
Execution Integrity without Implicit Trust of System Software

Ahmed Awad and Brad Karp
University College London (UCL)

Abstract
When trusted application code in a TEE computes over re-
sults produced by an untrusted kernel and hypervisor [1, 2],
it is difficult at best to reason about the secrecy and integrity
properties achieved by the overall ensemble—to establish, de-
spite the wide breadth of the Linux system call interface, that
in-enclave code is immune to Iago attacks [3]. In this paper,
we argue that an attractive use case for TEEs is tamper-proof
audit: the TEE executes a trusted observer (TO) that allows
efficient offline validation that application code running out-
side the TEE has executed as expected. We describe a TO
design that inherently does not require any trust of system
call results (and thus of the kernel or hypervisor), and DOG,
a prototype TO implementation for Intel SGX that upholds
application execution integrity, even for applications that do
not fit within today’s SGX virtual memory limits, and incurs
modest execution overhead.

1 Introduction
The advent of Trusted Execution Environments (TEEs), such
as Intel SGX, has spurred the exploration of how to deploy
application code on a server in an untrusted environment (such
as at a cloud provider). In these scenarios, typically the user
deploying the application does not trust the operating system
or hypervisor on the machine where the application code
will run, yet wants secrecy and/or integrity guarantees for the
application’s execution. TEE hardware, typically embedded
within the CPU, provides means for validating the integrity
of application code at launch, and launching the application
into a secure enclave virtual memory region whose contents
are hardware-isolated from all other code executing on the
same machine, including the OS and hypervisor.

Designs for TEE-secured application deployment to date
have tended to place the application (in whole or in part) in
an enclave [1, 2]. In this approach, the deploying user trusts
all code within the enclave, and desires not to trust any of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SysTEX ’19, October 27, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6888-9/19/10. . . $15.00
https://doi.org/10.1145/3342559.3365337

OS or hypervisor code.1 Two difficulties arise when applying
TEEs in this way.

First, it is difficult to know in practice whether application
code that consumes results from untrusted code (e.g., sys-
tem call return values, as determined by the untrusted kernel
and hypervisor) will produce correct results. Checkoway and
Shacham catalog a broad range of Iago attacks that untrusted
kernels can mount on trusted application code running above
them; avenues of attack include system calls that manipulate
virtual memory, conduct I/O, and provide access to hardware-
generated entropy and time [3]. Some of the more tantalizing
uses of TEEs specifically target placing legacy application
code in enclaves [1, 2]. For these designs, it is difficult for the
deploying user to know what assumptions the application’s
original developer made about the correctness of system call
return values. Indeed, the original developer may not have
been conscious of such assumptions. Descriptions of adap-
tations of legacy code to run within SGX enclaves typically
include claims that the SGX deployment’s designers thought
hard about how the application code uses system calls, or
even about the semantics of the system call APIs available
to the application, and added trusted shielding code to vali-
date OS system call return values [1, 2], but these assurances
amount to asking the user to trust that this complex auditing
and shielding activity has been done exhaustively and entirely
accurately.

Second, any limits on the size of an enclave’s virtual mem-
ory constrain application size. For example, current Intel
SGX hardware limits the enclave page cache (EPC) to 93
application-accessible MB [4]. Even if future hardware loosens
this constraint, access to integrity-protected RAM will remain
fundamentally expensive because of the costs of updating
Merkle trees [4].

In this paper, in light of the two above challenges, we re-
consider how most effectively to use a TEE to uphold the
integrity of execution of application code in an untrusted
cloud environment. We observe that a “sweet spot” for the
use of TEEs is the deployment of a trusted observer (TO),
a compact software entity that permits tamper-resistant au-
dit of application code that runs outside the TEE, where an
adversary can tamper with the application’s execution. This
approach abandons secrecy for the deployed application, but
provides robust integrity. In particular, it thwarts Iago attacks
by design because it inherently does not trust the results of
any system call.

1Throughout this paper, we exclude denial-of-service attacks from considera-
tion; TEEs do not prevent the OS or hypervisor from killing or refusing to
schedule a task running within an enclave.

1

https://doi.org/10.1145/3342559.3365337

SysTEX ’19, October 27, 2019, Huntsville, ON, Canada Ahmed Awad and Brad Karp

The high-level intuition underlying this property—and that
makes a TO a good fit for deployment in a TEE—is that TO
code executing in the TEE need only accurately record the
application’s inputs and outputs. As we discuss in Section 2,
prior work shows how to efficiently audit a server’s execution
offline given such a trace [18]. A key technical challenge
unaddressed by prior work is how to obtain this accurate trace
in the cloud setting, where the deployer of the application
does not trust the cloud provider’s infrastructure. To do so,
we interpose a TEE-protected TO between the client and
application. The TO’s system call invocations are almost
exclusively for I/O. Our central insight is that because TLS
integrity-protects client-TO communication, and the TO’s
TLS code executes within the TEE, TLS itself will flag any
Iago attacks that tamper with the TO’s payload-transferring
network I/O system calls, and hence the TO need not trust
the results of these system calls. Moreover, on today’s Intel
SGX platform, placing the application entirely outside the
TEE avoids imposing today’s highly constrained 93 MB EPC
limit on application code and data.

In what follows, we describe the design of a TO for TEEs
that eliminates trust in the system software and allows tamper-
resistant audit of an application’s execution on an untrusted
server; describe DOG, a TO implementation for Intel SGX;
and provide experimental evidence that DOG incurs accept-
able performance overhead on current SGX hardware.

2 Problem and Design
The systems research community has studied how to verify
outsourced (untrusted) executions given knowledge of the
inputs and outputs to/from those executions [11, 18, 20]. At
a very high level, these designs give a verifier a trace of the
outsourced server’s ground-truth inputs and outputs, and a
set of untrusted reports produced by the server, e.g., that
describe non-deterministic events during execution, such as
the interleaving of concurrent threads. The verifier uses these
data to audit whether the ground-truth trace corresponds to a
faithful execution of the outsourced server.

We leverage recent work on Orochi [18], which relies on
record-replay [7–9] of the untrusted server application (SA).
A central challenge in making this approach work in practice
is obtaining the ground-truth input/output trace for the veri-
fier’s use. While Orochi offers various options for producing
this trace (e.g., packet capture or a separate proxy server at an
edge network’s egress link, in settings where all clients are
on a single, trusted edge network), none of these proposals
fits the cloud scenario, where an untrusted server in a data
center serves clients at diverse Internet attachment points,
such that the only “choke point” for traffic to/from the SA is
in that same data center. Naively placing an Orochi trusted
proxy in the same data center avoids backhauling a copy of
all the SA’s communication across the wide area, but that
arrangement would mean co-locating two servers and trusting

one (running an Orochi proxy) but not the other (running
the SA), when both servers process the same potentially ma-
licious input from the wide-area Internet. In the remainder
of this paper, we show how to solve this ground-truth trace
production problem in the cloud setting.2

We introduce a trusted observer (TO) that runs in a Trusted
Execution Environment (TEE) within the untrusted server.
The TO ensures the integrity of the request/response trace
generated for a server application (SA), as Orochi’s verifier
requires a ground-truth trace. Let us first define trace integrity.
A trace consists of a series of entries, each containing either a
client’s request or a server’s response, and numbered with a
monotonically increasing index. At audit time, we consider a
trace’s integrity preserved if the following properties hold:
1. The TO has seen all requests received by the SA and all

responses received by clients up to the moment when the
trace is retrieved for auditing.

2. A client’s request cannot be modified in transit before
the TO records it.

3. Similarly, once the TO has seen a response to a given client,
the response cannot be modified before it reaches the client.

4. When a trace is retrieved for auditing, all entries with in-
dices in the range (i, k] are present in the trace, where i is
the index of the last entry previously audited and k is the
greatest index generated by the TO.

5. Any modification of the entries in the persisted trace will
be detected at audit time.
A separate offline verifier that runs on hardware trusted

by the SA’s deployer uses the trace and knowledge about
the SA to carry out audit.

2.1 Threat Model
We assume an adversary capable of compromising privileged
software (i.e, the OS and hypervisor) executing on the un-
trusted machine, as well as any hardware in the machine other
than the CPU. We further assume that she can present arbi-
trary network packets to the system and can control sources
of randomness other than the RDRAND instruction on modern
Intel SGX CPUs. Finally, we trust the development environ-
ment, compilation toolchain, Intel attestation infrastructure,
and SGX libraries.

Under this threat model, an adversary can mount Iago
attacks [3]. Iago attacks exploit an application’s trust in the
OS’s interface to subvert the application’s execution. For
example, older versions of Apache used the values returned
from getpid and time to seed SSL/TLS’s entropy pool. A
malicious actor who compromised the OS could thus replay

2We inherit two of Orochi’s scope limitations: Orochi only applies to SAs that
do not retrieve values from other servers as part of computing a response to a
request, and it may not always be able to detect tampering with an SA whose
code invokes a function that returns a non-deterministic value. We elide
much of Orochi’s design, particularly of its verifier, as it is unchanged in our
context; we focus only on ground-truth trace generation in the cloud, and
refer the reader to Tan et al. [18] for more on Orochi.

2

Execution Integrity without Implicit Trust of System Software SysTEX ’19, October 27, 2019, Huntsville, ON, Canada

a previous SSL/TLS session by returning the same pid and
value to Apache as those used for that session [3].

Prior SGX software frameworks for securing legacy appli-
cations [1, 2] do not fully address the legacy application’s
trust of the operating system.3 A developer must take on the
onerous task of analyzing each system call invocation in an
application to ensure that maliciously constructed OS results
do not compromise application execution integrity.

The TO, on the other hand, inherently uses only a small
subset of the system call interface. And while it relies on the
OS for communication between itself and clients/servers, it
uses authenticated, integrity-protected channels to prevent a
compromised OS from tampering with any of this commu-
nication without detection. An adversary may still stop the
TO from communicating with clients or the SA, but that does
not compromise the integrity of communication.

We rely on Intel’s remote attestation mechanism to ver-
ify that the microcode of the CPU in the untrusted machine
implements mitigations for Spectre variants 2 and 4,4 Mi-
croarchitectural Data Sampling (MDS), and L1 terminal fault
(L1TF). During the remote attestation procedure, we also
confirm that hyperthreading (HT) is disabled, for complete
mitigation of MDS and to prevent L1TF attacks from leaking
enclave secrets through the L1 cache [12].

The remaining well-known side-channel attacks against
SGX are cache-timing and paging-based attacks. We disable
HT so that an adversary cannot carry out cache-timing attacks
that target the L1 or L2 cache. Similarly, paging-based attacks
that rely on flushing the TLB require HT to work [21]. We
do not address the remaining SGX side-channel attacks that
exfiltrate enclave state by frequently interrupting an enclave’s
execution. Current software mitigations for these attacks im-
pose a non-trivial performance penalty [10, 16]. Our design,
however, is not tied to SGX and can be used on other TEE
platforms. Sanctum and Keystone [5, 13], for example, miti-
gate these side-channel attacks in hardware.

Finally, like prior TEE-based designs, our design does
not prevent denial of service (DoS, e.g., descheduling the
application). While DoS of the TO can cause DoS of the SA,
it cannot prevent detection of tampering with the results of
the SA’s execution.

2.2 System Architecture
Figure 1 depicts the use of a TO to enable audit of execution
integrity of an untrusted SA. The top-level entities are:
• the untrusted SA;
• the TO, running inside a TEE, which records a trace of all

communication between clients and the SA to untrusted
local storage, and persists cryptographic hashes of the trace
to a trusted store;

3For example, a developer attempting to secure the aforementioned version
of Apache would have to avoid using getpid as a seed for the PRNG.
4We compile the TO with retpolines to avoid using performance-degrading
indirect branch restricted speculation (IBRS).

Untrusted Memory

Untrusted
Trace Entries

Per-untrusted thread, MPSC
response queue

Global, MPMC enclave request queue

Trusted Observer (DOG)

Untrusted Machine

Trusted Storage

Plaintext response

Server application

Client

Enclave Memory

Privileged Software (OS, hypervisor, &c.) and devices

SSL/TLS-Secured
acknowldgements

SSL/TLS-Secured
trace entry hashes

Plaintext request

SSL/TLS-Secured Response

SSL/TLS-Secured Request

Figure 1. System architecture. Dashed boxes indicate untrusted
entities; the dotted box is the TO (DOG); solid boxes are trusted
entities. Dashed arrows show flow of control information; solid
arrows show data flow.

• a trusted store that receives trace hashes from the TO over
TLS, and persists them for retrieval at audit time;

• clients of the SA, proxied via the TO over TLS connections
terminated within the TO; and

• a verifier (not shown in Figure 1), which takes the trace and
hashes the TO generates, as well as the untrusted reports
recorded directly by the TO, and determines whether the
trace corresponds to a faithful execution of the SA.
The numbered trace integrity requirements at the start

of Section 2 match those the original Orochi verifier needs
from the original Orochi trusted proxy [18], and dictate the TO’s
design, with the exception of property (5), which is new to
our cloud context because the TO writes its trace on untrusted
storage. To satisfy property (1), we instantiate the TO as a
reverse proxy within a TEE on the same machine as the SA,
through which all client-SA communication passes. Interpos-
ing the TO between clients and the SA increases latency. We
measure this cost in Section 4.

Maintaining properties (2) and (3) requires authenticated,
integrity-protected communication between clients and the TO,
so that the TO can detect any malicious modification of an
inbound client request, and the client can detect any modi-
fication of a server response between the TO and the client.
Clients communicate with the TO using TLS. The TO must
therefore prevent an adversary from obtaining the TO’s long-
term TLS private key or ephemeral session keys, so that client-
TO channels are not compromised. Executing the TO in a
TEE protects this sensitive TLS state.

A TLS session key [15] is derived from random values
generated during the TLS handshake. The TO within the TEE
must derive these random values without invoking untrusted
sources of randomness such as Linux’s /dev/urandom. In-
stead the TO’s TLS implementation uses the user-level RDRAND
instruction, which generates cryptographically secure pseudo-
random numbers without kernel involvement.

Properties (4) and (5) require trusted persistent storage.
Local storage on the machine where the SA runs offers high

3

SysTEX ’19, October 27, 2019, Huntsville, ON, Canada Ahmed Awad and Brad Karp

bandwidth and low latency, but is untrusted. The TO stores
the full trace on untrusted local storage. To allow detection
of modified trace entries at audit, the TO appends a cryp-
tographic hash over each trace entry to a network-attached
trusted store within the data center.5 To ensure property (4),
trace freshness, the TO also maintains a monotonically in-
creasing counter for the current index within the trace, which
it persists to the same remote trusted store upon every trace
append. Using this fresh counter value from the trusted store,
the verifier can ensure that the trace retrieved from untrusted
local storage has the correct number of entries, and has not
been reverted to a stale, prefix version.6 To ensure that at
audit the verifier always has a fresh value of this counter,
upon receiving a new request or response to record, the TO al-
ways persists the incremented counter value and hash of the
request or response to the trusted store (i.e., awaits a suc-
cessful response from the trusted store) before writing the
corresponding trace entry to local storage, only after which it
releases the corresponding request to the SA or response to
the client. We measure the performance implications of this
synchronous use of the trusted store in Section 4. The TO and
trusted store communicate using TLS.7

Finally, recall that the verifier needs untrusted reports (con-
current event information) to correctly replay concurrency
within the SA. This is visible only within the SA itself, which
directly records it to untrusted local disk. We refer the in-
terested reader to Tan et al. [18] for the details of how the
verifier uses these reports.

3 Implementation
Figure 1 includes details of the Delegated Observer Gateway
(DOG8), an implementation of the TO for Intel SGX hardware.
DOG consists of 6159 lines of untrusted (extra-enclave) and
3589 lines of trusted (in-enclave) C++, excluding library code.
The enclave further includes code for the referenced portions
of the SGX libstdc++ and OpenSSL libraries, and a lock-free
queue data structure (described below). DOG uses a 256-bit
Blake2b cryptographic hash.

5One may build a network-attached trusted store in which one trusts only a
small piece of hardware in an otherwise untrusted server [22]; see Section 5.
6Trace rollback can thwart detection of unfaithful SA execution at audit time:
an adversary can simply provide an earlier trace that ends before unfaithful
execution occurred. While Intel SGX supports sealing of persistent data to
disk, naive sealing is subject to rollback attacks, and Intel’s support for on-
CPU persistent monotonic counters cannot keep pace with realistic storage
write rates [14]. TPM chips also provide persistent monotonic counters, but
suffer from similar update-rate limits [14]. Matetic et al. explore replicating
a monotonic counter across distributed enclaves [14], but in our problem
setting, a malicious cloud provider could reset the counter by resetting all
counter replica enclave programs.
7The TO’s binary includes the TLS public key of the trusted store, used to
authenticate the trusted store. If the key in the binary is modified, the CPU
will not launch the enclave.
8So named as DOG itself executes faithfully.

DOG’s TLS stack resides within an SGX enclave. As SGX
prohibits enclave programs from making system calls, DOG’s
enclave code delegates calls to read, write, bind, etc. to
an extra-enclave untrusted I/O module. Because the OS is
untrusted (as is DOG’s user-level I/O module itself), the ex-
ecution of system calls may be malicious—i.e., the system
call may take arbitrary action deviating from the requested
operation, and the system call’s return value may be arbitrary.

While DOG is not intended to prevent DoS, it must uphold
trace integrity. Because DOG invokes only a narrow set of
system calls for disk and network I/O, and uses TLS for all
communication with clients and the trusted store, no behavior
by any of these few system calls can violate trace integrity
without detection. Any tampering with data sent between a
client and DOG or between DOG and the trusted store will be
detected by the recipient because these communications are
TLS-protected. An adversary may tamper with communica-
tion between DOG and the SA, which is not over TLS, but
such tampering is equivalent to tampering with the SA itself,
which is untrusted, and will be detected at audit time if the
tampering causes divergence between the responses in the
trace logged by DOG and the responses generated during re-
execution for audit. An adversary may tamper with trace data
written by DOG to local storage, but such tampering will be
detected at audit time by validating the trace from local stor-
age with the hashes stored by the trusted store. As discussed
in Section 2.2, the inclusion of a monotonically increasing
counter in the data stored by the trusted store allows valida-
tion of the trace’s freshness at audit time. In summary, all
I/O conducted by DOG either is integrity-protected by TLS
executing within the TEE, at the client, or at the trusted store;
or is untrusted (and validated at audit time).

When the SA’s deployer launches DOG she uses SGX’s
remote attestation procedure to provision DOG with a TLS
private key. DOG then uses SGX’s sealing primitive to persist
the key to untrusted disk in encrypted, integrity-protected
form.9 The enclave code containing the private key must
expose an interface that allows DOG to:
• complete TLS handshakes with clients and the trusted store,
• encrypt and authenticate payloads destined for clients and

the trusted store,
• and authenticate and decrypt clients’ payloads destined for

the SA.
DOG incorporates several performance optimizations. To

avoid the overhead of EENTER and EEXIT transitions, DOG al-
locates threads that enter the enclave and remain there per-
manently, and a separate pool of untrusted I/O threads that
never enter the enclave. It uses asynchronous, shared-memory
communication between enclave and non-enclave threads,

9SGX’s sealing mechanism allows developers to void previously sealed
data by updating the application’s enclave version number. This requires
recompilation, but it is suitable for ensuring freshness of an infrequently
updated secret, such as a TLS private key.

4

Execution Integrity without Implicit Trust of System Software SysTEX ’19, October 27, 2019, Huntsville, ON, Canada

after FlexSC’s approach to eliminating system call trap over-
head [17]. DOG also batches requests and responses between
enclave and non-enclave threads, to reduce context-switch
overhead. Requests from untrusted I/O threads to enclave
threads pass through a lock-free multi-producer, multi-consumer
queue data structure [6]; responses pass through a (per-untrusted-
thread) lock-free multi-producer, single-consumer (MPSC)
queue [6], both modified to avoid in-enclave memory alloca-
tion (to comply with current SGX toolchain restrictions).

4 Evaluation
To assess and understand DOG’s costs, we consider the fol-
lowing questions:
• Does DOG achieve trusted logging of dynamic-content

servers at acceptable end-to-end throughput and latency?
• To what extent does SGX limit DOG’s performance (vs. the

inherent cost of logging itself)?

4.1 Experimental Setup
We ran DOG and the SA on a Dell XPS 8930 with a 6-core,
SGX-enabled Intel i7 8700 CPU clocked at 3.20 GHz, 16 GB
of DDR4 RAM, and a 256 GB SSD.10 Our load generator ran
on a Dell C640 with 2 12-core Intel Xeon 5118 CPUs clocked
at 2.3 GHz, 64 GB of DDR4 RAM, and a 1 TB SSD. The
trusted store ran on an identically provisioned Dell C640. All
machines were connected at 10 Gbps. Unless otherwise stated,
communication between the load generator and DOG used the
ECDHE-AES-128-GCM-SHA-256 TLS 1.2 ciphersuite.

4.2 DOG’s Performance for Dynamic Content
For these experiments we used Mediawiki as the SA. Medi-
awiki is an open source PHP application that allows users to
jointly edit pages containing information about a given topic.
We used publicly available Wikipedia access traces [19] to
generate a constant-rate HTTP request load to measure the
end-to-end throughput and response latency of:
• unmodified Mediawiki (MW) executing alone,
• Mediawiki modified by Tan et al. (MW-L) to capture enough

information for auditing with Orochi [18],
• and DOG proxying Mediawiki-L (DOG +MW-L).
Note that unlike DOG, MW and MW-L omit TLS and instead
communicate in cleartext with clients.

We expect DOG to modestly reduce MW-L’s performance,
as the logging operations DOG performs are cheap relative to
the operations required to generate dynamic content (fetching
content from the database, rendering the page based on a
template, etc.). Indeed, as Table 1 illustrates, DOG imposes
an overhead of 6.4% on MW-L’s throughput, and increases
50th, 90th, and 99th percentile response latency by ~5%, ~2%,
and ~4% respectively. We conclude that DOG’s overhead is
acceptable for dynamic content.

10In 2018, among available machines with an SGX-compatible BIOS, this
was the one with the most cores.

Configuration Throughput
(MB/s)

Latency (ms)

50% 90% 99%

MW (HTTP) 4.1 187.2 280.0 290.5
MW-L (HTTP) 3.6 202.6 356.4 370.2
DOG + MW-L 3.4 212.2 370.1 386.4

Table 1. Latency comparison for varied MW configurations.

4.3 The Price of Logging and SGX
To expose the costs of logging and SGX, we now consider
nginx serving static content as the SA. While not the target
use case for DOG, this workload reveals DOG’s worst-case per-
formance penalty, when the DOG proxy’s operations are more
expensive than a minimal SA’s. Unless otherwise specified,
hyperthreading is disabled in all experiments. We measure
end-to-end throughput of:
• nginx executing alone with hyperthreading enabled (HT)

and disabled,
• DOG proxying nginx (DOG) with HT enabled (HT) and

disabled,
• a variant of DOG that does not use SGX (DOG No SGX),

We expect a greater relative performance penalty for DOG prox-
ying a static-content SA vs. a dynamic-content SA. A static-
content server takes approximately 0.7 µs to decrypt a 100-
byte request, a negligible amount of time to process it (with
the requested page in the server’s cache), and 0.3 µs to encrypt
the response, for a total of 1 µs. DOG adds 1.6 µs to compute
the hashes for both the request and the response, and at least
1.2 µs for each enclave crossing (one for the request and one
for the response). The resulting total is 3.8 µs, almost a 300%
increase in time to return a response (ignoring additional time
spent in the kernel to send the request from DOG to the SA,
and to send the response from the SA to DOG). This esti-
mate doesn’t account for cross-request concurrency, but does
show that for an extreme, minimal SA, the worst-case added
compute would be significant.

Let us now consider DOG’s effect on response latency. For
an offered load of 200K requests per second, DOG increases
50th percentile latency by ~60% (from 1.0 µs to 1.6 µs), 90th

percentile by ~40% (from 1.6 µs to 2.3 µs), and 99th percentile
by 25% (from 2.3 µs to 2.9 µs). As DOG won’t forward a
given response/request to its destination until it receives an
acknowledgement that the corresponding hash is persisted
within the trusted store, it adds at least 1 RTT of delay to
response latency.

Figure 2 shows average throughput vs. offered load where
all requests are for a 100-byte HTML page. Comparing ng-
inx and DOG reveals that DOG imposes a ~32% throughput
penalty over baseline nginx. This penalty decreases as re-
sponse size increases, and the rate of request processing be-
comes limited by available bandwidth.

5

SysTEX ’19, October 27, 2019, Huntsville, ON, Canada Ahmed Awad and Brad Karp

0 100000 200000 300000 400000 500000 600000
Requests Per Second

0

100000

200000

300000

400000

500000

Re
sp

on
se

s P
er

 S
ec

on
d

Responses per Second vs. Offered Load (static)
DOG
DOG (H.T.)
nginx
DOG (No SGX)
nginx (H.T.)

Figure 2. Responses per second vs. offered load for various ng-
inx configurations. Responses are ~500 bytes (400 bytes of HTTP
header and 100 of HTML). Comparing DOG (HT) vs. DOG and nginx
vs. nginx (HT), we see that disabling HT costs approximately 3%. As
logical cores share functional units, for this compute-intensive work-
load (mostly AES encryption), we don’t expect HT to significantly
improve performance.

Comparing DOG and DOG (No SGX) reveals that SGX
imposes only a 4% performance penalty on DOG’s throughput.
Since most of the data DOG operates on is stored in non-
enclave memory, most of this overhead comes from context
switches (rather than EPC integrity overheads). Beyond the
optimizations in Section 3, we also pin DOG’s threads and
nginx’s worker processes to distinct CPU cores to reduce the
number of context switches.

5 Discussion
We have explored offline audit of the execution integrity of
a server application as an attractive “sweet spot” for the use
of TEEs. Prior TEE uses that place an application (or part
of one) within a TEE in an effort to provide both execution
integrity and secrecy are liable to Iago attacks because appli-
cation code may subtly rely on the results of diverse system
calls. Shielding TEE code against system call return values is
difficult to get right, given the complexity of application code
and the system call interface. By contrast, the TO approach
exemplified by DOG targets only integrity, but sidesteps the
thorny problem of Iago attacks by narrowly restricting system
calls to those whose results are untrusted (and validated at
audit time) and those whose results are validated by a TLS im-
plementation executing within a TEE. It also entirely avoids
needing to shoehorn an application into a tightly address-
space-constrained TEE, in today’s SGX implementation. The
TO leverages Orochi’s approach to verifying an application’s
execution integrity [18], while extending Orochi to obtain the
necessary ground-truth trace in the cloud setting.

While DOG relies on a trusted store for hashes of trace
entries, there is evidence such a store can be built without
trusting much hardware. Yang et al. describe a secure network-
attached storage service that leverages a small piece of trusted
hardware in an otherwise untrusted server to provide integrity-
and freshness-protected storage [22]. Such a service could
serve as a drop-in replacement for the trusted store in our
design. Another alternative would be to have the TO write
the full trace to trusted local storage provided by Yang et
al.’s hardware on the same machine where the TO and server
application execute.

Acknowledgments
We thank Michael Walfish for extensive discussions that sig-
nificantly improved the framing and presentation of this work,
and the anonymous reviewers for their helpful comments.

References
[1] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,

D. Muthukumaran, Daniel, M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza,
P. Pietzuch, and C. Fetzer. SCONE: Secure Linux Containers with Intel SGX. In
OSDI 2016.

[2] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an untrusted
cloud with Haven. In OSDI 2014.

[3] S. Checkoway and H. Shacham. Iago attacks: Why the system call API is a bad
untrusted RPC interface. In ASPLOS 2013.

[4] V. Costan and S. Devadas. Intel SGX explained. IACR Cryptology ePrint Archive,
2016, 2016.

[5] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal hardware extensions
for strong software isolation. In USENIX Security 2016.

[6] C. Desrochers. Concurrent queue. https://github.com/cameron314/
concurrentqueue, 2018.

[7] C. Dionne, M. Feeley, and J. Desbien. A taxonomy of distributed debuggers
based on execution replay. In PDPTA 1996.

[8] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. ReVirt: En-
abling intrusion analysis through virtual-machine logging and replay. In OSDI
2002.

[9] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen. Execution
replay of multiprocessor virtual machines. In VEE 2008.

[10] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa. Strong
and efficient cache side-channel protection using hardware transactional memory.
In USENIX Security 2017.

[11] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel. Accountable virtual
machines. In OSDI 2010.

[12] Intel. Software guidance for security advisories. https://software.intel.com/
security-software-guidance/software-guidance, 2019.

[13] D. Lee, D. Kohlbrenner, K. Cheang, C. Rasmussen, K. Laeufer, I. Fang,
A. Khosla, C.-C. Tsai, S. Seshia, D. Song, and K. Asanovic. Keystone enclave:
An open-source secure enclave for RISC-V. https://keystone-enclave.org/files/
keystone-risc-v-summit.pdf, 2018.

[14] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais, A. Juels,
and S. Capkun. ROTE: Rollback protection for trusted execution. In USENIX
Security 2017.

[15] E. Rescorla. SSL and TLS: Designing and Building Secure Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[16] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradicating controlled-
channel attacks against enclave programs. In NDSS 2017.

[17] L. Soares and M. Stumm. FlexSC: Flexible system call scheduling with
exception-less system calls. In OSDI 2010.

[18] C. Tan, L. Yu, J. B. Leners, and M. Walfish. The efficient server audit problem,
deduplicated re-execution, and the web. In SOSP 2017.

[19] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload analysis for de-
centralized hosting. Elsevier Computer Networks, 53(11):1830–1845, July 2009.
http://www.globule.org/publi/WWADH_comnet2009.html.

[20] K. Vikram, A. Prateek, and B. Livshits. Ripley: automatically securing web 2.0
applications through replicated execution.

[21] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang, and
C. A. Gunter. Leaky cauldron on the dark land: Understanding memory side-
channel hazards in SGX. In CCS 2017.

[22] H.-J. Yang, V. Costan, N. Zeldovich, and S. Devadas. Authenticated storage using
small trusted hardware. In CCSW 2013.

6

https://github.com/cameron314/concurrentqueue
https://github.com/cameron314/concurrentqueue
https://software.intel.com/security-software-guidance/software-guidance
https://software.intel.com/security-software-guidance/software-guidance
https://keystone-enclave.org/files/keystone-risc-v-summit.pdf
https://keystone-enclave.org/files/keystone-risc-v-summit.pdf
http://www.globule.org/publi/WWADH_comnet2009.html

	Abstract
	1 Introduction
	2 Problem and Design
	2.1 Threat Model
	2.2 System Architecture

	3 Implementation
	4 Evaluation
	4.1 Experimental Setup
	4.2 dog's Performance for Dynamic Content
	4.3 The Price of Logging and SGX

	5 Discussion
	Acknowledgments
	References

