
University College London
Department of Computer Science

3035/GZ01: Networked Systems
Kyle Jamieson and Brad Karp

Individual Coursework 4: Implementing Distance-Vector Routing
Distributed: 2nd December 2011; Due: 16th December 2011, 9:05 AM

In this coursework, you will write distance-vector routing code for a simple router.
The coursework is worth a total of 100 marks, and represents 8 percent of your final
grade for 3035/GZ01.

The most valuable reference for you to use while working on this coursework is the
set of 3035/GZ01 lecture notes on distance-vector routing. Those slides contain a com-
plete statement of the distance-vector routing algorithm in pseudocode, and examples
of how the algorithm behaves on a variety of network topologies. You will also find
it useful to refer to rfc2453 (RIP Version 2), which describes the Routing Information
Protocol (RIP), a modern distance-vector routing protocol. Note that we expect you to
implement the algorithm as presented in the lecture notes, including setting of the ap-
propriate routing table entries’ metrics to a reserved INFINITY value when a link goes
down. We will also ask you to implement two further optimisations: split horizon with
poison-reverse, and timeout-based expiration of routing table entries. Note that you are
not to implement other “advanced” features of DV routing, such as triggered updates.

You must write your routing code in Java; the network simulator code we give you
as a starting point for the coursework is written in Java.

All programming for this coursework must be done under Linux on the CS depart-
ment’s lab machines. We have ensured that the code we give you to use as a starting
point works correctly on these lab machines. Note that these machines are accessible
over the Internet, so you may work on the coursework either from home or in the labs.1

The Linux lab machines are those with the following hostnames, all of which end in
cs.ucl.ac.uk:

auerbach calder fulla goya hals judd kubin lowry munch

opie pollock quarton rubens shitao valdes

whistler zorach faulkner heine carey

A Simple Network Simulator

A router isn’t much good unless it’s connected to other routers by links. If you were writ-
ing routing protocol software for a real, physical IP router, you could test the software
by connecting several routers into a network topology, running your routing software
on each of them, and observing whether users’ data packets reach their destinations
successfully.

Because it’s not feasible for you to build a physical multi-router network to test
your routing code, we’ll do the next-best thing: we’ll use “virtual” routers rather than
physical ones. We provide you with code for a simple network simulator that models

1Because of the particular configuration of the CS department’s network, if you would like to
use any of the lab machines remotely, you must first log into a CS departmental gateway such as
newgate.cs.ucl.ac.uk by ssh, then from there log into one of the lab machines using ssh again.

1



a set of routers connected together by a set of links. That is, the simulator reads a
configuration file that describes a network topology, and it then simulates that network
by running one copy of your routing code on each router, and passing packets between
routers over the links listed in the configuration file.

In this coursework, there is a rigidly defined interface for the router’s code. In the
simulator’s configuration file, you specify not only the network topology, but the name
of the compiled Java module for the router code you would like to run on each router
in the network. In this way, you can actually mix different router implementations in a
single simulated network!

We have provided you with a skeleton of the code for a distance-vector router, found
in the file DV.java. You should implement your solution to the coursework by filling in
the missing parts of this file. Do not change any of the constants that we’ve pre-defined
in that file—they must be left as-is for the simulator to work properly. The skeleton
adheres to the RoutingAlgorithm interface to the distance-vector router, which you
must not change; any changes to the router’s API will similarly cause the simulator not
to work correctly! The skeleton code compiles, but all methods in it return dummy or
null return values. To build your solution, you must implement the following in the file
DV.java:

� the correct and complete bodies of the functions that are incomplete (return dummy
or null return values) in the version of DV.java we’ve given you

� all methods in DVRoutingTableEntry, a class that implements the
RoutingTableEntry interface found in RoutingTableEntry.java

Note that you should not modify any files in the coursework apart from DV.java

and the configuration files for the simulator, described below. That is, all the code you
write will go in DV.java.

The Java code we’ve given you is fully documented in Javadoc; to prepare the docu-
mentation, just type make javadoc in the directory containing your coursework files,
and you will find the documentation for the code we’ve given you in a newly created
docs subdirectory.

We have given you a Makefile (found in the set of files for the coursework) to
help automate the compiling and running of your routing code and the simulator. A full
description of the make utility is beyond the scope of this coursework. For the purposes
of this coursework, all you you need to know about compiling and running your code
is:

� Don’t modify the Makefile.

� To compile your routing code in DV.java into the compiled Java module DV.class,
just type

make

in the same directory where the Makefile and all the source files are located.

� To run tests of your routing protocol implementation, after you’ve compiled your
router’s code with make as above, just type

java Simulator config.cfg

2



where config.cfg can be the name of any simulator configuration file (whose
format we describe below).

� To see brief help on what functions the Makefile lets you automate, type:

make help

Simulator Configuration File

Each time you run the simulator, it reads a configuration file that describes the particular
network topology it should simulate, and any actions to take during the simulation (and
when to take them), such as “take this link down after 15 seconds,” “print out the
routing table of this router after 32 seconds,” &c., as described further below.

Consider the following simple example configuration file:

updateInt 10

preverse off

expire off

router 0 2 DVsolution

router 1 2 DVsolution

router 2 2 DVsolution

link 0.0.1 1.0.1

link 1.1.1 2.0.1

link 2.1.1 0.1.1

send 10 0 1

downlink 10 1.1 2.0

uplink 12 1.1 2.0

dumpPacketStats 14 all

dumprt 14 all

stop 100

The first three non-empty lines of the above configuration file specify that all routers
in the network should send DV protocol updates every 10 seconds, that split horizon
with poison-reverse should be disabled at all routers, and that timeout-based expiration
of routing table entries should also be disabled at all routers.

Thereafter, the configuration file describes a scenario involving three simulated routers
with addresses 0, 1, and 2, arranged in a ring. 10 seconds into the simulation, router 0
originates a data packet (to be forwarded by the routers in the network) with destination
address 1. Also 10 seconds into the simulation, the link between router 1 and router 2
goes down. This link comes back up 12 seconds into the simulation.

3



All routers dump summary statistics of how many packets they’ve sent, received,
dropped, and forwarded after 14 seconds, and dump their routing tables after 14 sec-
onds.

The simulation runs for 100 seconds.
Router IDs are simple integers, as are interface IDs on routers.
Now, let’s fully define the syntax of lines in the configuration file. The routing algo-

rithm update interval is declared as follows:

updateInt u

where u is the interval between DV protocol updates for all routers defined thereafter
in the configuration file. If updateInt is not declared in the configuration file, then all
routers use a default update interval of 1 second.

One may also enable or disable specific DV protocol optimisations at all routers.
Enable or disable split horizon with poison-reverse as follows:

preverse on | off

where on or off specifies whether or not the routing algorithm deployed on each router
incorporates split horizon with poison reverse.

Similarly, one may enable or disable timeout-based expiration of table entries as
follows:

expire on | off

where on or off specifies whether or not the routing algorithm deployed on each router
should expire routing entries in its routing table based on a timeout interval.

A router is declared as follows:

router id n classname u

where id is the integer ID of this router, n is the number of interfaces for the router,
classname is the name of the compiled Java module that should be used for the routing
software for this router.

A link is a connection between two routers. Links also have a metric in each direction
(configured in real routers by the system administrator). Links are declared as follows:

link r1id.r1if.r1w r2id.r2if.r2w [up | down]

where r1id is the integer ID of the router at one link endpoint, r1if is the interface ID
to which the link connects on r1id, r1w is the metric incurred by packets sent by r1 on
the link, and all the r2* fields have the same meanings for the router at the other link
endpoint. The last field in the link line is optional. If supplied, it defines the initial
state of the link in the simulation as either up or down.

You control the length of the simulation with:

stop time

4



where time is the number of seconds to run the simulation (the clock starts at zero
seconds).

To allow you to observe how packets are routed in the network, the simulator allows
injecting data packets from a particular source to a particular destination. You can do
so with:

send time origin destination

where time is the number of seconds into the simulation to originate the packet, origin
is the ID of the router to send the packet, and destination is the destination ID to put
into the packet.

To see how the routing system behaves when links go down and come back up, the
simulator supports taking links down and up at specified times. To take a link down,
use:

downlink time router1.interface1 router2.interface2

where time is the time to break the link, router1 and interface1 are the router ID and
interface ID of one end of the link, and router2 and interface2 are the router ID and
interface ID of the other end of the link. Note that the first router specified should be
the one with the smaller router ID.

Similarly, you can bring a link up with:

uplink time router1.interface1 router2.interface2

where the parameters are the same as those for downlink.
Finally, the simulator supports two commands to let you inspect the internal state

of routers at a specified point in time. To see how many packets have been sent (s),
received (r), dropped (d), and forwarded (f) by a router, use:

dumpPacketStats time router|all

where time states when you’d like packet statistics, and either router specifies the ID of
a single router where you’d like packet statistics, or all specifies that you’d like packet
statistics from all routers.

To see a router’s routing table, use:

dumprt time router|all

where the parameters are the same as those for dumpPacketStats. (Note that the
function that outputs a router’s current routing table is unimplemented in the initial
code we’ve given you. You must implement this functionality; we define the format in
which you must output routing tables in the next section.)

dumprt and dumpPacketStats will be very useful to you in debugging your
router—if your router doesn’t behave as you expect it to, you can add these commands
to a simulator configuration file to view the routing tables and packet statistics at any
step in time you like.

5



Completing the Coursework

The first step in getting started with the coursework is to make yourself a copy of the
files we give you to start from. To do so, while in some directory under your home
directory while logged into a CS lab machine, execute the following command:

tar vzxf �ucacbnk/gz01-2011/cw4.tar.gz

You will then find a new directory gz01-cw4 in your current directory, which contains
all the coursework files.

When we mark your coursework, we will use a series of tests for your router. In
each test, we will run the simulator with your routing code on every router, using a
configuration file with a test network topology.

There are several topologies on which we’ll test your router. We’ve given you five
of them: these are in the simulator configuration files named test1.cfg through
test5.cfg. We describe these test cases in more detail further below. There are addi-
tional test cases with which we’ll test your router, too, known only to the course staff.
We hold these in reserve until marking time so that you have an incentive to make sure
your router truly works correctly for all topologies, rather than trying to “target” your
implementation to the five tests we’ve given you.

There are three stages in which you should complete this coursework. In each stage,
there is functionality you must implement, and the functionality is cumulative across the
three stages.

Stage 1: Baseline DV

In this stage, you must implement a baseline DV routing algorithm. No separate design
document is required, but you must comment your code thoroughly, to fully explain
how it works.

The first two tests, test1.cfg and test2.cfg, check the correctness of your base-
line DV router implementation. They therefore disable split horizon with poison-reverse
and timeout-based table entry expiration. Leave these two features disabled in these two
tests’ configuration files! You will be marked based on your router’s behaviour on these
two tests with these two features disabled.

Stage 2: Add Split Horizon with Poison-Reverse

In this stage, you must add split horizon with poison-reverse (SH/PR) to improve the
convergence behaviour of your DV routing implementation. We’ve given you two test
cases, test3.cfg and test4.cfg, that have preverse set to on. That’s the con-
figuration in which we will use these two tests when marking your submission, but the
first part of this stage is to explore how your baseline router without SH/PR behaves on
these topologies.

Written question (answer to be turned in): Without SH/PR enabled, run
test3.cfg and test4.cfg. Consider the link failures that occur dur-
ing these simulations. When links fail, what routing pathologies, if any, do
you observe in each of these two test configurations when DV does not use
SH/PR?

6



Now implement SH/PR. Note that you will need to enable or disable SH/PR in your
router in accordance with the setting of the preverse flag in the configuration file.
The code we’ve given you reads that statement from the configuration file already; read
the Javadoc documentation to see which variables to access in the DV implementation
to obtain the value of this flag. (When testing your SH/PR implementation, be sure the
preverse flag is on! And similarly, if you want to run without SH/PR after implement-
ing them, be sure to turn this flag off.)

Written question (answer to be turned in): Now with SH/PR enabled,
examine the behaviour of your DV implementation on test3.cfg and
test4.cfg. For each of the two tests, does SH/PR prevent each pathology
you previously observed? Explain why or why not.

(The submission instructions later in this document describe how to submit your
answers to these questions with your code.)

Stage 3: Add Expiration of Stale Table Entries

In this stage, you must enhance your DV implementation further to expire routing table
entries as necessary. Note that the DV algorithm described in lecture allows routing table
entries to persist indefinitely. But if a destination goes down and stays down, routers
do not need to maintain routing table entries for that destination. In fact, deleting
such entries from routing tables will reduce the size of subsequently exchanged routing
messages. You will need to enforce a deadline after which stale entries for unreachable
destinations should be removed from the routing table. We require that you remove
stale entries in accordance with the timeout policy specified in rfc2453 (which you will
find a very useful reference). The RFC expresses when an entry should be removed as
a function of u, the update interval. Note that part of the mechanism specified in the
RFC handles the loss of routing update packets. Your simulator, however, never drops
routing update packets, so you do not need to incorporate mechanisms for dealing with
such losses. Finally, note that expiration of entries for unreachable destinations helps
reduce the size of the routing table and subsequent announcements, but doesn’t hasten
convergence.

test5.cfg tests for the removal of stale routing table entries. This test enables
both SH/PR and stale table entry expiration—the configuration in which we will test
your code on test5.cfg during marking.

Further Tips on Implementation and Testing

To facilitate automated testing of your router, you must adhere to the following format
when you implement the dumprt command:

� Output, on one line:

Router n

where you replace n with the integer address of the router.

� For each destination in the router’s routing table, print out one line, in the format:

7



d destid i intid m metric

where you replace destid with the integer address that is the destination for this
entry, intid with the integer interface ID for this entry, and metric with the integer
metric for this entry.

Your router should not output any text other than the above as part of its dumprt
output. We use automated scripts to test your router’s behaviour, and these scripts rely
on your strict adherence to the above output format.

You will be marked on whether you pass the five public router tests and course staff’s
private router tests, and on the clarity of your design and comments.

To help you check whether you’ve implemented your router correctly, we’ve also
given you a correct and complete solution to the coursework that implements the re-
quirements of all three above stages. Obviously, we cannot give you the solution in
source-code form, nor in Java .class file form, which is fairly easily reverse-engineerable
to source code. Thus, we’ve given you a specially prepared compiled version of the
solution that you can run, but whose code you cannot see.

IMPORTANT: For the model solution for the DV router to work correctly,
you must execute the following command while in the directory containing
all your coursework files:

LD LIBRARY PATH=�pwd� if your shell is bash, or
setenv LD LIBRARY PATH �pwd� if your shell is csh or tcsh

N.B. that in the above text, the single-quote marks are backquotes, not apos-
trophes. If you encounter error messages about shared libraries when you
attempt to run the simulator, you are almost certainly incorrectly using apos-
trophes, when backquotes are what is called for. (The difference is in which
way the mark slants; a backquote goes from upper-left to lower right.)

To prepare the model solution, type the command:

make gcj

Note that you only need do so once.
To run the model solution, do the following:

� Make sure you’ve set the LD LIBRARY PATH variable in your shell as explained
above.

� Edit the configuration file you would like to try with the model solution. In the
configuration file, on each router line, change the name of the Java module to
run for that router to be DVsolution rather than DV.

� Type the command:

./Simulator config.cfg

where config.cfg is the configuration file you would like to run.

8



To see how a correct DV implementation should behave (with and without SH/PR
and/or expiring routing table entries, based on how you set these flags in the simulator
configuration files), you can run the tests with the model solution. You can even try
to run tests where some of the routers run the solution and some run your code, by
setting routers’ Java module name strings in the simulator configuration file accordingly.
Note that you must run the simulator with ./Simulator if you want to use the model
solution on any routers; the model solution cannot be used on any router when you run
the simulator with java Simulator.

Marking Scheme

Out of 100 marks in total for the coursework, we will allocate marks as follows:

� passing test1.cfg: 10 marks

� passing test2.cfg: 15 marks

� passing test3.cfg: 15 marks

� passing test4.cfg: 15 marks

� passing test5.cfg: 15 marks

� passing two unseen tests: 15 marks

� coding style and comment clarity and completeness: 15 marks

Testing Your Code

You can use make to run the tests. Do so by typing:

make test1

make test2

make test3

make test4

make test5

to run each of the tests in the five test simulator configuration files, respectively. These
make commands will store the output of the simulator in files named testNOutput.txt,
where N is the number of the test in question.

What to Turn In, and How

Submission of CW4 is electronic using the CW4 page on the 3035/GZ01 Moodle web
site. You must turn in all the following files electronically:

� A single Java source code file, DV.java, containing your full implementations of
both class DV and class DVRoutingTableEntry.

9



� Five test output files, testOutput1.txt, testOutput2.txt, testOutput3.txt,
testOutput4.txt and testOutput5.txt. These should be generated using
the make commands described above.

� A text file named answer.txt containing your answers to the two questions in
Stage 2.

As submission is purely electronic, you do not need to turn in a hardcopy coursework
cover sheet for this coursework.

Lateness Policy

If you submit this coursework after the deadline (as indicated by the timestamp of your
submission, going by the Moodle web server’s clock), you may apply any of your re-
maining late days for GZ01 to the submission; please state clearly in a comment at the
top of your DV.java file how many late days you would like to use, if any. After any
late days have been applied, 10% will be deducted from your mark for every remain-
ing day late (or fraction thereof). (Please refer to the full late coursework policy on the
3035/GZ01 web site.)

Academic Honesty

You are permitted to discuss the concepts of distance-vector routing (that is, the lectures’
and assigned readings’ content) with your classmates, and to discuss debugging strategies
with one another, but you are not permitted to show your code to any other student, in
whole or in part, nor are you permitted to contribute any lines of code to any other
student’s solution. As one always does in an academic setting, you must acknowledge
the work of others explicitly. In this case, that means that if a classmate discussed
distance-vector routing with you, or helped you strategize on how to debug your code,
you must state the identity of that classmate in what you hand in, and describe how they
contributed to your work (clearly indicated in a comment at the top of your Java source
code file DV.java).

All code that you submit must be written entirely by you alone.

We use sophisticated copying detection software that exhaustively compares code
submitted by all students from this year’s class and past years’ classes, and produces
color-coded copies of students’ submissions, showing exactly which parts of pairs of
submissions are highly similar. Do not copy code from anyone, either in the current
year, or from a past year of the class. You will be caught, just as students have been
caught in years past.

Copying of code from student to student is a serious infraction; it will result in
automatic awarding of zero marks to all students involved, and is viewed by the UCL
administration as cheating under the regulations concerning Examination Irregularities
(normally resulting in exclusion from all further examinations at UCL). You have been
warned!

10



Questions and Course Mailing List

If you have questions about the coursework, please don’t hesitate to visit us during
office hours, or to ask questions by email. When asking questions by email, please
use gz01-staff@cs.ucl.ac.uk, which will reach all of the teaching staff and thus
increase the chance that you receive a reply quickly from someone, even if some of the
teaching staff are not immediately available.

As always, please monitor the 3035/GZ01 Moodle forum. Any announcements (e.g.,
helpful tips on how to work around unexpected problems encountered by others) will
be posted to the forum.

11


