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Networks Are Shared 

•  Any host may want to reach any other 
•  Dedicated links: N hosts à O(N2) links 

–  “Fewer links” implies “shared links” 
•  CPUs, memory, disks, network cards ever-

cheaper, quickly upgradeable 
•  Adding network links different: 

–  Non-decreasing costs of tearing up street, laying 
cable, launching satellite, radio spectrum… 

–  Approval often involves regulatory bodies à glacial 
pace 

–  Users economically motivated to share network 
resources, despite declining costs of network 
electronics 
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Sharing of Multi-Hop Networks 

•  Link multiplexing among users 
•  Packet forwarding and delay 
•  Best-effort delivery: packet buffering, 

buffer overflow, packet dropping 
•  Packet duplication 
•  Packet corruption 
•  Link breakage 
•  Packet reordering 
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Link Multiplexing 

•  Link between cities carries many conversations 
simultaneously; multiplexed 

•  Earthquake in SF; heavy call load from Boston to 
SF 

•  Link capacity limited; some Boston callers will be 
told “network busy” 

•  Nth caller’s call completes, n+1st’s fails; why? 

San 
Francisco 
Switch 

Boston 
Switch multiplexed link 

figure: [Saltzer and Kaashoek] 
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Telephony: 
Isochronous Link Multiplexing 

•  Assume shared link capacity 45 Mbps 
•  Voice call: 8-bit samples (frames) spaced 

perfectly evenly to achieve 64 Kbps 
–  one frame per 5624 bit times, or 125 us; 8000 frames 

per second 
•  Between one call’s successive frames, room for 

702 other frames; 703 calls total capacity 
•  Hard-edged: 1st 703 win, 704th loses 

figure: [Saltzer and Kaashoek] 
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Telephony: 
Isochronous Link Multiplexing 

•  Assume shared link capacity 45 Mbps 
•  Voice call: 8-bit samples (frames) spaced 

perfectly evenly to achieve 64 Kbps 
–  one frame per 5624 bit times, or 125 us; 8000 frames 

per second 
•  Between one call’s successive frames, room for 

702 other frames; 703 calls total capacity 
•  Hard-edged: 1st 703 win, 704th loses 

Time-Division Multiplexing (TDM): equal-
sized frames at equal intervals, perfectly 
predictable rate and delay 

figure: [Saltzer and Kaashoek] 
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Connection-Oriented Forwarding 

•  Connection setup: Boston switch asks SF switch 
to forward B3’s frames to S2 

•  Switches store state concerning how to forward 
frames for the call; slot determines forwarding 

•  Connection tear down: at end of call, two 
switches delete state concerning call 

San 
Francisco 
Switch 

Boston 
Switch multiplexed link 

S2 

B3 figure: [Saltzer and Kaashoek] 
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Data Networks: 
Asynchronous Link Multiplexing 

•  Computers (and users) send data in bursts; not 
in a steady stream, like telephony 
–  Sender may have nothing to send when its TDM slot 

comes around 
–  Sender may have more than one frame to send at 

once, but can only use its own TDM slots 
•  More fitting to send data as they become 

available, rather than in scheduled fashion 

figure: [Saltzer and Kaashoek] 
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Data Networks: 
Asynchronous Link Multiplexing 

•  Computers (and users) send data in bursts; not 
in a steady stream, like telephony 
–  Sender may have nothing to send when its TDM slot 

comes around 
–  Sender may have more than one frame to send at 

once, but can only use its own TDM slots 
•  More fitting to send data as they become 

available, rather than in scheduled fashion 

Asynchronous Multiplexing: give up 
predictable data rate and latency in favor of 
delivering entire message more quickly 

figure: [Saltzer and Kaashoek] 
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Async Link Multiplexing (cont’d) 

•  Frames of any length (up to link limit) 
•  Frames may be sent anytime link not already in use 
•  Timing of frame doesn’t imply forwarding; must explicitly 

include guidance information 
•  Variable-length frames require framing to demarcate 

inter-frame boundaries 
•  No need for per-connection state at switches; 

connectionless 

figure: [Saltzer and Kaashoek] 
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Async Link Multiplexing (cont’d) 

•  Frames of any length (up to link limit) 
•  Frames may be sent anytime link not already in use 
•  Timing of frame doesn’t imply forwarding; must explicitly 

include guidance information 
•  Variable-length frames require framing to demarcate 

inter-frame boundaries 
•  No need for per-connection state at switches; 

connectionless 

Asynchronous Multiplexing may be usable for 
telephony; depends on variability of delay and 
rate offered by network 

figure: [Saltzer and Kaashoek] 
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Sharing of Multi-Hop Networks 

•  Link multiplexing among users 
•  Packet forwarding and delay 
•  Best-effort delivery: packet buffering, 

buffer overflow, packet dropping 
•  Packet duplication 
•  Packet corruption 
•  Link breakage 
•  Packet reordering 
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Packet Forwarding 

•  Packet switches, or routers, connected by async 
links 

•  Multiple paths, or routes, possible 
•  Forwarding: examine destination of arrived 

packet, look it up in table, forward on 
appropriate link 

figure: [Saltzer and Kaashoek] 
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Transit Time 

•  Propagation delay: speed of light over 
medium across link length; fixed for given 
distance and medium 

•  Transmission delay: serialization of 
packet’s bits at link rate on each 
transmission; varies depending on packet 
length and link speed 

figure: [Saltzer and Kaashoek] 



 
15 

Transit Time (cont’d) 

•  Processing delay: 
–  forwarding decision: fixed component 
–  other packet processing (e.g., checksum, copying): 

varying, length-proportional component 
•  Queuing delay: 

–  output link may be busy when packet arrives 
–  store packet in memory, or queue 
–  varies with total traffic volume and pattern 

figure: [Saltzer and Kaashoek] 
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Diversion: Queuing Theory 

•  How can we estimate queuing delay? 
•  Assume 

–  Packets arrive according to random, memoryless process 
–  Packets have randomly distributed service times (i.e., 

transmission delays) 
–  Utilization of outgoing link is ρ 

•  Average queuing delay in packet service times (including 
this packet’s) is 1/(1-ρ) 

figure: [Saltzer and Kaashoek] 



 
17 

Utilization and Delay 

•  Trade-off: bounding max delay also bounds max 
utilization 

•  Network operators like high utilization; links cost 
money 

•  Users like low latency; e.g., interactive voice 
•  Isochronous: abrupt exclusion of N+1st user 
•  Asynchronous: delay grows as load grows 

figure: [Saltzer and Kaashoek] 
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Utilization and Delay 

•  Trade-off: bounding max delay also bounds max 
utilization 

•  Network operators like high utilization; links cost 
money 

•  Users like low latency; e.g., interactive voice 
•  Isochronous: abrupt exclusion of N+1st user 
•  Asynchronous: delay grows as load grows 

Delay is average; to bound worst-case delay, 
must target utilization below ρmax 

figure: [Saltzer and Kaashoek] 
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Queuing Theory: Final Words 

•  Utilization/delay trade-off true throughout 
computer systems (CPU, disk scheduling) 

•  Warning: queuing theory assumptions 
don’t hold on real data networks! 
– Packet arrivals not Poisson process; burstier 
– Router queues of finite length; bounds 

queuing delay 
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Sharing of Multi-Hop Networks 

•  Link multiplexing among users 
•  Packet forwarding and delay 
•  Best-effort delivery: packet buffering, 

buffer overflow, packet dropping 
•  Packet duplication 
•  Packet corruption 
•  Link breakage 
•  Packet reordering 
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Queue Sizes (and Packet Drops) 

•  A router’s packet queue is just memory 
•  How much memory does a router need? 
•  Strategies: 

– Plan for worst case: enough memory to buffer 
longest possible queue length 

– Plan for average case, slow senders: enough 
memory for common case; when queue full, 
tell senders to slow down 

– Plan for average case, drop extra packets: 
enough memory for common case; when 
queue full, drop extras 
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Worst-Case Memory Size 

•  Memory is relatively cheap 
•  How can we predict worst-case queue 

size? 
•  Bursts of load caused by users (and bugs 

in code!) 
– highly unpredictable 
– orders of magnitude worse than average case 

•  Very long queues mean very long delays 
– Would you wait 2 minutes to learn if you had 

new email? 
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Average-Case Memory Size, 
with Quench 

•  Central worry is congestion: sometimes, memory 
not big enough, queue will fill 

•  When queue fills, send a quench message on 
incoming link, asking sender (router or host) to 
slow down 

•  Problems: 
–  Respond to congestion by generating traffic? 
–  Whom should be quenched? 
–  Quenched source may no longer be sending 
–  Quench itself delayed by queuing; worse congestion 

is, longer the delay 
•  Essentially not used in practice 
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Average-Case Memory Size, 
with Dropping 

•  When queue full, drop packets! 
•  Some entity must resend dropped packet 
•  Lack of end-to-end 

acknowledgement now indicates 
congestion! 
–  Implicit signal to sender—without adding to 

traffic load 
–  Introduces possibility of sender slowing 

automatically in response to congestion 

•  What the Internet does 
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Isochronous vs. Asynchronous 

•  Isochronous: 
–  when capacity remains, get fixed transmission rate, 

independent of other users’ activity 
–  when capacity fully subscribed, get nothing 

•  Asynchronous: 
–  transmission rate depends on instantaneous load 

from those with whom you share links 
•  Preferable regime depends on application 

–  After earthquake, better to be able to send “I’m alive” 
slowly than not to be able to send at all 

–  Remote surgery requires guaranteed bit rate 
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Best Effort 

•  Networks that never discard packets termed 
guaranteed-delivery 
–  more mechanism required to guarantee (and track) 

delivery than to drop packets 
•  Networks willing to discard packets under 

congestion termed best-effort 
•  Fuzzy meaning of “best effort”: far greater 

chance of undetected loss than with guaranteed 
delivery 

•  Internet delivers packets best-effort 
•  Internet email guarantees delivery (atop best-

effort packet delivery service) 
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Sharing of Multi-Hop Networks 

•  Link multiplexing among users 
•  Packet forwarding and delay 
•  Best-effort delivery: packet buffering, 

buffer overflow, packet dropping 
•  Packet duplication 
•  Packet corruption 
•  Link breakage 
•  Packet reordering 
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Packet Duplication 

•  Best-effort delivery drops packets when 
queues overflow 

•  End-to-end principle suggests original 
sender should retry 
– destination could also be down 

figure: [Saltzer and Kaashoek] 
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Packet Duplication (cont’d) 

•  Responses can be dropped 
•  Consequence: client’s resent request appears as 

duplicate to server 
•  Problem? Depends on application and request 

type: 
–  Bank withdrawal 
–  File write 

figure: [Saltzer and Kaashoek] 
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Packet Duplication (cont’d) 

•  Delay can also cause duplication 

figure: [Saltzer and Kaashoek] 
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Duplicate Suppression 

•  A marks requests with monotonically 
increasing sequence numbers (any non-
repeating sequence suffices) 

•  B remembers request sequence numbers 
for requests previously processed 

•  B ignores requests with sequence 
numbers already completed; repeats 
response to A 
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Packet Corruption and Link Breakage 

•  Noise on links, errors in router memory, 
software errors, &c., may corrupt packets 
en route 
– Given best-effort service, error detection is 

sufficient; drop packets that contain errors 

•  Links may break (excavation cuts fiber; 
power failure) 
– Networks typically offer more than one path; 

routing must find a currently working path 
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Packet Reordering 

•  Consider two paths, R1 and R2, with 
delays D1 and D2, where D1 < D2 
– Sender may send packet P0 along R2 
– Sender may send packet P1 along R1 
– Packets may arrive at receiver in order P1, P0 

•  For messages divided into packets, 
reassembly at receiver must be done with 
care 
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Summary: Multi-Hop Networks 

figure: [Saltzer and Kaashoek] 



Outline 

•  Shared, Multi-hop Networks 
•  Background: Protocol Layering 
•  End-to-End Arguments 
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Dealing with Heterogeneity of 
Applications and Links 

•  Re-implement every application for every new 
underlying transmission medium? 

•  Change every application on any change to an 
underlying transmission medium (and vice-versa)? 

•  No! But how does the Internet design avoid this? 

Applica'ons	
  

Transmission	
  	
  
media	
  

Skype HTTP SSH FTP 

Coaxial cable Fiber optic WiFi 



Computer system modularity 

•  Key idea: Partition system into modules and 
abstractions 

•  Well-defined interfaces give flexibility and isolation 
–  Hide implementation, thus, it can be freely changed 
–  Extend functionality of system by adding new modules 

•  e.g., libraries encapsulating set of functionality 

•  e.g., a programming language and compiler abstracts 
away how a particular CPU and operating system work 



Layering: a modular approach 

•  Partition protocols on the Internet into layers 
–  Each layer solely relies on services from layer below 
–  Each layer solely exports services to layer above 

 
•  Advantages of layering: 
1.  Decomposes problem of building a network into 

manageable pieces 
2.  Results in a more modular design.  Additions or 

changes are usually isolated to one layer 
3.  Layer n hides complexity of layer n−1 to higher 

layers 



Internet solution: Intermediate layers 

•  Intermediate layers provide a set of abstractions 
for applications and media 

•  New applications or media need only implement 
for intermediate layer’s interface 

Applica'ons	
  

Transmission	
  
media	
  

Skype HTTP SSH FTP 

Coaxial cable Fiber optic WiFi 

Intermediate layers 



Physical layer (L1) 

•  Service: move bits between two systems 
connected by a single physical link 

•  Interface: specifies how to send, receive bits 
–  e.g., require quantities and timing 

•  Protocols: coding scheme used to represent 
bits, voltage levels, duration of a bit 



Data link layer (L2) 

•  Service: enables end hosts to exchange atomic 
messages with one another  
–  Using abstract addresses (i.e., not just direct physical 

connections) 
–  Perhaps over multiple physical links, but using the same 

framing (headers/trailers) 
–  Possibly arbitrates access to common physical media 
–  Possibly implements reliable transmission, flow control 

•  Interface: send messages (frames) to other end hosts; 
receive messages addressed to end host 

•  Protocols: addressing, routing, Media Access Control 
(MAC) (e.g., CSMA/CD - Carrier Sense Multiple 
Access / Collision Detection) 



Network layer (L3) 

•  Service: Deliver packets to destinations on other 
networks (inter-network, across multiple L2 
networks) 
–  Works across networking technologies (e.g., Ethernet, 

802.11, frame relay, ATM …) 
•  No longer the same framing all the way 

–  Possibly includes packet scheduling/priority 
–  Possibly includes buffer management 

•  Interface: send packets to specified internetwork 
destinations; receive packets destined for end host 

•  Protocols: define inter-network addresses (globally 
unique); construct routing tables 



Transport layer (L4) 

•  Service: Provides end-to-end communication between 
processes on different hosts 
–  Demultiplexing of communication between hosts 
–  Possibly reliability in the presence of errors 
–  Timing properties 
–  Rate adaption (flow-control, congestion control) 

•  Interface: send message to specific process at given 
destination; local process receives messages sent to it 

•  Protocol: perhaps implement reliability, flow control, 
packetization of large messages, framing 

•  Examples: Transport Control Protocol (TCP), Real-
Time Transport Protocol (RTP), User Datagram 
Protocol (UDP) 



Application layer (L7) 

•  Service: any service provided to the end user 

•  Interface: depends on the application 

•  Protocol: depends on the application 

•  Examples: File Transfer Protocol (FTP), Skype, 
Simple Mail Transfer Protocol (SMTP), Hypertext 
Transport Protocol (HTTP), BitTorrent, many 
others… 

•  What happened to layers 5 & 6? 
–  “Session” and “Presentation” layers 
–  Part of OSI architecture, but not Internet architecture 



Who does what? 

•  Five layers 
–  Lower three layers are implemented everywhere 
–  Top two layers are implemented only at end hosts 

Application 
Transport 
Network 

Link 
Physical 

Network 
Link 

Physical 

Application 
Transport 
Network 

Link 
Physical 

Host A Host B Router 



Logical communication 

•  Each layer on a host interacts with its peer host’s 
corresponding layer via the protocol interface 

Application 
Transport 
Network 

Link 
Physical 

Network 
Link 

Physical 

Application 
Transport 
Network 

Link 
Physical 

Host A Host B Router 



Physical communication 

•  Communication goes down to physical 
network 

•  Then from network peer to peer 
•  Then up to the relevant layer 

Application 
Transport 
Network 

Link 
Physical 

Network 
Link 

Physical 

Application 
Transport 
Network 

Link 
Physical 

Host A Host B Router 



Outline 

•  Shared, Multi-hop Networks 
•  Background: Protocol Layering 
•  End-to-End Arguments 
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Motivation: End-to-End Argument 

•  7 layers in OSI model 
•  7 places to solve many of same problems: 

–  In-order delivery 
– Duplicate-free delivery 
– Reliable delivery (retransmission) after 

corruption or loss 
– Encryption 
– Authentication 

•  In which layer(s) should a particular 
function be implemented? 
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Example: Careful File Transfer 

•  Goal: accurately copy file on A’s disk to B’s disk 
•  Straw man: 

–  Read file from A’s disk 
–  A sends stream of packets containing file data to B 
–  Link-layer retransmission of lost/corrupted packets at 

each hop 
–  B writes file data to disk 

•  Does this system meet design goal? 
–  Bit errors on links not a problem 

A R1 R2 R3 R4 B 

data 

LL ACKs 
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Where Can Errors Happen? 

•  On A’s or B’s disk 
•  In A’s or B’s RAM or CPU 
•  In A’s or B’s software 
•  In the RAM, CPU, or software of any router that 

forwards packet (MIT example!) 
•  Why might errors be likely? 

–  Drive for CPU speed and storage density: pushes 
hardware to EE limits, engineered to tight tolerances 

–  e.g., today’s disks return data that are the output of 
an MLE! 



 
52 

Solution: End-to-End Verification 

•  A stores checksum with data on disk 
–  Why not compute freshly on read? 

•  B computes checksum over received data, sends 
to A (or vice-versa) 

•  Compare two checksums; A resends if not 
identical 

•  Can we eliminate hop-by-hop error detection? 
–  Suppose there’s a router with bad RAM; how will you 

find it? 
•  Is a whole-file checksum enough? 

–  Poor performance: must resend whole file each time 
one packet (bit) corrupted! 
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End-to-End Principle 

•  Only application at communication 
endpoints can completely and correctly 
implement a function 

•  Processing in middle alone cannot provide 
function 

•  Processing in middle may, however, be 
important performance optimization 

•  Engineering middle hops to provide 
guaranteed functionality often wasteful of 
effort and inefficient 
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Perils of Low-Layer Implementation 

•  Entangles application behavior with network 
internals 

•  Suppose each IP router reliably transmits to next 
hop 
–  lossless delivery, variable delay 
–  ftp: OK, move huge file reliably (just end-to-end TCP 

works fine, too, though) 
–  Skype: terrible, jitter packets when a few corruptions 

or drops not a problem anyway 
•  Complicates deployment of innovative 

applications 
–  phone network vs. Internet 
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Advantages of Low-Layer 
Implementation 

•  Each application author needn’t recode a 
shared function 

•  Overlapping error checks (e.g., 
checksums) at all layers invaluable in 
debugging and fault diagnosis 

•  If end systems not cooperative 
(increasingly the case), only way to 
enforce resource allocation! 
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Challenge: End-to-End 
 Authentication and Encryption 

•  Use a public PC to check your email using IMAP & SSL 
–  Authenticates server to you and you to server robustly 
–  Encrypts between you robustly 

•  Key security consideration: threat model 
–  which attacks are you explicitly defending against? 
–  which are you ignoring? 
–  what does it cost your adversary to mount an attack? 

•  What are you trusting? 
–  mail reading application (could be trojaned) 
–  OS (could also be trojaned) 
–  hardware (e.g., "fake ATM" cases) 

•  End-to-end notion of security must consider integrity of 
software and hardware at endpoints, possibly even of 
users! 
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End-to-End Violation: Firewalls 

•  Box in middle of network that blocks “malicious” traffic 
–  End-host software often vulnerable to worms 
–  Users naive, may not keep desktop patched up-to-date 

•  Clearly violates e2e principle 
–  Endpoints capable of deciding what traffic to ignore 
–  Firewall entangled with design of network and higher protocol layers 

and apps, and vice-versa 
–  Example: new ECN bit to improve TCP congestion control; many 

firewalls filtered all such packets! 
•  Probably need firewalls 
•  But beware entangling network edge and network interior 

Our network 
X

Firewall Internet 
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Summary: End-to-End Principle 

•  Many functions must be implemented at application 
endpoints to provide desired behavior, even if 
implemented in “middle” of network 

•  End-to-end approach decouples design of components 
in network interior from design of applications at edges 

•  Some functions still benefit from implementation in 
network interior; at cost of entangling interior and core 
–  Performance (e.g., link-layer retransmission) 
–  Security (e.g., firewalls) 
–  Scalability (e.g., routing) 

•  End-to-end principle is not sacred; it’s a way to think 
critically about design choices in communication systems 


