
UCL CS 6007/GC15/GA07 Brad Karp

Coursework 2: Distance-Vector Routing
Due date: 12 noon, 28th March, 2008

In this coursework, you will write distance-vector routing code for a simple router.
The coursework is worth a total of 100 marks, and represents 20 percent of your final
grade for 6007/GC15/GA07.

The most valuable reference for you to use while working on this coursework is
the set of lecture notes for the 6007/GC15/GA07 lecture on distance-vector routing.
Those slides contain a complete statement of the distance-vector routing algorithm in
pseudocode, and many examples of how the algorithm behaves on a variety of network
topologies. Note that we expect you to implement the algorithm as presented in the
lecture notes: including setting of the appropriate routing table entries’ metrics to a
reserved INFINITY value when a link goes down. Note that you are not to implement
“advanced” features of DV routing, such as poison-reverse, split horizon, or triggered
updates.

You must write your routing code in Java; the network simulator code we give you
as a starting point for the coursework is written in Java.

All programming for this coursework must be done under Linux on the CS depart-
ment’s lab machines. We have ensured that the code we give you to use as a starting
point works correctly on these lab machines. Note that these machines are accessible
over the Internet, so you may work on the coursework either from home or in the labs.
The Linux lab machines are those with the following hostnames, all of which end in
cs.ucl.ac.uk:

achebe akutagawa alcott alkali aquinas atwood austen bellow boell

bronte calvini carey cervantes choukri cocteau collins cowper dahl

dumas eco faulkner flaubert fontane gibbon gogol golding grass hardy

heine hesse kahiga kerouac levi mahfouz nabokov okri proust pushkin

sands seishonagon steinbeck swift tanizaki amritsar bhopal bhuj

calcutta darjeeling delhi dwarka indore mumbai mysore patiala patna

raipur madurai lucknow jhansi jaipur pune karwar

Because of the particular configuration of the CS department’s network, if you would
like to use any of the lab machines remotely, you must first log into aldgate.cs.ucl.ac.uk
by ssh, and from there, use the rlogin command to log into one of the above lab ma-
chines.

If you do not yet have an account on the CS lab machines, you are entitled to one as
a student in this module. To get an account, visit the technical support office on the 4th
floor of the CS department building, MPEB.

A Simple Network Simulator

A router isn’t much good unless it’s connected to other routers by links. If you were writ-
ing routing protocol software for a real, physical IP router, you could test the software
by connecting several routers into a network topology, running your routing software

1



on each of them, and observing whether users’ data packets reach their destinations
successfully.

Because it’s not feasible for you to build a physical multi-router network to test
your routing code, we’ll do the next-best thing: we’ll use “virtual” routers rather than
physical ones. We provide you with code for a simple network simulator that models
a set of routers connected together by a set of links. That is, the simulator reads a
configuration file that describes a network topology, and it then simulates that network
by running one copy of your routing code on each router, and passing packets between
routers over the links listed in the configuration file.

In this coursework, there is a rigidly defined interface for the router’s code. In the
simulator’s configuration file, you specify not only the network topology, but the name
of the compiled Java module for the router code you would like to run on each router
in the network. In this way, you can actually mix different router implementations in a
single simulated network!

We have provided you with a skeleton of the code for a distance-vector router, found
in the file DV.java. You should implement your solution to the coursework by filling in
the missing parts of this file. Do not change any of the constants that we’ve pre-defined
in that file—they must be left as-is for the simulator to work properly. The skeleton
adheres to the RoutingAlgorithm interface to the distance-vector router, which you
must not change; any changes to the router’s API will similarly cause the simulator not
to work correctly! The skeleton code compiles, but all methods in it return dummy or
null return values. To build your solution, you must implement the following in the file
DV.java:

� the correct and complete bodies of the functions that are incomplete (return dummy
or null return values) in the version of DV.java we’ve given you

� a routing table entry class that implements the RoutingTableEntry interface
found in RoutingTableEntry.java

Note that you should not modify any files in the coursework apart from DV.java

and the configuration files for the simulator, described below. That is, all the code you
write will go in DV.java.

The Java code we’ve given you is fully documented in Javadoc; to prepare the docu-
mentation, just type make javadoc in the directory containing your coursework files,
and you will find the documentation for the code we’ve given you in a newly created
docs subdirectory.

We have given you a Makefile (found in the set of files for the coursework) to
help automate the compiling and running of your routing code and the simulator. A full
description of the make utility is beyond the scope of this coursework. For the purposes
of this coursework, all you you need to know about compiling and running your code
is:

� Don’t modify the Makefile.

� To compile your routing code in DV.java into the compiled Java module DV.class,
just type

make

2



in the same directory where the Makefile and all the source files are located.

� To run tests of your routing protocol implementation, after you’ve compiled your
router’s code with make as above, just type

java Simulator config.cfg

where config.cfg can be the name of any simulator configuration file (whose
format we describe below).

� To see brief help on what functions the Makefile lets you automate, type:

make help

Simulator Configuration File

Each time you run the simulator, it reads a configuration file that describes the particular
network topology it should simulate, and any actions to take during the simulation (and
when to take them), such as “take this link down after 15 seconds,” “print out the
routing table of this router after 32 seconds,” &c., as described further below.

Consider the following simple example configuration file:

router 0 2 DVsolution 10

router 1 2 DVsolution 10

router 2 2 DVsolution 10

link 0.0.1 1.0.1

link 1.1.1 2.0.1

link 2.1.1 0.1.1

send 10 0 1

downlink 10 1.1 2.0

uplink 12 1.1 2.0

dumpPacketStats 14 all

dumprt 14 all

stop 100

The above configuration file describes of three routers, with addresses 0, 1, and 2,
arranged in a ring. Routers 0, 1, and 2 send DV protocol updates every 10 seconds. 10
seconds into the simulation, router 0 originates a data packet (to be forwarded by the
routers in the network) with destination address 1. Also 10 seconds into the simulation,
the link between router 1 and router 2 goes down. This link comes back up 12 seconds
into the simulation.

All routers dump summary statistics of how many packets they’ve sent, received,
dropped, and forwarded after 14 seconds, and dump their routing tables after 14 sec-
onds.

3



The simulation runs for 100 seconds.
Router IDs are simple integers, as are interface IDs on routers.
Now, let’s fully define the syntax of lines in the configuration file. A router is declared

as follows:

router id n classname u

where id is the integer ID of this router, n is the number of interfaces for the router,
classname is the name of the compiled Java module that should be used for the routing
software for this router, and u is the update interval between updates generated by this
router.

A link is a connection between two routers. Links also have a metric in each direction
(configured in real routers by the system administrator). Links are declared as follows:

link r1id.r1if.r1w r2id.r2if.r2w [up | down]

where r1id is the integer ID of the router at one link endpoint, r1if is the interface ID
to which the link connects on r1id, r1w is the metric incurred by packets sent by r1 on
the link, and all the r2* fields have the same meanings for the router at the other link
endpoint. The last field in the link line is optional. If supplied, it defines the initial
state of the link in the simulation as either up or down.

You control the length of the simulation with:

stop time

where time is the number of seconds to run the simulation (the clock starts at zero
seconds).

To observe what routes are used in the network, there must be a way of injecting
data packets from a particular source to a particular destination. You can do so with:

send time origin destination

where time is the number of seconds into the simulation to originate the packet,
origin is the ID of the router to send the packet, and destination is the destination ID to
put into the packet.

To see how the routing system behaves when links go down and come back up, the
simulator supports taking links down and up at specified times. To take a link, down,
use:

downlink time router1.interface1 router2.interface2

where time is the time to break the link, router1 and interface1 are the router ID and
interface ID of one end of the link, and router2 and interface2 are the router ID and
interface ID of the other end of the link.

Similarly, you can bring a link up with:

uplink time router1.interface1 router2.interface2

where the parameters are the same as those for downlink.
Finally, the simulator supports two commands to let you inspect the internal state

of routers at a specified point in time. To see how many packets have been sent (s),
received (r), dropped (d), and forwarded (f) by a router, use:

4



dumpPacketStats time router|all

where time states when you’d like packet statistics, and either router specifies the
ID of a single router where you’d like packet statistics, or all specifies that you’d like
packet statistics from all routers.

To see a router’s routing table, use:

dumprt time router|all

where the parameters are the same as those for dumpPacketStats.
Note that dumprt and dumpPacketStats are very useful to you in debugging your

router—if your router doesn’t behave as you expect it to, you can add these commands
to a simulator configuration file to view the routing tables and packet statistics at any
step in time you like.

Completing the Coursework

The first step in getting started with the coursework is to make yourself a copy of the
files we give you to start from. To do so, while in some directory under your home
directory while logged into a CS lab machine, execute the following command:

tar vzxf �ucacbnk/gc15-2008/cw2.tar.gz

You will then find a new directory gc15-cw2 in your current directory, which contains
all the coursework files.

To complete the coursework, you must implement a correct DV router. No separate
design document is required, but you must comment your code thoroughly, to fully
explain how it works.

When we mark your coursework, we will use a series of tests for your router. In
each test, we will run the simulator with your routing code on every router, using a
configuration file with a test network topology.

To facilitate automated testing of your router, you must adhere to the following
format when you implement the dumprt command:

� Output, on one line:

Router n

where you replace n with the integer address of the router.

� For each destination in the router’s routing table, print out one line, in the format:

d destid i intid m metric

where you replace destid with the integer address that is the destination for this
entry, intid with the integer interface ID for this entry, and metric is the integer
metric for this entry.

5



Your router should not output any text other than the above as part of its dumprt
output.

There are several topologies on which we’ll test your router. We’ve given you three
of them: these are in the simulator configuration files named test1.cfg through
test3.cfg. The remaining topologies on which we’ll test your router are known only
to the course staff; we hold these in reserve until marking time so that you have an
incentive to make sure your router truly works correctly for all topologies, rather than
trying to “target” your implementation to the three tests we’ve given you.

You will be marked on whether you pass the three public router tests and course
staff’s private router tests, and on the clarity of your design and comments.

To help you further in deciding if you’ve implemented your router correctly, we’ve
also given you a complete and correctly functioning solution to the coursework. Obvi-
ously, we cannot give you the solution in source-code form, nor in Java .class file form,
which is fairly easily reverse-engineerable to source code. Thus, we’ve given you a spe-
cially prepared compiled version of the solution, that you can run, but whose code you
cannot see.

IMPORTANT: For the model solution for the DV router to work correctly,
you must execute the following command while in the directory containing
all your coursework files:

LD LIBRARY PATH=�pwd� if your shell is bash, or
setenv LD LIBRARY PATH �pwd� if your shell is csh or tcsh

N.B. that in the above text, the single-quote marks are backquotes, not apos-
trophes. If you encounter error messages about shared libraries when you
attempt to run the simulator, you are almost certainly incorrectly using apos-
trophes, when backquotes are what is called for. (The difference is in which
way the mark slants; a backquote goes from upper-left to lower right.)

To prepare the model solution, type the command:

make gcj

Note that you only need do so once.
To run the model solution, do the following:

� Make sure you’ve set the LD LIBRARY PATH variable in your shell as explained
above.

� Edit the configuration file you would like to try with the model solution. In the
configuration file, on each router line, change the name of the Java module to
run for that router to be DVsolution rather than DV.

� Type the command:

./Simulator config.cfg

where config.cfg is the configuration file you would like to run.

6



If you run the three tests with the solution code, you will be able to see exactly how a
correct router implementation should behave. (You can even try to run tests where some
of the routers run the solution and some run your code, by setting the router Java module
name strings in the simulator configuration file accordingly.) Note that you must run the
simulator with ./Simulator if you want to use the model solution on any routers; the
model solution cannot be used on any router when you run the simulator with java

Simulator.
Good luck!

Marking Scheme

Out of 100 marks in total for the coursework, we will allocate marks as follows:

� passing test1.cfg: 10 marks

� passing test2.cfg: 15 marks

� passing test3.cfg: 20 marks

� unseen tests: 30 marks

� coding style and comment clarity and completeness: 25 marks

Testing Your Code

You can use make to run the tests. Do so by typing:

make test1

make test2

make test3

to run each of the tests in the three test simulator configuration files, respectively.
These make commands will store the output of the simulator in files named testNOutput.txt,
where N is the number of the test in question.

What to Turn In, and How

To receive full marks for this coursework, you must turn in all the following files:

� A single Java source code file, DV.java, containing your full implementations of
both class DV and class DVRoutingTableEntry.

� Three test output files, testOutput1.txt, testOutput2.txt, and testOutput3.txt.
These should be generated using the make commands described above.

After the above files are ready to hand in, you are to submit them electronically. To
do so, you will use the standard CS department handin utility, as follows:

7



1. Log into a CS department lab machine.

2. Change to the directory where your completed coursework files are located.

3. Run the command handin.

4. When prompted for the course module code, enter 6007, gc15, or ga07, depend-
ing on which module you are enrolled in.

5. When prompted for the coursework code, enter cw2.

6. When prompted for the filenames to submit, enter only the exact four filenames
listed above.

7. You will be given the opportunity to verify that the filenames you’ve entered are
correct; if so, confirm your choice to complete submission.

If you submit the wrong files or omit any of them, you may run handin more than
once; the course staff will receive one timestamped copy of your files for each time you
run handin. Note that we will always mark the last submission you make with the
handin program before the coursework deadline.

Note that no hardcopy submission of this coursework is required.

Lateness Policy

You will be marked down 10 percent of the total 100 marks for every 24-hour period or
part thereof you submit this coursework late, including weekends. That is, if you submit
one hour past the deadline or 23 hours past the deadline, the maximum marks you can
receive will be 90. If you submit 28 hours after the deadline, the maximum marks you
can receive will be 80, and so on.

These lateness deductions will be made after marking your coursework. So if you’re
one day late, e.g., you’d need to submit a perfect coursework to receive 90 marks.

Academic Honesty

You are permitted to discuss your code with your classmates, and to help one another
debug. As one always does in an academic setting, you must acknowledge the work of
others explicitly. In this case, that means that if a classmate discussed your code with
you, you must state the identity of that classmate in what you hand in, and describe how
they contributed to your work (clearly indicated in a comment at the top of your Java
source code file DV.java).

All code that you submit must be written entirely by you alone.

Copying of code from student to student is a serious infraction; it will result in
automatic awarding of zero marks to all students involved, and is viewed by the UCL
administration as cheating under the regulations concerning Examination Irregularities
(normally resulting in exclusion from all further examinations at UCL). The course staff
use extremely accurate plagiarism detection software to compare code submitted by all

8



students and identify instances of copying of code; this software sees through attempted
obfuscations such as renaming of variables and reformatting, and compares the actual
parse trees of the code. Rest assured that it is far more work to modify someone else’s
code to evade the plagiarism detector than to write code for the assignment yourself!

Questions and Course Mailing List

If you have questions about the coursework, please don’t hesitate to ask them by email.
Please direct your questions to Alan Medlar, the demonstrator for this coursework,
at a.medlar at cs.ucl.ac.uk, and cc these emails to Brad Karp, at bkarp at

cs.ucl.ac.uk.
Please monitor the course mailing lists, f6007,gc15g@cs.ucl.ac.uk, during the

period between now and the due date for the coursework. Any announcements (e.g.,
helpful tips on how to work around unexpected problems encountered by others) will
be sent to the lists.

9


