Introduction Session for Coursework 2

GZ01/3035 Networked Systems
Astrit Zhushi
Slides adopted from Jie Xiong and Georgios Nikolaidis

Department of Computer Science
University College London
Coursework 2

• Part 1 - Manual Recursive Queries (4 points)
 – Understand how recursive queries work in practice
 – Simple but important (helps you later in Part 2)

• Part 2 – Building local nameserver (8 points)
 – Implement your own DNS server with recursive query functionality
Part 1: Manual Recursive Queries

• Walking manually through the steps local DNS server takes
• Utilize CS local nameserver (haig)
• Open console in Linux

 dig @haig.cs.ucl.ac.uk sipb.mit.edu
 (get answer in one round)

 dig @haig.cs.ucl.ac.uk sipb.mit.edu . +norecurse
 (You need to manually send queries recursively)
Part 2: Ben's Local DNS Server

• Build your own operational DNS server
• Implement DNS recursive lookup algorithm
 – Handle A and CNAME
 – Caching
 – Nothing else for simplicity
• A lot of codes already given
 – Parsing libraries to construct and parse DNS protocol packets
Libraries Provided

- **dnslib (gz01.dnslib)**
 - Construct and parse DNS protocol packets
 - *Header*, *QE* and *RR* classes
 - `fromData(data,offset)` method

- **inetlib (gz01.inetlib)**
 - *DomainName* class implements decompression

- **Test suite**
 - Provided to help you make sure your algorithm is implemented correctly
 - `./python-wrapper ./test-dns.py ./ncsdns.py`
Logging and Debugging

- `hexdump(src, length=16)` function
 - Human readable HEX and ASCII
- Logs output in console and file `ncsdns.log`
- `logger` object (nscdns.py)
 - `logger.critical(string)`, `logger.error(string)`, ...
- Setting the level of verbosity
 - Modify gz01/util.py as directed by comments
Part 2: Ben's Local DNS Server

• Single-threaded, only one client active at a time
• Two sockets:
 – one for incoming recursive queries (ss);
 – the other for outgoing iterative queries (cs)
To perform a query:
$ dig @ipaddress -p portnumber domainname
Lab Machines

• Can ssh to lab machines
 – Accessible over the Internet
 – Pick one at random
 – $ ssh username@MACHINENAME.cs.ucl.ac.uk
 • MACHINENAME one of the machine names in handout
 – $ rlogin MACHINENAME
 – $ exit OR Ctrl-d to exit

• Login in person (CS LAB)

• To edit files:
 – $ vim ncsdns.py
 – $ scp ncsdns.py username@MACHINENAME.cs.ucl.ac.uk:~/
 – For Windows
 • PuTTY, PSCP, Filezilla
Setting up Python

- Use GZ01 staff-provided Python
- Current version 2.6.2
- Current architectures: sun4, x86_64, i686
- Execute `python-wrapper` instead of `python`
Python scripts, interpreter

• Conventional file extension `.py`

• Make executable directly and run:

 $ chmod +x hello.py

• Interpreter:

 – `python-wrapper`

 Python 2.6.2 (r262:71600, Sep 26 2009, 14:12:31)

• To run your code:

 – $./python-wrapper ncsdns.py
Coursework Submission

• Use **handin** program on UNIX CS machines
 – You may **handin** many times, the last submission will be evaluated.

• Part 1
 – Create **cw2-part1.txt** and submit only this text file using **handin**

• Part 2
 – Usually, submit just **ncsdns.py** file
 – Remove intermediate python files (ending in .pyc)

• Class policy for late submission applies
 – State the number of late days in the **cw2-part1.txt** file
Help!

• Read the code/documentation
• RFCs (1034, 1035) & tutorials online
 – RFC 1034, Section 5.3.3 describes the algorithm
• Moodle Forums
• gz01-staff@cs.ucl.ac.uk
• Office hours