission 
required 

•  Receiver buffers data for in-order reassembly 
•  Sequence number (seqno) field in TCP header 

indicates first user payload byte in packet 
•  Receiver indicates receive window size explicitly 

to sender in window field in TCP header 
–  corresponds to available buffer space at receiver 
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TCP: Data Transmission (II) 

•  Sender’s transmit window size: amount of buffer 
space at sender 

•  Sender uses window that is minimum of send 
and receive window sizes 

•  Receiver sends cumulative ACKs 
–  ACK number in TCP header names highest contiguous 

byte number received thus far, +1 
–  one ACK per received packet, OR 
–  Delayed ACK also possible: receiver batches ACKs, 

sends one for every pair of data packets (200 ms max 
delay) 

•  Current window at sender: 
–  low byte advances as packets sent 
–  high byte advances as receive window updates arrive 
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Outline 

•  Packet header format 
•  Connection establishment 
•  Data transmission 
•  Retransmit timeouts 
•  RTT estimator 
•  AIMD Congestion control 
•  Throughput, loss, and RTT equation 
•  Connection teardown 
•  Protocol state machine 
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TCP: Retransmit Timeouts 

•  Sender sets timer for each sent packet 
–  when ACK returns, timer canceled 
–  if timer expires before ACK returns, packet resent 

•  Expected time for ACK to return: RTT 
•  TCP estimates round-trip time using EWMA 

–  measurements mi from timed packet/ACK pairs 
–  RTTi = ((1-α) x RTTi-1 + α x mi) 
–  Retransmit timeout: RTOi = β × RTTi 

–  original TCP: β = 2 

•  Is this accurate enough? 
–  Recall dangers of too-short and too-long RTT 

estimates from previous lecture 
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Mean and Variance: 
Jacobson’s RTT Estimator 

•  Above link load of 30% at router, β × RTTi 
will retransmit too early! 

•  Response to increasing load: waste 
bandwidth on duplicate packets 

•  Result: congestion collapse! 
•  [Jacobson 88]: estimate vi, mean 

deviation (EWMA of |mi – RTTi|), stand-in 
for variance 

 vi = vi-1 × (1-γ) + γ × |mi-RTTi| 
•  Use RTOi = RTTi + 4vi 
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Mean and Variance: 
Jacobson’s RTT Estimator 

•  Above link load of 30% at router, β × RTTi 
will retransmit too early! 

•  Response to increasing load: waste 
bandwidth on duplicate packets 

•  Result: congestion collapse! 
•  [Jacobson 88]: estimate vi, mean 

deviation (EWMA of |mi – RTTi|), stand-in 
for variance 

 vi = vi-1 × (1-γ) + γ × |mi-RTTi| 
•  Use RTOi = RTTi + 4vi 

Mean and Variance RTT estimator used by all 
modern TCPs 



Reminder: 
Reading for Next Lecture 

•  Jacboson, V., Congestion Avoidance and 
Control 

•  Read before Thursday’s lecture 
•  A true classic in networking—one of the 

most influential ideas in the area 
•  Paper is available in PDF on calendar page 

of class web site 


