
UNIVERSITY COLLEGE LONDON
DEPARTMENT OF COMPUTER SCIENCE

Dr Kyle Jamieson and Dr Brad Karp

3035/GZ01 Networked Systems
Individual Coursework 2: Ben’s Local DNS Server

Distributed: 24th October 2013; Due: 4:05 PM, 15th November 2013

Introduction

Having just learned about the Domain Name System (DNS), 3035/GZ01 student Ben Bitdiddle’s
interest is piqued. In his spare time, Ben runs a small ISP, and of course, he wants to offer his
customers a reliable DNS service. Suspicious of recent cache poisoning security exploits in the DNS
server implementation he currently runs, he decides to write his own server in Python. With some of
the profits from his ISP business, Ben hires you and a fellow student, Alyssa P. Hacker, to help.

8: rr

1: rq

2: 
iq

3: 
ir

5: ir

7: ir

6: iq

4: iqClient resolver

Local
nameserver

Root
nameserver

Top-level domain
nameserver

Authoritative
nameserver

FIGURE 1: A recursive DNS lookup is made up of many iterative lookups, each initiated by the local
nameserver.

Recall the overall structure of the DNS from lecture: the local name server is placed close to the
pool of clients that it serves, and normally only accepts requests from that pool of clients. When
a program running on the client needs to resolve a hostname, a piece of code running on the client
called the resolver contacts the local nameserver with a recursive query for that name (labelled rq)
in Figure 1 below. This step and the following steps are numbered in consecutive order in the figure.
Recall that a recursive query is named as such because it results in the local nameserver making a
number of other queries (called iterative) on behalf of the recursive query. The local nameserver
next makes a series of iterative queries (labelled iq) to various other nameservers, which may include
a root nameserver (authoritative for .), a top-level domain (TLD) nameserver (authoritative for top-
level domains, such as .edu., .com., etc.), and other authoritative nameservers for the domains and
subdomains listed in the original recursive query. This sequence of iterative requests and responses,
labelled 2–7 in the figure below, may be reduced by information present in the local nameserver’s
cache. Finally, once the local name server has resolved recursive query 1, it replies to the client’s
resolver with the recursive response labelled rr in the figure. The resolver then returns the response
to the application running on the client.

This is the heart of the DNS nameserver functionality. You can think of the local nameserver as the
“workhorse” of the DNS, because it is the one required to implement the recursive lookup algorithm.
In fact, most TLD and root nameservers will not honour requests for recursive lookups—they are
simply too busy.



This assignment is in two parts. In Part 1, we will understand how recursive queries work in prac-
tice by using command line tools and our knowledge about the DNS. In Part 2, we will implement
the recursive query functionality in Ben’s DNS server, testing against answers provided by the depart-
ment’s local DNS server. Note that the second part is substantially more challenging than the first—be
sure to leave yourself enough time to finish the entire lab!

Part 1: Manual Recursive Queries

Let’s begin by getting a deeper understanding of how DNS queries work in practice. We’ll
be using dig, a command-line UNIX tool that instructs the client’s resolver to issues DNS
queries to one of the local nameservers listed in /etc/resolv.conf, usually 128.16.6.8
(haig.cs.ucl.ac.uk) on department systems. dig then parses the resulting DNS reply, printing
it clearly on the console. For example,

$ dig @haig.cs.ucl.ac.uk sipb.mit.edu

Results in output similar to the following:

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 54529
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
sipb.mit.edu. IN A

;; ANSWER SECTION:
sipb.mit.edu. 18517 IN A 18.181.0.29

;; AUTHORITY SECTION:
mit.edu. 14006 IN NS BITSY.mit.edu.
mit.edu. 14006 IN NS STRAWB.mit.edu.
mit.edu. 14006 IN NS W20NS.mit.edu.

;; ADDITIONAL SECTION:
BITSY.mit.edu. 165011 IN A 18.72.0.3
STRAWB.mit.edu. 165011 IN A 18.71.0.151
W20NS.mit.edu. 165011 IN A 18.70.0.160

;; SERVER: 128.16.6.8#53(128.16.6.8)

From the metadata at the end of the output, we see that dig has received an answer from haig
(128.16.6.8). First, the header section tells us firstly that the query was successful (status:
NOERROR), listing the query’s unique identifier, or UID: (id: 54529). Second, the header’s one-
bit flags tell us that this is a response (flag qr is set), that dig requested a recursive lookup (flag
rd, for recursion desired, is set), and that haig honored the request for a recursive lookup (flag ra,
for recursion available, is set). Finally, the header tells us to expect one question entry, one answer
entry, three authority entries, and three additional entries in the body of the reply. The question entry
(sipb.mit.edu. IN A) echoes the question entry that dig sent haig, querying the Internet
(class IN) address (A) of sipb.mit.edu. The answer entry tells us that sipb.mit.edu’s IP ad-
dress is 18.181.0.29. The authority section lists three nameservers authoratative for mit.edu.,
BITSY.mit.edu., STRAWB.mit.edu., and W20NS.mit.edu. The additional section con-
tains three “glue” records specifying the IP addresses of the three authoritative nameservers listed in
the authority section.

A key point to note here is that since dig requested recursion, haig has done the hard part for us.
Let’s now see how the process works from haig’s perspective by making the sequence of iterative
queries that haig would, using the +norecurse flag.

First, let’s find out the names of the root DNS servers:

2 Coursework 2: Ben’s local DNS server 3035/GZ01 Networked Systems



$ dig @haig.cs.ucl.ac.uk . +norecurse

dig tells returns the following start-of-authority (SOA) record:

;; AUTHORITY SECTION:
. 3966 IN SOA A.ROOT-SERVERS.NET.

NSTLD.VERISIGN-GRS.COM. 2009081100 1800 900 604800 86400

The SOA tells us that a root nameserver is at A.ROOT-SERVERS.NET and is administered by
nstld@verisign-grs.com. As we learned in lecture, there are many root nameservers. Let’s
ask haig for the address of one. We expect an answer here because local nameservers are usually
configured with the (well-known) addresses of the root nameservers.

$ dig @haig.cs.ucl.ac.uk A.ROOT-SERVERS.NET. +norecurse

haig responds (in part):

;; ANSWER SECTION:
A.ROOT-SERVERS.NET. 595112 IN A 198.41.0.4

Supposing that our address caches are empty, let’s now use dig to make the same series of (non-
recursive) requests that haig would make given a query for sipb.mit.edu. with the rd bit set.
We start our hypothetical recursive query at A.ROOT-SERVERS.NET (198.41.0.4):

$ dig @198.41.0.4 sipb.mit.edu. +norecurse

A.ROOT-SERVERS.NET responds (in part):

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 63951
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 7, ADDITIONAL: 8

;; QUESTION SECTION:
;sipb.mit.edu. IN A

;; AUTHORITY SECTION:
edu. 172800 IN NS L.GTLD-SERVERS.NET.
edu. 172800 IN NS E.GTLD-SERVERS.NET.
edu. 172800 IN NS G.GTLD-SERVERS.NET.
edu. 172800 IN NS A.GTLD-SERVERS.NET.
edu. 172800 IN NS C.GTLD-SERVERS.NET.
edu. 172800 IN NS F.GTLD-SERVERS.NET.
edu. 172800 IN NS D.GTLD-SERVERS.NET.

;; ADDITIONAL SECTION:
A.GTLD-SERVERS.NET. 172800 IN A 192.5.6.30
A.GTLD-SERVERS.NET. 172800 IN AAAA 2001:503:a83e::2:30
C.GTLD-SERVERS.NET. 172800 IN A 192.26.92.30
D.GTLD-SERVERS.NET. 172800 IN A 192.31.80.30
E.GTLD-SERVERS.NET. 172800 IN A 192.12.94.30
F.GTLD-SERVERS.NET. 172800 IN A 192.35.51.30
G.GTLD-SERVERS.NET. 172800 IN A 192.42.93.30
L.GTLD-SERVERS.NET. 172800 IN A 192.41.162.30

The first thing to notice in the above is that we haven’t received a direct answer to our query.
A.ROOT-SERVERS.NET has instead observed that our query is for a host in the edu. top-level
domain, and referred us to one of several top-level domain nameservers. It’s even been kind enough
to provide us with the aforementioned glue records that tell us where to continue our query. In the
following “warmup exercises,” you will continue this recursive query in a similar fashion.

3035/GZ01 Networked Systems Coursework 2: Ben’s local DNS server 3



Warmup exercises

1. Using dig with the +norecurse flag always set and other than the root name-
server, only targeted at an IP address (e.g. dig @192.5.6.30 rather than dig
@a.gtld-servers.net), continue the recursive query for sipb.mit.edu. on your
machine.
Turn in the full list of command lines that you issue as well as the resulting dig output. In this
and the following exercises, include only the relevant lines in the DIG output in your answer.
[2 marks]

2. Again, using digwith the +norecurse flag always set, emulate recursive queries in the same
manner for the following hostnames. Be sure to start at a root DNS server for each.
sonic.cs.ucl.ac.uk.
www.microsoft.com.

[2 marks each]

3. What about the name resolution process for sonic.cs.ucl.ac.uk. differed from the
name resolution process for sipb.mit.edu.? [2 marks]

4. What about the name resolution process for www.microsoft.com. differed from the name
resolution process for sipb.mit.edu.? [2 marks]

[Total marks for Part 1: 10]

4 Coursework 2: Ben’s local DNS server 3035/GZ01 Networked Systems



Client socket csServer socket ss

Ben's DNS serverClient Other DNS server

ss.recvfrom( )

ss.bind(port 53)

cs.sendto( )

cs.recvfrom( )

ss.sendto( )

...

rq

rr

iq

ir

FIGURE 2: Communication flow from client to local nameserver and local nameserver to other DNS
servers during one client’s request to its local nameserver.

Part 2: Building a Simple Local Nameserver

Now that you are familiar with the process of making recursive queries by hand, you and Alyssa
are ready to help Ben build his local nameserver. Ben decides that the nameserver will be a simple
“single-threaded” server model that serves one client at a time, competing service of the current
client before starting service of the next client.1 The nameserver we will build will be a “recursive”
nameserver, capable of answering the same recursive queries you resolved by hand in Part 1, and will
be caching, retaining the results of prior queries until they are invalid, using cached data instead of
iterative queries whenever possible.

Recall from lecture that normal DNS communication uses UDP, the unreliable datagram delivery
service of the Internet, and that applications send and receive UDP datagrams using a software inter-
face called a socket. As shown in the picture below, Ben’s server will utilise two sockets: ss, a server
socket bound to UDP port 53 (the well-known DNS port), and cs, a client socket that the server uses
to query other servers as a client of those servers. These sockets are shown in the figure below, along
with a time diagram of how communication proceeds in this single-threaded server. First, Ben’s local
nameserver uses the bind call to bind ss to UDP port 53. Then, serially, for each incoming client
query, the server calls recvfrom on the server socket to wait for and receive the recursive query rq
as shown in the figure. Next, the server makes zero or more iterative queries iq using sendto and
recvfrom on the client socket, while processing the results. Finally, the server calls sendto on
the server socket to send its response to the client.

The preceding steps execute in a continuous loop, as indicated in the figure, with ss.recvfrom
blocking until the next incoming request.

Getting started

All programming for this coursework must be done under Linux on the department’s lab machines
in lab 1.05. We have ensured that the code we give you to build upon works correctly on these lab
machines. Note that these machines are accessible over the Internet, so you may work on the course-
work either from home (using the CS department’s Sun Secure Global Desktop server, accessible on
the web at http://www.cs.ucl.ac.uk/csrw), or by logging into the machine in person, in

1You will learn about more complex ways to design servers in a later NCS class.

3035/GZ01 Networked Systems Coursework 2: Ben’s local DNS server 5



lab. You can also ssh into one of these Linux hosts from inside the department or by first sshing in via
newgate.cs.ucl.ac.uk

afonso, iguazu, kongou, maribondo, niagara, para, victoria,
wagenia, patos, frontal, parietal, temporal, occipital, sphenoid,
ethmoid, maxilla, palatine, zygomatic, lacrimal

To get started, download the distribution tarball gz01_cw2_distribution.tgz from Moo-
dle and copy the skeleton files to within your home directory:

$ gunzip gz01_cw2_distribution.tgz
$ tar xvpf gz01_cw2_distribution.tar

This will create a directory called gz01_cw2 which we will refer to as the lab distribution direc-
tory.

Source code walkthrough

The main nameserver is located in file ncsdns.py, in which Alyssa has coded up the single-
threaded structure described above. Your task is to implement the recursive lookup algorithm de-
scribed above, as well as a caching functionality so that your server doesn’t make any unnecessary
iterative queries.

The first problem you encounter is the need to parse and construct the various DNS packet payload
formats. In short order, Alyssa codes up the following functionality to perform much of the necessary
work. She documents her code and places it in the HTML pages in the html subdirectory of the lab
distribution directory.

Action: To understand how you will be parsing and constructing DNS payloads, view each class
documentation in your web browser by opening the HTML pages in the html subdirectory of
the lab distribution as they are discussed below.

In package gz01.inetlib, Alyssa provides you with two helper classes. DomainName is a
class that represents DNS domain names and contains logic to parse and construct packet payload
representations. InetAddr provides the same functionality for an IPv4 address.

Parsing and constructing DNS packets
The Python recvfrom() library function yields packet payloads as strings of binary-valued data,
while the python sendto() library function expects packet payloads in the same format. We now
describe how you may handle this requirement.

Every DNS packet payload is made up of a header, followed by zero or more question entries,
followed by zero or more resource records. For more information about DNS packet formats, see the
class lecture notes and the references at the end of this assignment.

Domain names in responses from production DNS servers are often compressed according to
RFC1035. Rather than requiring you to implement the string compression and decompression algo-
rithms, package gz01.inetlib contains a DomainName class that implements the decompression
algorithm for you. The tricky part, however, is the semantics of how long a domain name is. Suppose
your server receives a packet with a domain name inside whose compressed binary representation is
10 bytes long, but whose string length is 13 bytes long. When you construct a DomainName object
d from that compressed binary representation, should len(d) evaluate to 10 or 13? The approach
we have chosen is to have len(d) evaluate to its compressed length, in this case 10, but any copies
of d that are made by the Python call copy(d) get uncompressed and hence have a length of 13.
This issue comes up in resource record handling; see below.

6 Coursework 2: Ben’s local DNS server 3035/GZ01 Networked Systems



The following Python classes in package gz01.dnslib parse and construct DNS protocol pay-
loads using the classes in gz01.inetlib discussed above.2

• Header represents a DNS protocol payload header; its constructor creates a new Header object
from user-specified arguments, while its fromDatamethod returns a new Header object from
user-supplied binary string data.

• QE represents the question entry that is usually the first entry after the header. Like Header, QE
has a constructor that creates a QE from individual arguments, and a fromData method that
returns a QE object from binary string data.

• RR is an abstract class that represents a generic resource record, and contains logic common to
the various types of resource records. All resource records contain a domain name, a time-to-
live, and a field specifying the length of the data they contain.
RR’s fromData method returns a pair (rr, length) where rr is one of the classes below
derived from RR, which represent resource records of various types, and length is the length
in bytes of the resource record returned, in the binary string representation supplied to the user’s
call to fromData. Any DomainName objects that RR or its derivatives contain are copies of
the originals, and so have a length commensurate with their string representation length. See
above for a discussion of string representation DomainName length versus binary representa-
tion DomainName length. Thus, as a user of the RR classes, you will need to refer to the second
element of the pair that fromData returns in order to find out how many bytes a given RR takes
up in the binary string you give fromData.
The classes derived from RR are:

– RR_A represents an “address” resource record, which contains an IPv4 address.
– RR_CNAME represents a canonical name address record, which contains a canonical host-

name (a DomainName).
– RR_NS represents a nameserver resource record, which contains the domain name of an-

other nameserver (a DomainName).
– RR_SOA represents a start-of-authority resource record, which contains information about

a domain.

Debugging and logging
Alyssa provides a hexdump function in package gz01.util to assist you in debugging the con-
tents of packets received or sent from or to other DNS servers. When called with one argument
whose value is a packed binary string containing any data, hexdump will list the data in human-
readable hexadecimal and ASCII form, in two columns, with byte indices in another column to the
left. The hexadecimal display is one byte (two hexadecimal characters) at a time. By judicious use of
hexdump on each packet that you send or receive on the network, combined with cross-referencing
the DNS specifications, you can resolve many issues.

A sample invocation of hexdump in the context of the provided code is:

while 1:
(data, address,) = ss.recvfrom(512) # DNS limits UDP msgs to 512 bytes
if not data:
log.error("client provided no data")
continue

else:
print "Query received from client is:\n", hexdump(data)
queryheader = Header.fromData(data)
print "Query header received from client is:\n", hexdump(queryheader.pack())

2Note that Python packages reside in subdirectories corresponding to the package name, so the directory path to Alyssa’s DNS data format handling
code is gz01/dnslib in the lab distribution directory.

3035/GZ01 Networked Systems Coursework 2: Ben’s local DNS server 7



The resulting output visible on the console when the server runs, answering a query for
www.cs.ucl.ac.uk is:
Query received from client is:
0000 38 8E 01 00 00 01 00 00 00 00 00 00 03 77 77 77 8............www
0010 02 63 73 03 75 63 6C 02 61 63 02 75 6B 00 00 01 .cs.ucl.ac.uk...
0020 00 01 ..

Query header received from client is:
0000 38 8E 01 00 00 01 00 00 00 00 00 00 8...........

Action: To familiarize yourself with DNS payloads (and thus prepare for debugging the results
when you begin to construct your own), reconcile the above hexdump with the DNS packet
format, understanding where each field’s value is in the hexdump.

Alyssa has also provided a logging infrastructure to assist in the debugging of your server. Package
gz01.util sets up logging to the console and file ncsdns.log, rotating that log file and its
predecessors to files ncsdns.log.1, ncsdns.log.2, ncsdns.log.3, etc., all in the directory
from which you run your server.3 Then to debug your server, make calls from ncsdns.py to the
logger object with debugging messages you find useful. Each logging call takes two arguments: an
importance level, and a string to output to the log. The importance levels and the corresponding call
to make in your code are as follows:

Level Numeric value How to call
CRITICAL 50 logger.critical(string)
ERROR 40 logger.error(string)
WARNING 30 logger.warning(string)
INFO 20 logger.info(string)
DEBUG 10 logger.debug(string)
DEBUG1 9 logger.log(DEBUG1, string)
DEBUG2 8 logger.log(DEBUG2, string)

Then in file gz01/util.py you can configure calls to setLevel as directed by the comments in
order to alter the verbosity level of the debugging output directed to either the console or the log file.
When you select a given verbosity level x you will then see only logging calls tagged with a level
whose numeric value is x or greater.

Caching
One of the requirements in the next section is that your server must answer queries from an internal
cache whenever possible, instead of querying another nameserver. Since each resource record that
your nameserver receives as a result of making a query on another nameserver contains a time to live
field (as described in lecture), upon receiving each query, your nameserver can deduce which resource
records are still valid, and use the valid records to answer the query.

Requirements and marking scheme

To earn points on this coursework, your nameserver must generate timely (within the default timeout
of the dig tool) and valid responses to the queries we issue according to the following requirements,
for every query that your nameserver responds to.

No separate design document is required, but you must comment your code thoroughly, to fully
explain how it works. [10 marks]

Following are the requirements for your nameserver. Failure to meet any of these requirements for
any of the queries we make to your nameserver when we evaluate it will result in a loss of points for
that requirement.

3Note that the rotation happens when ncsdns exits, so to read the most recent log, check ncsdns.log.1.

8 Coursework 2: Ben’s local DNS server 3035/GZ01 Networked Systems



1. Your nameserver must run with unchanged versions of our library files.

2. Your nameserver must answer recursive queries within the default timeout period of the dig
program without entering an infinite loop or terminating, no matter what information it receives
from other DNS servers.

3. Upon answering a query, your nameserver must wait for a subsequent query, and answer it in
turn.

4. Your nameserver must follow all canonical name CNAME aliases for a query and return the
correct address records for the canonical host name in the query.

5. Your nameserver must return at least one authority record from a subdomain of the canonical
host name. That subdomain must be the most highly-qualified subdomain that has at least one
authoritative nameserver.

For example, if query a.b.c.d aliases with CNAME entries to canonical hostname e.f .g.h, you
must return an authority record of a nameserver for subdomain f .g.h, if one exists. Otherwise,
you must return an authority record of a nameserver for subdomain g.h if one exists, and so on.

6. Your nameserver must return the correct glue records for nameservers it mentions in the authority
section of its reply.

7. When possible, your nameserver must use the cache to answer a given query, without generating
any network traffic.

8. Your nameserver must cope with not receiving a reply to requests it sends, for any reason (failure
of other DNS servers, network failures, timeouts due to network congestion, for example).

[5 marks each]
Negative requirements. Your nameserver does not need to implement the following functions that
production DNS servers provide:

1. Your nameserver does not need to respond to queries containing multiple questions (multiple
hostnames to resolve, for example).

2. Your nameserver does not need to respond to queries of type other than A (address). In particular,
your nameserver does not need to respond to or include IPv6 AAAA records.

3. Your nameserver does not need to respond to iterative queries.

4. You are not required to return time-to-live fields that take into account network propagation
delay.

Testing your nameserver

We have installed Python 2.6 for both Intel 32-bit and 64-bit architectures on the lab machines. To
make sure you use the correct architecture, always use the python-wrapper program instead of
the python command when you work on this assignment.

To run and test the server, use the following command:

$ ./python-wrapper ./ncsdns.py

The server responds:

./ncsdns.py: listening on port 40229

3035/GZ01 Networked Systems Coursework 2: Ben’s local DNS server 9



indicating that it is listening on port 40229.
To workaround the need for “root” access to the machine we are using, our server socket ss listens

on a high-numbered “ephemeral” port instead of port 53. The server prints the port it is listening on
to the standard output when it starts, as above.

For testing purposes, you should send dig queries for a variety of DNS hostnames to the port
your server is listening on using the -p [port number] option. In a different window, use dig
to query your local nameserver:

$ dig @127.0.0.1 -p [port number] [query hostname]

To test the server in this example, you would type:

$ dig @127.0.0.1 -p 40229 sipb.mit.edu.

Initially, dig will time out, not having received a response from your incomplete DNS server.
Once your server responds to queries, use appropriate queries to dig to check the responses your

server returns against the requirements listed above. Try testing using the following host names,
referring to the log as you test for insights as to what the possible bugs in your server are. These are
among the host names we will use to mark your server:

haig.cs.ucl.ac.uk.
sipb.mit.edu.
lxr.linux.no.
www.caltech.edu.
www.microsoft.com.
www.yahoo.com.

Note that your results will vary from query to query for domains that use DNS load balancing to
return different results in round-robin order or DNS-based content distribution networks that change
results based on client identity. We will only mark your server against the requirements listed above,
thus taking this into account.

[Total marks for Part 2: 50]

Hand in instructions

Submission of this coursework is electronic using the 3035/GZ01 Moodle web site.
Hand in Part 1 of this coursework by cutting and pasting your work into a plain ASCII text file

named cw2-part1.txt and submitting only this text file using Moodle. In accordance with class
policy, please state how many late days you would like to take in this file.

For Part 2, hand in using Moodle only the Python source code necessary to run your DNS server,
excluding library files, which should be left unchanged per the requirements above (usually this is
just the file ncsdns.py). To meet size restrictions, remove all precompiled Python intermediate
files (those files ending in *.pyc in your Coursework 2 directory tree).

[Total marks for this coursework: 60]

The teaching staff is not responsible for coursework submissions not made in accordance with
the above instructions—in particular, we do not accept coursework submissions via email.

10 Coursework 2: Ben’s local DNS server 3035/GZ01 Networked Systems



References

The following references on the Domain Name System may be useful in completing this assignment:
1. RFC1034: Domain names—Concepts and facilities (web)

2. RFC1035: Domain names—Implementation and specification (web)

3. RFC1536: Common DNS implementation errors and suggested fixes (web)

4. Python documentation
http://docs.python.org
http://docs.python.org/tutorial/index.html

5. The Python library reference is available at:
http://docs.python.org/library/index.html

Announcements

Please monitor the class Piazza discussion forum during the period between now and the due date for
the coursework. Any announcements (e.g., helpful tips on how to work around unexpected problems
encountered by others) will be sent there.

Academic honesty

This coursework is an individual coursework. You are to complete it alone; you may not consult
with other students in the course (or with other people who are not taking the course) about what
algorithm to use or how to write your code. You may not look at other students’ code (from this
year or past years), nor show them yours. You are free to read reference materials found on the
Internet (and any other reference materials). You may of course use the code we have given you.
All other code you submit must be written by you alone. Copying of code from student to student
is a serious infraction; it will result in automatic awarding of zero marks to all students involved,
and is viewed by the UCL administration as cheating under the regulations concerning Examination
Irregularities (normally resulting in exclusion from all further examinations at UCL). The course
staff use extremely accurate plagiarism detection software to compare code submitted by all students
and identify instances of copying of code; this software sees through attempted obfuscations such as
renaming of variables and reformatting, and compares the actual parse trees of the code. Rest assured
that it is far more work to modify someone else’s code to evade the plagiarism detector than to write
code for the assignment yourself!

3035/GZ01 Networked Systems Coursework 2: Ben’s local DNS server 11

http://www.ietf.org/rfc/rfc1034.txt
http://www.apps.ietf.org/rfc/rfc1035.html
http://www.apps.ietf.org/rfc/rfc1536.html

	Introduction
	Part 1: Manual Recursive Queries
	Warmup exercises

	Part 2: Building a Simple Local Nameserver
	Getting started
	Source code walkthrough
	Parsing and constructing dns packets
	Debugging and logging
	Caching

	Requirements and marking scheme
	Testing your nameserver
	Hand in instructions
	References
	Announcements
	Academic honesty


