Shared, Multi-Hop Networks and
End-to-End Arguments

Brad Karp
UCL Computer Science

A
I

CS 3035/GzZ01
3rd October 2013

Networks Are Shared

Any host may want to reach any other

Dedicated links: N hosts = O(N?) links
— “Fewer links” implies “shared links”

CPUs, memory, disks, network cards ever-
cheaper, quic fy upgradeable

Adding network links different:

— Non-decreasing costs of tearing up street, laying
cable, launching satellite, radio spectrum...

— Approval often involves regulatory bodies - glacial
pace

— Users economically motivated to share network
resources, despite declining costs of network
electronics

Sharing of Multi-Hop Networks

e Link multiplexing among users
e Packet forwarding and delay

o Best-effort delivery: packet buffering,
buffer overflow, packet dropping

e Packet duplication
e Packet corruption
e Link breakage

e Packet reordering

P Link Multiplexing &>

Boston
Switch

({m
4

Francisco

Switch multiplexed link

figure: [Saltzer and Kaashoek]

e Link between cities carries many conversations
simultaneously; multiplexed

e Earthquake in SF; heavy call load from Boston to
SF

e Link capacity limited; some Boston callers will be
told “network busy”

e N caller’s call completes, n+1st's fails; why?

Telephony:
Isochronous Link Multiplexing

5,624 bit times Time ——

1 1 1 1] 1
8-bit frame 8-bit frame 8-bit frame figure: [Saltzer and Kaashoek]

Assume shared link capacity 45 Mbps
Voice call: 8-bit samples (frames) spaced
perfectly evenly to achieve 64 Kbps

— one frame per 5624 bit times, or 125 us; 8000 frames
per second

Between one call’s successive frames, room for
/02 other frames; 703 calls total capacity

Hard-edged: 1st 703 win, 704%™ loses

Telephony:
Isochronous Link Multiplexing

5,624 bit times Time ——

1 1 1 1] 1
8-bit frame 8-bit frame 8-bit frame figure: [Saltzer and Kaashoek]

Time-Division Multiplexing (TDM): equal-
sized frames at equal intervals, perfectly
predictable rate and delay

persecond
e Between one call’s successive frames, room for
/02 other frames; 703 calls total capacity

e Hard-edged: 1st 703 win, 704t loses

Connection-Oriented Forwarding

&
S2
&
N San \
Francisco
Switch multiplexed link
IS
=~
({L{?}\' figure: [Saltzer and Kaashoek] {L{?}é B3

e Connection setup: Boston switch asks SF switch
to forward B3’s frames to S2

e Switches store state concerning how to forward
frames for the call; slot determines forwarding

e Connection tear down: at end of call, two
switches delete state concerning call

Data Networks:
Asynchronous Link Multiplexing

Personal Computer

A

service

muITipl::-—xD

link

figure: [Saltzer and Kaashoek]

data crosses this
link in bursts and
can tolerate variable delay

C

e Computers (and users) send data in bursts; not
in a steady stream, like telephony

— Sender may have nothing to send when its TDM slot
comes around

— Sender may have more than one frame to send at
once, but can only use its own TDM slots

e More fitting to send data as they become
available, rather than in scheduled fashion

Data Networks:
Asynchronous Link Multiplexing

Personal Computer service

A

muITipI::-—xD

link

data crosses this
link in bursts and
C

can tolerate variable delay figure: [Saltzer and KaaShOEK]

Asynchronous Multiplexing: give up
predictable data rate and latency in favor of
delivering entire message more quickly

— Sender may have more than one frame to send at
once, but can only use its own TDM slots

e More fitting to send data as they become
available, rather than in scheduled fashion

Async Link Multiplexing (cont'd)

* Time ——=
| B | |[D] |
/ \ B figure: [Saltzer and Kaashoek]
Guidance 4000 bits 750 bits

information

Frames of any length (up to link limit)
Frames may be sent anytime link not already in use

Timing of frame doesn't imply forwarding; must explicitly
include guidance information

Variable-length frames require framing to demarcate
inter-frame boundaries

No need for per-connection state at switches;
connectionless

10

Async Link Multiplexing (cont'd)

ﬁ Time ——

/ \ S figure: [Saltzer and Kaashoek]

Guidance 4000 bits 750 bits
information

Asynchronous Multiplexing may be usable for
telephony; depends on variability of delay and
rate offered by network

(I AV A)& | yUI\.«IUI I IT1ITVITTTIUUAGTIVE]

e Variable-length frames require framing to demarcate
inter-frame boundaries

 No need for per-connection state at switches;
connectionless

11

Sharing of Multi-Hop Networks

e Link multiplexing among users
e Packet forwarding and delay

o Best-effort delivery: packet buffering,
buffer overflow, packet dropping

e Packet duplication
e Packet corruption
e Link breakage

e Packet reordering

12

Packet Forwarding

Packet
Packet —
Switch [——————____1]| Packet

Workstation Switch
at network 273
Gfgligpgﬁehf Service at network
P attachment
point B
Packet D

Switch
_ \ Packet
figure: [Saltzer and Kaashoek] Switch

e Packet switches, or routers, connected by async
links

e Multiple paths, or routes, possible

e Forwarding: examine destination of arrived
packet, look it up in table, forward on
appropriate link

13

Transit Time

Packet
Packet —_—
Switch [——————————uo____ 1| Packet

[Switch

Workstation
at network 2 3
attfachment ;
. Service at network
point A attachment
point B
Packet
Switch \
_ Packet
figure: [Saltzer and Kaashoek] Switch

e Propagation delay: speed of light over
medium across link length; fixed for given
distance and medium

e Transmission delay: serialization of
packet’s bits at link rate on each
transmission; varies depending on packet
length and link speed y

Transit Time (cont’'d)

Packet
Packet —_—
Switch [——————————uo____ 1| Packet

Workstation / [Switch

at network 2 3
attachment Service at network
attachment
point B
Packet
Switch \
Packet
. Switch
figure: [Saltzer and Kaashoek]

point A
e Processing delay:

— forwarding decision: fixed component

— other packet processing (e.g., checksum, copying):

varying, length-proportional component

e Queuing delay:

— output link may be busy when packet arrives

— store packet in memory, or queue

— varies with total traffic volume and pattern 15

Diversion: Queuing Theory

maximum
tolerable delay
gueuing

average
delay

1

100%

|
|
|
|
I
0 Utilization, p —= T
figure: [Saltzer and Kaashoek]
m

X

e How can we estimate queuing delay?

e Assume
— Packets arrive according to random, memoryless process

— Packets have randomly distributed service times (i.e.,
transmission delays)

— Utilization of outgoing link is p
e Average queuing delay in packet service times (including
this packet’s) is 1/(1-p)

16

Utilization and Delay

maximum
tolerable delay
queuing

average
delay

|

|

|

! |

0 Utilization, p ——s T 100% figure: [Saltzer and Kaashoek]

Pmax

Trade-off: bounding max delay also bounds max
utilization

Network operators like high utilization; links cost
money

Users like low latency; e.g., interactive voice
Isochronous: abrupt exclusion of N+1st user
Asynchronous: delay grows as load grows

17

Utilization and Delay

maximum
tolerable delay
gueuing
delay

average]

1

|
|
|
|
0 Utilization, p — T
m

QX

L 100% figure: [Saltzer and Kaashoek]

Delay IS average; to bound worst-case delay,
must target utifization below Prax

.

-’ 4

money
e Users like low latency; e.q., interactive voice
e Isochronous: abrupt exclusion of N+1st user

e Asynchronous: delay grows as load grows

18

Queuing Theory: Final Words

o Utilization/delay trade-off true throughout
computer systems (CPU, disk scheduling)

e Warning: queuing theory assumptions
don’t hold on real data networks!
— Packet arrivals not Poisson process; burstier

— Router queues of finite length; bounds
queuing delay

19

Sharing of Multi-Hop Networks

e Link multiplexing among users
o Packet forwarding and delay

o Best-effort delivery: packet buffering,
buffer overflow, packet dropping

e Packet duplication
e Packet corruption
e Link breakage

e Packet reordering

20

Queue Sizes (and Packet Drops)

e A router’s packet queue is just memory
e How much memory does a router need?

e Strategies:

— Plan for worst case: enough memory to buffer
ongest possible queue length

— Plan for average case, slow senders: enough
memory for common case; when queue full,
tell senders to slow down

— Plan for average case, drop extra packets:
enough memory for common case; when
queue full, drop extras

21

Worst-Case Memory Size

e Memory is relatively cheap
e How can we predict worst-case queue
size?
e Bursts of load caused by users (and bugs
in code!)
— highly unpredictable
— orders of magnitude worse than average case
e Very long queues mean very long delays

— Would you wait 2 minutes to learn if you had
new email?

22

Average-Case Memory Size,
with Quench

Central worry is congestion: sometimes, memory
not big enough, queue will fill

When queue fills, send a quench message on
incoming link, asking sender (router or host) to
slow down

Problems:
— Respond to congestion by generating traffic?
— Whom should be quenched?

— Quenched source may no longer be sending

— Quench itself delayed by queuing; worse congestion
is, longer the delay

Essentially not used in practice

23

Average-Case Memory Size,
with Dropping

e When queue full, drop packets!
e Some entity must resend dropped packet

e Lack of end-to-end
acknowledgement now indicates
congestion!

— Implicit signal to sender—without adding to
traffic load

— Introduces possibility of sender slowing
automatically in response to congestion

e What the Internet does

24

Isochronous vs. Asynchronous

e Isochronous:

— when capacity remains, get fixed transmission rate,
independent of other users’ activity

— when capacity fully subscribed, get nothing

e Asynchronous:

— transmission rate depends on instantaneous load
from those with whom you share links

e Preferable regime depends on application

— After earthquake, better to be able to send “I'm alive”
slowly than not to be able to send at all

— Remote surgery requires guaranteed bit rate

25

Best Effort

Networks that never discard packets termed

guaranteed

-delivery

— Mmore mec

nanism required to guarantee (and track)

delivery than to drop packets
Networks willing to discard packets under

congestion

termed best-effort

Fuzzy meaning of “best effort”; far greater
chance of undetected loss than with guaranteed

delivery

Internet delivers packets best-effort
Internet email guarantees delivery (atop best-

effort packet delivery service)

26

Sharing of Multi-Hop Networks

e Link multiplexing among users
e Packet forwarding and delay

o Best-effort delivery: packet buffering,
buffer overflow, packet dropping

e Packet duplication
e Packet corruption
e Link breakage

e Packet reordering

27

Packet Duplication

B figure: [Saltzer and Kaashoek]

A
send request, —am

set fimer }

receive response—» X
reset fimer

send request, —» ——
set timer

timer expires, Y _
resend request,
set new timer

receive response,—m X
reset timer

Mh
W

%X

‘W

M..

-« oOVverloaded
forwarder
discards
request
packet,

fime

o Best-effort delivery drops packets when
queues overflow
e End-to-end principle suggests original
sender should retry
— destination could also be down

28

Packet Duplication (cont’'d)

A 8 figure: [Saltzer and Kaashoek]

send request, —w ——
set timer e
Quest 3

. . X/ <«— overloaded forwarder
fimer expires, Y discards response 3
resend request, =

— ——
set new timer m- -<«— duplicate arrives at B

3’ -«— Bsends response 3’
onse
. ‘e
receive response —m

reset timer

e Responses can be dropped

e Consequence: client’s resent request appears as
duplicate to server

e Problem? Depends on application and request

type:
— Bank withdrawal
— File write

29

Packet Duplication (cont’'d)

A

send request, —
set timer

fimer expires,
resend

receive
response,
reset timer

=T

receive
duplicate
response

—

B figure: [Saltzer and Kaashoek]

packet containing response
gets delayed

-«— duplicate arrives at B
-— B sends response 4’

e Delay can also cause duplication

30

Duplicate Suppression

e A marks requests with monotonically
increasing sequence numbers (any non-
repeating sequence suffices)

e B remembers request sequence numbers
for requests previously processed

e B ignores requests with sequence
numbers already completed; repeats
response to A

31

Packet Corruption and Link Breakage

e Noise on links, errors in router memory,
software errors, &c., may corrupt packets
en route

— Given best-effort service, error detection is

sufficient; drop packets that contain errors

e Links may break (excavation cuts fiber;
power failure)

— Networks typically offer more than one path;
routing must find a currently working path

32

Packet Reordering

e Consider two paths, R1 and R2, with
delays D1 and D2, where D1 < D2

— Sender may send packet PO along R2

— Sender may send packet P1 along R1

— Packets may arrive at receiver in order P1, PO
e For messages divided into packets,

reassembly at receiver must be done with
care

33

Summary: Multi-Hop Networks

Network
Type

isochronous
(e.qg..telephone
network)

asynchronous
(e.q.. Internet)

Application characteristics

Continuous Bursts of data
sfream (most computer- R?;FIDC? g;e
(e.g..inferactive to-computer i
voice) data) variations
(hard-edged)
good match c\gaéffii either accepts
P 4 or blocks call
(gradual)
variable latency 1. variable delay
upsets good match |2. discards data
application 3. rate adaptation

figure: [Saltzer and Kaashoek]

34

Outline

e Shared, Multi-hop Networks
e Background: Protocol Layering
e End-to-End Arguments

35

Dealing with Heterogeneity of
Applications and Links

Applications HTTP Skype SSH FTP

Transmission
media

° Re-imFIement every application for every new
underlying transmission medium?

e Change every application on any change to an
underlying transmission medium (and vice-versa)?

e No! But how does the Internet design avoid this?

Computer system modularity

Key idea: Partition system into modules and
abstractions

Well-defined interfaces give flexibility and isolation
— Hide implementation, thus, it can be freely changed
— Extend functionality of system by adding new modules

e.g., libraries encapsulating set of functionality

e.g., a programming language and compiler abstracts
away how a particular CPU and operating system work

Layering: a modular approach

e Partition protocols on the Internet into layers
— Each layer solely relies on services from layer below
— Each layer solely exports services to layer above

e Advantages of layering:

1. Decomposes problem of building a network into
manageable pieces

2. Results in a more modular design. Additions or
changes are usually isolated to one layer

3. Layer n hides complexity of layer n—1 to higher
layers

Internet solution: Intermediate layers

Applications HTTP Skype | | SSH FTP

Transmission
media

e Intermediate layers provide a set of abstractions
for applications and media

e New applications or media need only implement
for intermediate layer’s interface

Physical layer (L1)

e Service: move bits between two systems
connected by a single physical link

e Interface: specifies how to send, receive bits
— e.dg., require quantities and timing

e Protocols: coding scheme used to represent
bits, voltage levels, duration of a bit

Data link layer (L2)

e Service: enables end hosts to exchange atomic

messages with one another

— Using abstract addresses (/.e., not just direct physical
connections)

— Perhaps over multiple physical links, but using the same
frammlg (headers/trailers

— Possibly arbitrates access to common physical media

— Possibly implements reliable transmission, flow control

o Interface: send messages (frames) to other end hosts;
receive messages addressed to end host

e Protocols: addressing, routing, Media Access Control
(MAC) (e.g., CSMA/CD - Carrier Sense Multiple
Access / Collision Detection)

Network layer (L3)

e Service: Deliver packets to destinations on other
networks (inter-network, across multiple L2
networks)

— Works across networking technologies (e.g., Ethernet,

802.11, frame relay, ATM P
e No longer the same framing all the way

— Possibly includes Backet scheduling/priority
— Possibly includes buffer management

e Interface: send packets to specified internetwork
destinations; receive packets destined for end host

e Protocols: define inter-network addresses (globally
unique); construct routing tables

Transport layer (L4)

Service: Provides end-to-end communication between

processes on different hosts

— Demultiplexing of communication between hosts
— Possibly reliability in the presence of errors

— Timing properties

— Rate adaption (flow-control, congestion control)

Interface: send message to specific process at given
destination; local process receives messages sent to it

Protocol: perhaps implement reliability, flow control,
packetization of large messages, framing

Examples: Transport Control Protocol (TCP), Real-
Time Transport Protocol (RTP), User Datagram
Protocol (UDP)

Application layer (L7)

Service: any service provided to the end user

Interface: depends on the application

Protocol: depends on the application

Examples: File Transfer Protocol (FTP), Skype,
Simple Mail Transfer Protocol (SMTP), Hypertext
Transport Protocol (HTTP), BitTorrent, many

ot

W

Ners...

nat happened to layers 5 & 67
— “Session” and “Presentation” layers
Part of OSI architecture, but not Internet architecture

Who does what?

e Five layers
— Lower three layers are implemented everywhere
— Top two layers are implemented only at end hosts

a) (. N

‘ Transport \ /~ N\ ‘ Transport \
| Network | | Network | | Network |

\ HostA _ Router) \ HostB

Logical communication

e Each layer on a host interacts with its peer host’s
corresponding layer via the protocol interface

a) (. N

‘ Transport |: :| Transport \
| Network E El Network E EI Network |

\ HostA _ Router) \ HostB

Physical communication

e Communication goes down to physical

network

e Then from network peer to peer
e Then up to the relevant layer

f 2

Appligation

Network

_ Router)

Outline

e Shared, Multi-hop Networks
e Background: Protocol Layering
e End-to-End Arguments

48

Motivation: End-to-End Argument

e 7 layers in OSI model

e 7 places to solve many of same problems:
— In-order delivery
— Duplicate-free delivery

— Reliable delivery (retransmission) after
corruption or loss

— Encryption
— Authentication

e In which layer(s) should a particular
function be implemented?

49

Example: Careful File Transfer

data_— —~ —~——~—~
A R1 R2 R3 R4 B
LL ACKs e AN N N AN

e Goal: accurately copy file on A’s disk to B’s disk

e Straw man:
— Read file from A’s disk
— A sends stream of packets containing file data to B

— Link-layer retransmission of lost/corrupted packets at
each hop

— B writes file data to disk
e Does this system meet design goal?
— Bit errors on links not a problem

50

Where Can Errors Happen?

On A’s or B’s disk
In A’'s or B's RAM or CPU
In A’s or B’s software

In the RAM, CPU, or software of any router that
forwards packet (MIT example!)

Why might errors be likely?

— Drive for CPU speed and storage density: pushes
hardware to EE limits, engineered to tight tolerances

— e.g., today’s disks return data that are the output of
an MLE!

51

Solution: End-to-End Verification

A stores checksum with data on disk
— Why not compute freshly on read?

B computes checksum over received data, sends
to A (or vice-versa)

Compare two checksums; A resends if not
identical

Can we eliminate hop-by-hop error detection?

— Suppose there’s a router with bad RAM; how will you
find it?

Is a whole-file checksum enough?

— Poor performance: must resend whole file each time
one packet (bit) corrupted!

52

End-to-End Principle

e Only application at communication
endpoints can completely and correctly
implement a function

e Processing in middle alone cannot provide
function

e Processing in middle may, however, be
important performance optimization

e Engineering middle hops to provide
guaranteed functionality often wasteful of
effort and inefficient

53

Perils of Low-Layer Implementation

e Entangles application behavior with network
internals

e Suppose each IP router reliably transmits to next
hop
— lossless delivery, variable delay

— ftp: OK, move huge file reliably (just end-to-end TCP
works fine, too, though)

— Skype: terrible, jitter packets when a few corruptions
or drops not a problem anyway
e Complicates deployment of innovative
applications
— phone network vs. Internet

54

Advantages of Low-Layer
Implementation

e Each application author needn’t recode a
shared function

e Overlapping error checks (e.g.,
checksums) at all layers invaluable in
debugging and fault diagnosis

o If end systems not cooperative
(increasingly the case), only way to
enforce resource allocation!

55

Challenge: End-to-End
Authentication and Encryption

Use a public PC to check your email using IMAP & SSL
— Authenticates server to you and you to server robustly
— Encrypts between you robustly

Key security consideration: threat model

— which attacks are you explicitly defending against?

— which are you ignoring?

— what does it cost your adversary to mount an attack?
What are you trusting?

— mail reading application (could be trojaned)

— OS (could also be trojaned)

— hardware (e.g., "fake ATM" cases)

End-to-end notion of security must consider integrity of
software and hardware at endpoints, possibly even of

users!
56

End-to-End Violation: Firewalls

Firewall

% E\J\/\ x
Box in middle of network that blocks "malicious” traffic
— End-host software often vulnerable to worms
— Users naive, may not keep desktop patched up-to-date
Clearly violates e2e principle

— Endpoints capable of deciding what traffic to ignore

— Firewall entangled with design of network and higher protocol layers
and apps, and vice-versa

— Example: new ECN bit to improve TCP congestion control; many
firewalls filtered all such packets!

Probably need firewalls
But beware entangling network edge and network interior

4>

>
Our network

57

Summary: End-to-End Principle

Many functions must be implemented at application
endpoints to provide desired behavior, even if
implemented in "middle” of network

End-to-end approach decouples design of components
in network interior from design of applications at edges

Some functions still benefit from implementation in
network interior; at cost of entangling interior and core
— Performance (e.g., link-layer retransmission)

— Security (e.g., firewalls)

— Scalability (e.g., routing)

End-to-end principle is not sacred; it's a way to think
critically about design choices in communication systems

58

