
Shared, Multi-Hop Networks and
End-to-End Arguments

Brad Karp
UCL Computer Science

CS 3035/GZ01
3rd October 2013

2

Networks Are Shared

•  Any host may want to reach any other
•  Dedicated links: N hosts à O(N2) links

–  “Fewer links” implies “shared links”
•  CPUs, memory, disks, network cards ever-

cheaper, quickly upgradeable
•  Adding network links different:

–  Non-decreasing costs of tearing up street, laying
cable, launching satellite, radio spectrum…

–  Approval often involves regulatory bodies à glacial
pace

–  Users economically motivated to share network
resources, despite declining costs of network
electronics

3

Sharing of Multi-Hop Networks

•  Link multiplexing among users
•  Packet forwarding and delay
•  Best-effort delivery: packet buffering,

buffer overflow, packet dropping
•  Packet duplication
•  Packet corruption
•  Link breakage
•  Packet reordering

4

Link Multiplexing

•  Link between cities carries many conversations
simultaneously; multiplexed

•  Earthquake in SF; heavy call load from Boston to
SF

•  Link capacity limited; some Boston callers will be
told “network busy”

•  Nth caller’s call completes, n+1st’s fails; why?

San
Francisco
Switch

Boston
Switch multiplexed link

figure: [Saltzer and Kaashoek]

5

Telephony:
Isochronous Link Multiplexing

•  Assume shared link capacity 45 Mbps
•  Voice call: 8-bit samples (frames) spaced

perfectly evenly to achieve 64 Kbps
–  one frame per 5624 bit times, or 125 us; 8000 frames

per second
•  Between one call’s successive frames, room for

702 other frames; 703 calls total capacity
•  Hard-edged: 1st 703 win, 704th loses

figure: [Saltzer and Kaashoek]

6

Telephony:
Isochronous Link Multiplexing

•  Assume shared link capacity 45 Mbps
•  Voice call: 8-bit samples (frames) spaced

perfectly evenly to achieve 64 Kbps
–  one frame per 5624 bit times, or 125 us; 8000 frames

per second
•  Between one call’s successive frames, room for

702 other frames; 703 calls total capacity
•  Hard-edged: 1st 703 win, 704th loses

Time-Division Multiplexing (TDM): equal-
sized frames at equal intervals, perfectly
predictable rate and delay

figure: [Saltzer and Kaashoek]

7

Connection-Oriented Forwarding

•  Connection setup: Boston switch asks SF switch
to forward B3’s frames to S2

•  Switches store state concerning how to forward
frames for the call; slot determines forwarding

•  Connection tear down: at end of call, two
switches delete state concerning call

San
Francisco
Switch

Boston
Switch multiplexed link

S2

B3 figure: [Saltzer and Kaashoek]

8

Data Networks:
Asynchronous Link Multiplexing

•  Computers (and users) send data in bursts; not
in a steady stream, like telephony
–  Sender may have nothing to send when its TDM slot

comes around
–  Sender may have more than one frame to send at

once, but can only use its own TDM slots
•  More fitting to send data as they become

available, rather than in scheduled fashion

figure: [Saltzer and Kaashoek]

9

Data Networks:
Asynchronous Link Multiplexing

•  Computers (and users) send data in bursts; not
in a steady stream, like telephony
–  Sender may have nothing to send when its TDM slot

comes around
–  Sender may have more than one frame to send at

once, but can only use its own TDM slots
•  More fitting to send data as they become

available, rather than in scheduled fashion

Asynchronous Multiplexing: give up
predictable data rate and latency in favor of
delivering entire message more quickly

figure: [Saltzer and Kaashoek]

10

Async Link Multiplexing (cont’d)

•  Frames of any length (up to link limit)
•  Frames may be sent anytime link not already in use
•  Timing of frame doesn’t imply forwarding; must explicitly

include guidance information
•  Variable-length frames require framing to demarcate

inter-frame boundaries
•  No need for per-connection state at switches;

connectionless

figure: [Saltzer and Kaashoek]

11

Async Link Multiplexing (cont’d)

•  Frames of any length (up to link limit)
•  Frames may be sent anytime link not already in use
•  Timing of frame doesn’t imply forwarding; must explicitly

include guidance information
•  Variable-length frames require framing to demarcate

inter-frame boundaries
•  No need for per-connection state at switches;

connectionless

Asynchronous Multiplexing may be usable for
telephony; depends on variability of delay and
rate offered by network

figure: [Saltzer and Kaashoek]

12

Sharing of Multi-Hop Networks

•  Link multiplexing among users
•  Packet forwarding and delay
•  Best-effort delivery: packet buffering,

buffer overflow, packet dropping
•  Packet duplication
•  Packet corruption
•  Link breakage
•  Packet reordering

13

Packet Forwarding

•  Packet switches, or routers, connected by async
links

•  Multiple paths, or routes, possible
•  Forwarding: examine destination of arrived

packet, look it up in table, forward on
appropriate link

figure: [Saltzer and Kaashoek]

14

Transit Time

•  Propagation delay: speed of light over
medium across link length; fixed for given
distance and medium

•  Transmission delay: serialization of
packet’s bits at link rate on each
transmission; varies depending on packet
length and link speed

figure: [Saltzer and Kaashoek]

15

Transit Time (cont’d)

•  Processing delay:
–  forwarding decision: fixed component
–  other packet processing (e.g., checksum, copying):

varying, length-proportional component
•  Queuing delay:

–  output link may be busy when packet arrives
–  store packet in memory, or queue
–  varies with total traffic volume and pattern

figure: [Saltzer and Kaashoek]

16

Diversion: Queuing Theory

•  How can we estimate queuing delay?
•  Assume

–  Packets arrive according to random, memoryless process
–  Packets have randomly distributed service times (i.e.,

transmission delays)
–  Utilization of outgoing link is ρ

•  Average queuing delay in packet service times (including
this packet’s) is 1/(1-ρ)

figure: [Saltzer and Kaashoek]

17

Utilization and Delay

•  Trade-off: bounding max delay also bounds max
utilization

•  Network operators like high utilization; links cost
money

•  Users like low latency; e.g., interactive voice
•  Isochronous: abrupt exclusion of N+1st user
•  Asynchronous: delay grows as load grows

figure: [Saltzer and Kaashoek]

18

Utilization and Delay

•  Trade-off: bounding max delay also bounds max
utilization

•  Network operators like high utilization; links cost
money

•  Users like low latency; e.g., interactive voice
•  Isochronous: abrupt exclusion of N+1st user
•  Asynchronous: delay grows as load grows

Delay is average; to bound worst-case delay,
must target utilization below ρmax

figure: [Saltzer and Kaashoek]

19

Queuing Theory: Final Words

•  Utilization/delay trade-off true throughout
computer systems (CPU, disk scheduling)

•  Warning: queuing theory assumptions
don’t hold on real data networks!
– Packet arrivals not Poisson process; burstier
– Router queues of finite length; bounds

queuing delay

20

Sharing of Multi-Hop Networks

•  Link multiplexing among users
•  Packet forwarding and delay
•  Best-effort delivery: packet buffering,

buffer overflow, packet dropping
•  Packet duplication
•  Packet corruption
•  Link breakage
•  Packet reordering

21

Queue Sizes (and Packet Drops)

•  A router’s packet queue is just memory
•  How much memory does a router need?
•  Strategies:

– Plan for worst case: enough memory to buffer
longest possible queue length

– Plan for average case, slow senders: enough
memory for common case; when queue full,
tell senders to slow down

– Plan for average case, drop extra packets:
enough memory for common case; when
queue full, drop extras

22

Worst-Case Memory Size

•  Memory is relatively cheap
•  How can we predict worst-case queue

size?
•  Bursts of load caused by users (and bugs

in code!)
– highly unpredictable
– orders of magnitude worse than average case

•  Very long queues mean very long delays
– Would you wait 2 minutes to learn if you had

new email?

23

Average-Case Memory Size,
with Quench

•  Central worry is congestion: sometimes, memory
not big enough, queue will fill

•  When queue fills, send a quench message on
incoming link, asking sender (router or host) to
slow down

•  Problems:
–  Respond to congestion by generating traffic?
–  Whom should be quenched?
–  Quenched source may no longer be sending
–  Quench itself delayed by queuing; worse congestion

is, longer the delay
•  Essentially not used in practice

24

Average-Case Memory Size,
with Dropping

•  When queue full, drop packets!
•  Some entity must resend dropped packet
•  Lack of end-to-end

acknowledgement now indicates
congestion!
–  Implicit signal to sender—without adding to

traffic load
–  Introduces possibility of sender slowing

automatically in response to congestion

•  What the Internet does

25

Isochronous vs. Asynchronous

•  Isochronous:
–  when capacity remains, get fixed transmission rate,

independent of other users’ activity
–  when capacity fully subscribed, get nothing

•  Asynchronous:
–  transmission rate depends on instantaneous load

from those with whom you share links
•  Preferable regime depends on application

–  After earthquake, better to be able to send “I’m alive”
slowly than not to be able to send at all

–  Remote surgery requires guaranteed bit rate

26

Best Effort

•  Networks that never discard packets termed
guaranteed-delivery
–  more mechanism required to guarantee (and track)

delivery than to drop packets
•  Networks willing to discard packets under

congestion termed best-effort
•  Fuzzy meaning of “best effort”: far greater

chance of undetected loss than with guaranteed
delivery

•  Internet delivers packets best-effort
•  Internet email guarantees delivery (atop best-

effort packet delivery service)

27

Sharing of Multi-Hop Networks

•  Link multiplexing among users
•  Packet forwarding and delay
•  Best-effort delivery: packet buffering,

buffer overflow, packet dropping
•  Packet duplication
•  Packet corruption
•  Link breakage
•  Packet reordering

28

Packet Duplication

•  Best-effort delivery drops packets when
queues overflow

•  End-to-end principle suggests original
sender should retry
– destination could also be down

figure: [Saltzer and Kaashoek]

29

Packet Duplication (cont’d)

•  Responses can be dropped
•  Consequence: client’s resent request appears as

duplicate to server
•  Problem? Depends on application and request

type:
–  Bank withdrawal
–  File write

figure: [Saltzer and Kaashoek]

30

Packet Duplication (cont’d)

•  Delay can also cause duplication

figure: [Saltzer and Kaashoek]

31

Duplicate Suppression

•  A marks requests with monotonically
increasing sequence numbers (any non-
repeating sequence suffices)

•  B remembers request sequence numbers
for requests previously processed

•  B ignores requests with sequence
numbers already completed; repeats
response to A

32

Packet Corruption and Link Breakage

•  Noise on links, errors in router memory,
software errors, &c., may corrupt packets
en route
– Given best-effort service, error detection is

sufficient; drop packets that contain errors

•  Links may break (excavation cuts fiber;
power failure)
– Networks typically offer more than one path;

routing must find a currently working path

33

Packet Reordering

•  Consider two paths, R1 and R2, with
delays D1 and D2, where D1 < D2
– Sender may send packet P0 along R2
– Sender may send packet P1 along R1
– Packets may arrive at receiver in order P1, P0

•  For messages divided into packets,
reassembly at receiver must be done with
care

34

Summary: Multi-Hop Networks

figure: [Saltzer and Kaashoek]

Outline

•  Shared, Multi-hop Networks
•  Background: Protocol Layering
•  End-to-End Arguments

35

Dealing with Heterogeneity of
Applications and Links

•  Re-implement every application for every new
underlying transmission medium?

•  Change every application on any change to an
underlying transmission medium (and vice-versa)?

•  No! But how does the Internet design avoid this?

Applica'ons	

Transmission	
 	

media	

Skype HTTP SSH FTP

Coaxial cable Fiber optic WiFi

Computer system modularity

•  Key idea: Partition system into modules and
abstractions

•  Well-defined interfaces give flexibility and isolation
–  Hide implementation, thus, it can be freely changed
–  Extend functionality of system by adding new modules

•  e.g., libraries encapsulating set of functionality

•  e.g., a programming language and compiler abstracts
away how a particular CPU and operating system work

Layering: a modular approach

•  Partition protocols on the Internet into layers
–  Each layer solely relies on services from layer below
–  Each layer solely exports services to layer above

•  Advantages of layering:
1.  Decomposes problem of building a network into

manageable pieces
2.  Results in a more modular design. Additions or

changes are usually isolated to one layer
3.  Layer n hides complexity of layer n−1 to higher

layers

Internet solution: Intermediate layers

•  Intermediate layers provide a set of abstractions
for applications and media

•  New applications or media need only implement
for intermediate layer’s interface

Applica'ons	

Transmission	

media	

Skype HTTP SSH FTP

Coaxial cable Fiber optic WiFi

Intermediate layers

Physical layer (L1)

•  Service: move bits between two systems
connected by a single physical link

•  Interface: specifies how to send, receive bits
–  e.g., require quantities and timing

•  Protocols: coding scheme used to represent
bits, voltage levels, duration of a bit

Data link layer (L2)

•  Service: enables end hosts to exchange atomic
messages with one another
–  Using abstract addresses (i.e., not just direct physical

connections)
–  Perhaps over multiple physical links, but using the same

framing (headers/trailers)
–  Possibly arbitrates access to common physical media
–  Possibly implements reliable transmission, flow control

•  Interface: send messages (frames) to other end hosts;
receive messages addressed to end host

•  Protocols: addressing, routing, Media Access Control
(MAC) (e.g., CSMA/CD - Carrier Sense Multiple
Access / Collision Detection)

Network layer (L3)

•  Service: Deliver packets to destinations on other
networks (inter-network, across multiple L2
networks)
–  Works across networking technologies (e.g., Ethernet,

802.11, frame relay, ATM …)
•  No longer the same framing all the way

–  Possibly includes packet scheduling/priority
–  Possibly includes buffer management

•  Interface: send packets to specified internetwork
destinations; receive packets destined for end host

•  Protocols: define inter-network addresses (globally
unique); construct routing tables

Transport layer (L4)

•  Service: Provides end-to-end communication between
processes on different hosts
–  Demultiplexing of communication between hosts
–  Possibly reliability in the presence of errors
–  Timing properties
–  Rate adaption (flow-control, congestion control)

•  Interface: send message to specific process at given
destination; local process receives messages sent to it

•  Protocol: perhaps implement reliability, flow control,
packetization of large messages, framing

•  Examples: Transport Control Protocol (TCP), Real-
Time Transport Protocol (RTP), User Datagram
Protocol (UDP)

Application layer (L7)

•  Service: any service provided to the end user

•  Interface: depends on the application

•  Protocol: depends on the application

•  Examples: File Transfer Protocol (FTP), Skype,
Simple Mail Transfer Protocol (SMTP), Hypertext
Transport Protocol (HTTP), BitTorrent, many
others…

•  What happened to layers 5 & 6?
–  “Session” and “Presentation” layers
–  Part of OSI architecture, but not Internet architecture

Who does what?

•  Five layers
–  Lower three layers are implemented everywhere
–  Top two layers are implemented only at end hosts

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host B Router

Logical communication

•  Each layer on a host interacts with its peer host’s
corresponding layer via the protocol interface

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host B Router

Physical communication

•  Communication goes down to physical
network

•  Then from network peer to peer
•  Then up to the relevant layer

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host B Router

Outline

•  Shared, Multi-hop Networks
•  Background: Protocol Layering
•  End-to-End Arguments

48

49

Motivation: End-to-End Argument

•  7 layers in OSI model
•  7 places to solve many of same problems:

–  In-order delivery
– Duplicate-free delivery
– Reliable delivery (retransmission) after

corruption or loss
– Encryption
– Authentication

•  In which layer(s) should a particular
function be implemented?

50

Example: Careful File Transfer

•  Goal: accurately copy file on A’s disk to B’s disk
•  Straw man:

–  Read file from A’s disk
–  A sends stream of packets containing file data to B
–  Link-layer retransmission of lost/corrupted packets at

each hop
–  B writes file data to disk

•  Does this system meet design goal?
–  Bit errors on links not a problem

A R1 R2 R3 R4 B

data

LL ACKs

51

Where Can Errors Happen?

•  On A’s or B’s disk
•  In A’s or B’s RAM or CPU
•  In A’s or B’s software
•  In the RAM, CPU, or software of any router that

forwards packet (MIT example!)
•  Why might errors be likely?

–  Drive for CPU speed and storage density: pushes
hardware to EE limits, engineered to tight tolerances

–  e.g., today’s disks return data that are the output of
an MLE!

52

Solution: End-to-End Verification

•  A stores checksum with data on disk
–  Why not compute freshly on read?

•  B computes checksum over received data, sends
to A (or vice-versa)

•  Compare two checksums; A resends if not
identical

•  Can we eliminate hop-by-hop error detection?
–  Suppose there’s a router with bad RAM; how will you

find it?
•  Is a whole-file checksum enough?

–  Poor performance: must resend whole file each time
one packet (bit) corrupted!

53

End-to-End Principle

•  Only application at communication
endpoints can completely and correctly
implement a function

•  Processing in middle alone cannot provide
function

•  Processing in middle may, however, be
important performance optimization

•  Engineering middle hops to provide
guaranteed functionality often wasteful of
effort and inefficient

54

Perils of Low-Layer Implementation

•  Entangles application behavior with network
internals

•  Suppose each IP router reliably transmits to next
hop
–  lossless delivery, variable delay
–  ftp: OK, move huge file reliably (just end-to-end TCP

works fine, too, though)
–  Skype: terrible, jitter packets when a few corruptions

or drops not a problem anyway
•  Complicates deployment of innovative

applications
–  phone network vs. Internet

55

Advantages of Low-Layer
Implementation

•  Each application author needn’t recode a
shared function

•  Overlapping error checks (e.g.,
checksums) at all layers invaluable in
debugging and fault diagnosis

•  If end systems not cooperative
(increasingly the case), only way to
enforce resource allocation!

56

Challenge: End-to-End
 Authentication and Encryption

•  Use a public PC to check your email using IMAP & SSL
–  Authenticates server to you and you to server robustly
–  Encrypts between you robustly

•  Key security consideration: threat model
–  which attacks are you explicitly defending against?
–  which are you ignoring?
–  what does it cost your adversary to mount an attack?

•  What are you trusting?
–  mail reading application (could be trojaned)
–  OS (could also be trojaned)
–  hardware (e.g., "fake ATM" cases)

•  End-to-end notion of security must consider integrity of
software and hardware at endpoints, possibly even of
users!

57

End-to-End Violation: Firewalls

•  Box in middle of network that blocks “malicious” traffic
–  End-host software often vulnerable to worms
–  Users naive, may not keep desktop patched up-to-date

•  Clearly violates e2e principle
–  Endpoints capable of deciding what traffic to ignore
–  Firewall entangled with design of network and higher protocol layers

and apps, and vice-versa
–  Example: new ECN bit to improve TCP congestion control; many

firewalls filtered all such packets!
•  Probably need firewalls
•  But beware entangling network edge and network interior

Our network
X

Firewall Internet

58

Summary: End-to-End Principle

•  Many functions must be implemented at application
endpoints to provide desired behavior, even if
implemented in “middle” of network

•  End-to-end approach decouples design of components
in network interior from design of applications at edges

•  Some functions still benefit from implementation in
network interior; at cost of entangling interior and core
–  Performance (e.g., link-layer retransmission)
–  Security (e.g., firewalls)
–  Scalability (e.g., routing)

•  End-to-end principle is not sacred; it’s a way to think
critically about design choices in communication systems

