
Reliable Transport I: Concepts and
TCP Protocol

Brad Karp
UCL Computer Science

CS 3035/GZ01
29th October 2013

Part I: Transport Concepts

•  Layering context
•  Transport goals
•  Transport mechanisms

2

3

Context: Transport Layer
•  Best-effort network layer

–  drops packets
–  delays packets
–  reorders packets
–  corrupts packet contents

•  Many applications want
reliable transport
–  all data reach receiver…
–  …in order they were sent
–  no data corrupted
–  “reliable byte stream”

•  Need a transport protocol,
e.g., Internet’s Transmission
Control Protocol (TCP)

4

Ports:
Identifying Senders and Receivers

•  Host may run multiple, concurrent apps
•  Typical layered multiplexing: transport protocol

multiplexed by applications above
•  Transport protocol must identify sending and

receiving application instance
•  Application instance ID: port
•  Port owned by one application instance on host
•  Servers often run on well-known ports

–  e.g., HTTP tcp/80, SMTP tcp/25, ssh tcp/22
•  TCP port number: 16 bits, one each for sender

and receiver

5

TCP: Connection-Oriented,
Reliable Byte Stream Transport

•  Sending application offers a sequence of bytes:
d0, d1, d2, …

•  Receiving application sees all bytes arrive in
same sequence: d0, d1, d2…
–  not all applications need in-order behavior (e.g., ssh

does, but does file transfer, really?)
–  result: reliable byte stream transport

•  Each byte stream: connection, or flow
•  Each connection uniquely identified by:

–  <sender IP, sender port, receiver IP, receiver port>

6

TCP’s Many End-to-End Goals

•  Recover from data loss
•  Avoid receipt of duplicated data
•  Preserve data ordering
•  Provide integrity against corruption
•  Avoid sending faster than receiver can

accept data
•  Prevent (most) third party hosts from

originating connections as other hosts
•  Avoid congesting network

7

Fundamental Problem:
Ensuring At-Least-Once Delivery

•  Network drops packets
•  Strategy to ensure delivery:

–  Sender attaches unique number, or nonce, to each
data packet sent; keeps copy of sent packet

–  Receiver returns acknowledgement (ACK) to sender
for each data packet received, containing nonce

–  Sender sets timer on each transmission
•  if timer expires before ACK returns, retransmit that packet
•  if ACK returns, cancel timer, discard saved copy of that packet

–  Sender limits maximum number of retransmissions

•  How long should retransmit timer be?

8

Fundamental Problem:
Estimating RTT

•  Expected time for ACK to return is round-trip
time (RTT)
–  end-to-end delay for data to reach receiver and ACK

to reach sender
–  propagation delay on links
–  serialization delay at each hop
–  queuing delay at routers

•  Straw man: use fixed timer (e.g., 250 ms)
–  what if the route changes?
–  what if congestion occurs at one or more routers?

•  Too small a value: needless retransmissions
•  Too large a value: needless delay detecting loss

9

Fundamental Problem:
Estimating RTT

•  Expected time for ACK to return is round-trip
time (RTT)
–  end-to-end delay for data to reach receiver and ACK

to reach sender
–  propagation delay on links
–  serialization delay at each hop
–  queuing delay at routers

•  Straw man: use fixed timer (e.g., 250 ms)
–  what if the route changes?
–  what if congestion occurs at one or more routers?

•  Too small a value: needless retransmissions
•  Too large a value: needless delay detecting loss

Fixed timer violates end-to-end argument;
details of link behavior should be left to link
layer!
Hard-coded timers lead to brittle behavior as
technology evolves

10

Estimating RTT: Exponentially
Weighted Moving Average (EWMA)

•  Measurements of RTT readily available
– note time t when packet sent
– corresponding ACK returns at time t’
– RTT measurement = m = t’-t

•  Single sample too brittle
– queuing, routing dynamic

•  Adapt over time, using EWMA:
– measurements: m0, m1, m2, …
–  fractional weight for new measurement, α
– RTTi = ((1-α) x RTTi-1 + α x mi)

11

Estimating RTT: Exponentially
Weighted Moving Average (EWMA)

•  Measurements of RTT readily available
– note time t when packet sent
– corresponding ACK returns at time t’
– RTT measurement = m = t’-t

•  Single sample too brittle
– queuing, routing dynamic

•  Adapt over time, using EWMA:
– measurements: m0, m1, m2, …
–  fractional weight for new measurement, α
– RTTi = ((1-α) x RTTi-1 + α x mi)

EWMA weights newest samples most
How to choose α? (TCP uses 1/8)
Is mean sufficient to capture RTT behavior
over time? (more later)

12

Retransmission and Duplicate Delivery

•  When sender’s retransmit timer expires,
two indistinguishable cases:
– data packet dropped en route to receiver, or
– ACK dropped en route to sender

•  In both cases, sender retransmits
•  In latter case, duplicate data packet

reaches receiver!
•  How to prevent receiver from passing

duplicates to application?

13

Eliminating Duplicates:
Exactly Once Delivery

•  Each packet sent with unique nonce
•  Straw man: receiver remembers nonces previously seen

–  if received packet seen before, drop, but resend ACK to sender
•  How many tombstones must receiver store?

–  Longest gap between duplicates unknown!
–  Unbounded storage…

•  Better plan: sequence numbers
–  sender marks each packet with monotonically increasing

sequence number (non-random nonce)
–  sender includes greatest ACKed sequence number in its packets
–  receiver remembers only greatest received sequence number,

drops received packets with smaller ones
–  still results in one tombstone per connection
–  (partial) fix: expire state at receiver after maximum retry delay

14

Eliminating Duplicates:
Exactly Once Delivery

•  Each packet sent with unique nonce
•  Straw man: receiver remembers nonces previously seen

–  if received packet seen before, drop, but resend ACK to sender
•  How many tombstones must receiver store?

–  Longest gap between duplicates unknown!
–  Unbounded storage…

•  Better plan: sequence numbers
–  sender marks each packet with monotonically increasing

sequence number (non-random nonce)
–  sender includes greatest ACKed sequence number in its packets
–  receiver remembers only greatest received sequence number,

drops received packets with smaller ones
–  still results in one tombstone per connection
–  (partial) fix: expire state at receiver after maximum retry delay

Doesn’t guarantee delivery!
Properties:
If delivered, then only once.
If undelivered, sender will not think delivered.
If ACK not seen, data may have been delivered,
but sender will not know.

15

End-to-End Integrity

•  Achieved by using transport checksum
•  Protects against things link-layer reliability

cannot:
–  router memory corruption, software bugs, &c.

•  Covers data in packet, transport protocol header
•  Also should cover layer-3 source and

destination!
–  misdelivered packet should not be inserted into data

stream at receiver, nor should be acknowledged
–  receiver drops packets w/failed transport checksum
–  TCP “pseudo header” covers IP source and

destination (more later)

16

Segmentation and Reassembly

•  Application data unbounded in length
•  Link layers typically enforce maximum length
•  Transport layer must

–  at sender, segment data too long for one packet into
multiple packets

–  at receiver, reassemble these packets into original
data

•  Segmentation: divide into packets; mark each
with range of bytes in original data

•  Reassembly: buffer received packets in correct
order; track which have arrived; pass to
application only when all received

17

Window-Based Flow Control:
Motivation

•  Suppose sender sends one packet, awaits ACK, repeats…
•  Result: one packet sent per RTT
•  e.g., 70 ms RTT, 1500-byte packets

–  Max throughput: 171 Kbps

18

Fixed Window-Based Flow Control

•  Pipeline transmissions to “keep pipe full”; overlap ACKs with data
•  Sender sends window of packets sequentially, without awaiting

ACKs
•  Sender retains packets until they are ACKed, tracks which have

been ACKed
•  Sender sets retransmit timer for each window; when expires,

resends all unACKed packets in window

19

Fixed Window-Based Flow Control

•  Pipeline transmissions to “keep pipe full”; overlap ACKs with data
•  Sender sends window of packets sequentially, without awaiting

ACKs
•  Sender retains packets until they are ACKed, tracks which have

been ACKed
•  Sender sets retransmit timer for each window; when expires,

resends all unACKed packets in window

1 RTT idle time between grant of new
window and arrival of data at receiver
Better approach, used by TCP: sliding window,
extends on-the-fly as ACKs return; no idle time!

20

Choosing Window Size:
Bandwidth-Delay Product

•  How large a window is required at sender
to keep the pipe full?

•  Network bottleneck: point of slowest rate
along path between sender and receiver

•  To keep pipe full
– window size ≥ RTT × bottleneck rate

•  Window too small: can’t fill pipe
•  Window too large: unnecessary network

load/queuing/loss

21

Choosing Window Size:
Bandwidth-Delay Product

•  How large a window is required at sender
to keep the pipe full?

•  Network bottleneck: point of slowest rate
along path between sender and receiver

•  To keep pipe full
– window size ≥ RTT × bottleneck rate

•  Window too small: can’t fill pipe
•  Window too large: unnecessary network

load/queuing/loss

Goal: window size = RTT × bottleneck rate
e.g., to achieve bottleneck rate of 1 Mbps, across
a 70 ms RTT, need window size:

W = (106 bps × .07 s) = 70 Kbits = 8.75 KB

22

Closing of Connections

•  Connection life cycle:
–  Open connection
–  Send/receive data
–  Close connection

•  Criteria for connection
close:
–  Receiver must know all

data received
–  Sender and receiver

must agree last
packet reached
receiver, and
connection ended

Sender Receiver

last data

ACK time

end

end ACK

done
forgets
conn
state

forgets
conn
state

23

Closing of Connections

•  Connection life cycle:
–  Open connection
–  Send/receive data
–  Close connection

•  Criteria for connection
close:
–  Receiver must know all

data received
–  Sender and receiver

must agree last
packet reached
receiver, and
connection ended

Sender Receiver

last data

ACK time

end

end ACK

done
forgets
conn
state

forgets
conn
state

Risk: new connection opened; delayed data
from old connection arrive at receiver during
new one
Fix: one endpoint remembers connection for
longer than maximum packet delay; disallows
new connections from other endpoint during this
period

24

Part II: TCP Protocol

•  Packet header format
•  Connection establishment
•  Data transmission
•  Retransmit timeouts
•  RTT estimator
•  AIMD Congestion control
•  Throughput, loss, and RTT equation
•  Connection teardown
•  Protocol state machine

25

TCP Packet Header

•  TCP packet: IP header + TCP header + data
•  TCP header: 20 bytes long
•  Checksum covers header + “pseudo header”

–  IP header source and destination addresses, protocol
–  Length of TCP segment (TCP header + data)

26

TCP Header Details

•  Connections inherently bidirectional; all TCP
headers carry both data and ACK sequence
numbers

•  32-bit sequence numbers are in units of bytes
•  Source and destination ports

–  multiplexing of TCP by applications
–  UNIX: local ports below 1024 reserved (only root may

use them)
•  Window: advertisement of number of bytes

advertiser willing to accept

27

TCP Connection Establishment:
Motivation

•  Goals:
–  Start TCP connection between two hosts
–  Avoid mixing data from old connection in new

connection
–  Avoid confusing previous connection attempts with

current one
–  Prevent (most) third parties from impersonating

(spoofing) one endpoint
•  SYN packets (SYN flag in TCP header set)

used to establish connections
•  Use retransmission timer to recover from lost

SYNs
•  What protocol meets above goals?

28

TCP Connection Establishment:
Non-Solution (I)

•  Use two-way handshake
•  A sends SYN to B
•  B accepts by returning

SYN to A
•  A retransmits SYN if not

received
•  A and B can ignore

duplicate SYNs after
connection established

•  What about delayed data
packets from old
connection?

SYN

SYN

data, seqno = 1

time

data, seqno = 512

A B

closed SYN

SYN

data, seqno = 1 data, seqno = 512

data, seqno = 1024

29

TCP Connection Establishment:
Non-Solution (I)

•  Use two-way handshake
•  A sends SYN to B
•  B accepts by returning

SYN to A
•  A retransmits SYN if not

received
•  A and B can ignore

duplicate SYNs after
connection established

•  What about delayed data
packets from old
connection?

SYN

SYN

data, seqno = 1

time

data, seqno = 512

A B

closed SYN

SYN

data, seqno = 1 data, seqno = 512

data, seqno = 1024

Connections shouldn’t start with constant
sequence number; risks mixing data
between old and new connections

30

TCP Connection Establishment:
Non-Solution (II)

•  Two-way handshake,
as before

•  But enclose random
initial sequence
numbers on SYNs

•  What about delayed
SYNs from old
connection?
–  A wrongly believes

connection
successfully
established

–  B will drop all of A’s
data!

time
A B

closed
SYN, seqno = k

data, seqno = k+1 data
ignored!

31

TCP Connection Establishment:
Non-Solution (II)

•  Two-way handshake,
as before

•  But enclose random
initial sequence
numbers on SYNs

•  What about delayed
SYNs from old
connection?
–  A wrongly believes

connection
successfully
established

–  B will drop all of A’s
data!

time
A B

closed
SYN, seqno = k

data, seqno = k+1 data
ignored!

Connection attempts should explicitly
acknowledge which SYN they are accepting!

32

TCP Connection Establishment:
3-Way Handshake

•  Set SYN on
connection request

•  Each side chooses
random initial
sequence number

•  Each side explicitly
ACKs the sequence
number of the SYN
it’s responding to

SYN, seqno = i

SYN, seqno = j,

ACK = i+1

seqno = i+1,
ACK = j+1

time

A B

33

Robustness of 3-Way Handshake:
Delayed SYN

•  Suppose A’s SYN i
delayed, arrives at B
after connection
closed

•  B responds with SYN/
ACK for i+1

•  A doesn’t recognize i
+1; responds with
reset, RST flag set in
TCP header

•  A rejects connection

SYN, seqno = i

SYN, seqno = j,

ACK = i+1

RST, ACK = j+1

time

A B

closed

34

Robustness of 3-Way Handshake:
Delayed SYN/ACK

•  A attempts connection
to B

•  Suppose B’s SYN k/
ACK p delayed, arrives
at A during new
connection attempt

•  A rejects SYN k; sends
RST to B

•  Connection from A to
B succeeds unimpeded

SYN, seqno = i

seqno = i+1,
ACK = j+1

time

A B

closed

RST, ACK = k

35

Robustness of 3-Way Handshake:
Source Spoofing

•  Suppose host B trusts
host A, based on A’s IP
address
–  e.g., allows any account

creation request from host
A

•  Adversary M may not
control host A, but may
seek to impersonate, or
spoof, host A
–  Adversary may not need to

receive data from B; only
send data (e.g., “create an
account l33thax0r”)

•  Can M establish a
connection to B as A?

A B

M

36

Robustness of 3-Way Handshake:
Source Spoofing

•  Suppose host B trusts
host A, based on A’s IP
address
–  e.g., allows any account

creation request from host
A

•  Adversary M may not
control host A, but may
seek to impersonate, or
spoof, host A
–  Adversary may not need to

receive data from B; only
send data (e.g., “create an
account l33thax0r”)

•  Can M establish a
connection to B as A?

A B

M

37

Robustness of 3-Way Handshake:
Source Spoofing

•  Suppose host B trusts
host A, based on A’s IP
address
–  e.g., allows any account

creation request from host
A

•  Adversary M may not
control host A, but may
seek to impersonate, or
spoof, host A
–  Adversary may not need to

receive data from B; only
send data (e.g., “create an
account l33thax0r”)

•  Can M establish a
connection to B as A?

A B

M

SYN, seqno = j,
ACK = i+1

38

Robustness of 3-Way Handshake:
Source Spoofing

•  Suppose host B trusts
host A, based on A’s IP
address
–  e.g., allows any account

creation request from host
A

•  Adversary M may not
control host A, but may
seek to impersonate, or
spoof, host A
–  Adversary may not need to

receive data from B; only
send data (e.g., “create an
account l33thax0r”)

•  Can M establish a
connection to B as A?

A B

M

SYN, seqno = j,
ACK = i+1

39

Robustness of 3-Way Handshake:
Source Spoofing

•  Suppose host B trusts
host A, based on A’s IP
address
–  e.g., allows any account

creation request from host
A

•  Adversary M may not
control host A, but may
seek to impersonate, or
spoof, host A
–  Adversary may not need to

receive data from B; only
send data (e.g., “create an
account l33thax0r”)

•  Can M establish a
connection to B as A?

A B

M

SYN, seqno = j,
ACK = i+1

Unless he is on path between A and B, adversary
cannot spoof A to B or vice-versa!
Why: random ISNs on SYNs

40

TCP: Data Transmission (I)

•  Each byte numbered sequentially, mod 232

•  Sender buffers data in case retransmission
required

•  Receiver buffers data for in-order reassembly
•  Sequence number (seqno) field in TCP header

indicates first user payload byte in packet
•  Receiver indicates receive window size explicitly

to sender in window field in TCP header
–  corresponds to available buffer space at receiver

41

TCP: Data Transmission (II)

•  Sender’s transmit window size: amount of buffer
space at sender

•  Sender uses window that is minimum of send
and receive window sizes

•  Receiver sends cumulative ACKs
–  ACK number in TCP header names highest contiguous

byte number received thus far, +1
–  one ACK per received packet, OR
–  Delayed ACK also possible: receiver batches ACKs,

sends one for every pair of data packets (200 ms max
delay)

•  Current window at sender:
–  low byte advances as packets sent
–  high byte advances as receive window updates arrive

42

Outline

•  Packet header format
•  Connection establishment
•  Data transmission
•  Retransmit timeouts
•  RTT estimator
•  AIMD Congestion control
•  Throughput, loss, and RTT equation
•  Connection teardown
•  Protocol state machine

43

TCP: Retransmit Timeouts

•  Sender sets timer for each sent packet
–  when ACK returns, timer canceled
–  if timer expires before ACK returns, packet resent

•  Expected time for ACK to return: RTT
•  TCP estimates round-trip time using EWMA

–  measurements mi from timed packet/ACK pairs
–  RTTi = ((1-α) x RTTi-1 + α x mi)
–  Retransmit timeout: RTOi = β × RTTi

–  original TCP: β = 2

•  Is this accurate enough?
–  Recall dangers of too-short and too-long RTT

estimates from previous lecture

44

Mean and Variance:
Jacobson’s RTT Estimator

•  Above link load of 30% at router, β × RTTi
will retransmit too early!

•  Response to increasing load: waste
bandwidth on duplicate packets

•  Result: congestion collapse!
•  [Jacobson 88]: estimate vi, mean

deviation (EWMA of |mi – RTTi|), stand-in
for variance

 vi = vi-1 × (1-γ) + γ × |mi-RTTi|
•  Use RTOi = RTTi + 4vi

45

Mean and Variance:
Jacobson’s RTT Estimator

•  Above link load of 30% at router, β × RTTi
will retransmit too early!

•  Response to increasing load: waste
bandwidth on duplicate packets

•  Result: congestion collapse!
•  [Jacobson 88]: estimate vi, mean

deviation (EWMA of |mi – RTTi|), stand-in
for variance

 vi = vi-1 × (1-γ) + γ × |mi-RTTi|
•  Use RTOi = RTTi + 4vi

Mean and Variance RTT estimator used by all
modern TCPs

Reminder:
Reading for Next Lecture

•  Jacboson, V., Congestion Avoidance and
Control

•  Read before Thursday’s lecture
•  A true classic in networking—one of the

most influential ideas in the area
•  Paper is available in PDF on calendar page

of class web site

