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Motivating Examples

Vast wireless network of mobile temperature sensors, floating on
the ocean’s surface: Sensor Networks

Metropolitan-area network comprised of customer-owned and
-operated radios: Rooftop Networks
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Scalability through Geography

How should we build networks with a mix of these characteristics?

� Mobility

� Scale (number of nodes)

� Lack of static hierarchical structure

Use geography in system design to achieve scalability. Examples:

� Greedy Perimeter Stateless Routing (GPSR): scalable
geographic routing for mobile networks [Karp and Kung, 2000]

� GRID Location Service (GLS): a scalable location database for
mobile networks [Li et al., 2000]

� Geography-Informed Energy Conservation [Xu et al., 2001]
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GPSR: Greedy Forwarding

Nodes learn immediate neighbors’ positions through
beacons/piggybacking on data packets: only state required!

Locally optimal, greedy forwarding choice at a node:

Forward to the neighbor geographically closest to the
destination
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D
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Greedy Forwarding Failure: Voids

When the intersection of a node’s circular radio range and the
circle about the destination on which the node sits is empty of
nodes, greedy forwarding is impossible

Such a region is a void:
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Node Density and Voids
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The probability that a void region occurs along a route increases as
nodes become more sparse
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GPSR: Perimeter Mode for Void Traversal

D

x
Traverse face closer to D along xD by right-hand rule, until reaching
the edge that crosses xD

Repeat with the next closer face along xD, &c.

Forward greedily where possible, in perimeter mode where not
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Challenge: Sparse Networks

Greedy forwarding approximates shortest paths closely on dense
networks

Perimeter-mode forwarding detours around planar faces; not
shortest-path

Greedy forwarding clearly robust against packet looping under
mobility

Perimeter-mode forwarding less robust against packet looping on
mobile networks; faces change dynamically

Perimeter mode really a recovery technique for greedy forwarding
failure; greedy forwarding has more desirable properties

How does GPSR perform on sparser networks, where perimeter
mode is used most often?
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Simulation Environment

ns-2 with wireless extensions [Broch et al., 1998]: full 802.11 MAC,
physical propagation; allows comparison of results

Topologies and Workloads:

Nodes Region Density CBR Flows

50 1500 m � 300 m 1 node / 9000 m2 30

200 3000 m � 600 m 1 node / 9000 m2 30

50 1340 m � 1340 m 1 node / 35912 m2 30

Simulation Parameters:

Pause Time: 0, 30, 60, 120 s Motion Rate: [1, 20] m/s

GPSR Beacon Interval: 1.5 s Data Packet Size: 64 bytes

CBR Flow Rate: 2 Kbps Simulation Length: 900 s
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Packet Delivery Success Rate (50, 200; Dense)
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Packet Delivery Success Rate (50; Sparse)
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Path Length (50; Dense)
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Path Length (50 nodes, Sparse)
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Network Graph Planarization

Relative Neighborhood Graph (RNG) [Toussaint, ’80] and Gabriel
Graph (GG) [Gabriel, ’69] are long-known planar graphs

Assume an edge exists between any pair of nodes separated by
less than a threshold distance (i.e., the nominal radio range)

RNG and GG can be constructed using only neighbors’ positions,
and both contain the Euclidean MST!
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Planarized Graphs: Example

200 nodes, placed uniformly at random on a 2000-by-2000-meter
region; radio range 250 meters

Full Network GG Subgraph RNG Subgraph
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Challenge: Radio-Opaque Obstacles and
Planarization

Obstacles violate assumption that neighbors determined purely by
distance:

Full Network GG and RNG Subgraph

In presence of obstacles, planarization can disconnect
destinations!
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Coping with Obstacles

Eliminate edges only in presence of mutual witnesses; edge
endpoints must agree

Full Graph Mutual GG Mutual RNG

Prevents disconnection, but doesn’t planarize completely

Forward through a randomly chosen partner node (location)

Compensate for variable path loss with variable transmit power
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Traffic Concentration Demands Provisioning
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If we assume uniform traffic distribution, flows tend to cross the
center of the network

All link capacities symmetric!
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Geographic Network Provisioning
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In a dense wireless network, position is correlated with capacity

Symmetric link capacity and dense connectivity

Route congested flows’ packets through a randomly chosen point
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Conclusions

On sparse networks, GPSR delivers packets robustly, most of
which take paths of near-shortest length

Non-uniform radio ranges complicate planarization; variable-power
radios and random-partner proxying may help

Geographically routed wireless networks support a new,
geographic family of traffic engineering strategies, that leverage
spatial reuse to alleviate congestion

Use of geographic information offers diverse scaling benefits in
pervasive network systems
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