
UCL CS 0019 Brad Karp

Individual Assessed Coursework 4:
Implementing Virtual Memory in WeensyOS

Due date: 4 PM, 7th March 2024

Value: 13% of marks for module

Introduction

In this coursework you will implement process memory isolation, virtual memory, and a system
call in a tiny (but very real!) operating system called WeensyOS. The WeensyOS kernel runs on
x86-64 CPUs. Because the OS kernel runs on the “bare” hardware, debugging kernel code can be
tough: if a bug causes misconfiguration of the hardware, the usual result is a crash of the entire
kernel (and all the applications running on top of it). And because the kernel itself provides
the most basic system services (e.g., causing the display hardware to display error messages, or
causing the disk hardware to log them to disk) deducing what went wrong after a kernel crash
can be particularly challenging. In the dark ages1, the usual way to develop code for an OS
(whether as part of a class, in a research lab, or in industry) was to boot it on a physical CPU.
The lives of kernel developers have gotten much better since. You will run WeensyOS in QEMU,
which is a software-based x86-64 emulator: it “looks” to WeensyOS just like a physical x86-64
CPU, but if your WeensyOS code-in-progress wedges the (virtual) hardware, QEMU itself and
the whole OS the real hardware is running (i.e., the Linux OS you booted and that QEMU is
running on) survive unscathed. So, for example, your last few debugging printf()s before
a kernel crash will still get logged to disk (by QEMU running on Linux), and “rebooting” the
kernel you’re developing amounts to re-running the QEMU emulator application. Note, further,
that as an OS kernel that directly manipulates the CPU’s virtual memory hardware, WeensyOS
only runs on x86-64 CPUs. But since you will run WeensyOS in QEMU, which is just a Linux
application that emulates an x86-64 hardware CPU, you can run WeensyOS even if you have an
ARM CPU on your machine!2

This coursework must be done in the official, supported 0019 Linux environment (which has
QEMU pre-installed). The supported 0019 Linux environment, as you will be familiar with from
the prior CWs, is available under Docker on your personal machine (whether your machine’s
installed OS is Windows, macOS, or Linux on an x86-64 CPU, or macOS on an ARM CPU), and
also available by ssh’ing to the ten remotely accessible 0019 Linux machines. Full information
on setting up Docker and developing over ssh is available in the CW2 handout.

Chapter 9 of CS:APP/3e covers virtual memory, and offers vital background for this course-
work. Section 9.7 in particular describes the 64-bit virtual memory architecture of the x86-
64 CPU. Figure 9.23 and Section 9.7.1 show and discuss the PTE P, PTE W, and PTE U bits,
flags in the x86-64 hardware’s page table entries that play a central role in this coursework.

Tasks

• Implement complete and correct memory isolation for WeensyOS processes.
1i.e., when your instructor was an undergraduate, in a prior century
2For those keeping score, this means that if you have an ARM CPU and are using Docker on it to do this course-

work, you are running the WeensyOS kernel’s x86-64 instructions in QEMU, a software-emulated x86-64 CPU that
is an ARM binary, under Linux, running under the Docker containerization environment, under macOS, running on
an ARM hardware CPU!

1



• Implement full virtual memory, which will improve utilization.

• Implement the fork() system call, used to create new processes at runtime.

You will complete the above tasks in five stages described in detail below. Each stage has
a test in this coursework’s test suite, and is worth an equal share of the total marks for the
coursework (i.e., 20% per stage).

We’ve provided you a lot of support code for this assignment, but the code you will need to
write is in fact quite limited in extent. Our complete solution (for all 5 stages) consists of well
under 200 lines of code beyond what we initially hand out to you. All the code you write must
go in kernel.c and kernel.h.

This handout provides vital detail on how to interpret the graphical maps of WeensyOS’s
physical and virtual memory that QEMU will display to you while WeensyOS is running. Study-
ing these graphical memory maps carefully is the best way to determine whether your WeensyOS
code for each stage is working correctly. While we do provide tests that you can run to learn
what grade your current code would receive, these tests only tell you whether each test has been
passed or failed, because the graphical memory maps are already exhaustive in showing how
your code behaves. In short, you will definitely want to make sure you understand how to read
these maps before you start to hack.

You will also find considerable guidance in how to go about implementing the functionality
for each stage of the coursework in this document. Read this handout in its entirety carefully
before you begin!

As ever, it is important to get started early. Kernel development is less forgiving than de-
veloping user-level applications; tiny deviations in the configuration of hardware (e.g., the
MMU) by the OS tend to bring the whole (emulated, in this case!) machine to a halt. You
will almost certainly need the two weeks allotted to complete CW4.

Getting Started

Before you follow the instructions below to retrieve the code for CW4, you MUST first
complete the 0019 grading server registration process. You only need do so once for the
entire term, and you probably did so before beginning work on CW1, CW2, and/or CW3,
in which case you need not register again.

If, however, you did none of CW1, CW2, or CW3, and have not yet registered with the
0019 grading server, STOP NOW, find the email you received with the subject line “your 0019
grading server token,” retrieve the instructions document at the link in that email, follow
those instructions, and only thereafter proceed with the instructions below for retrieving the
code for CW4.

We will use GitHub for CW4 in much the same manner as for CW2 and CW3. To obtain a copy
of the initial code for CW4, please visit the following URL:

https://classroom.github.com/a/nPOdn59V

If you’d like a refresher on using git with your own local repository and syncing it to GitHub,
please refer to the CW2 handout.

Each time you push updated code to your GitHub repository for CW4, our automatic grading
server will pull a copy of your code, run our automated tests on your code, and place a grade

2

https://classroom.github.com/a/nPOdn59V


report in a file grade report.md in your GitHub repository. Your mark on CW4 will be
that produced by the automated tests run by our automatic grading server on the latest commit
(update) you make to your GitHub repository before the CW4 deadline. More on these tests
below.

Please note that your code’s behavior on the automated tests when run on the 0019 grading
server will determine your mark on CW4.3 The CS 0019 staff cannot “support” development
environments other than the 0019 Docker Linux container and the ssh-accessible 0019 Linux
machines; we cannot diagnose problems you encounter should your code pass the tests in
some other environment, but fail them in the official 0019 Linux environment.

Getting Familiar with WeensyOS Memory Maps

Once you’ve cloned your repository from GitHub to your working environment, you can build
the initial version of WeensyOS we’ve given you by issuing the shell command make run in
your CW4 directory.

You should see something like the below, which shows four processes running in parallel,
each running a version of the program in p-allocator:

The image above is in color, and is a single still frame from an animation. You will almost
certainly want to view these memory maps in color with the animation. You can find these color
animations on the 0019 class web site (along with a duplicate copy of the text in this handout
that goes along with the images) at:

http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2024/cw/cw4-maps/
The animated version of the above image loops forever; in an actual run, the bars will move

to the right and stay there. Don’t worry if your image has different numbers of K’s or otherwise
has different details.

If your bars run painfully slowly, edit the p-allocator.c source file and reduce the ALLOC SLOWDOWN
constant.

3The only exception will be if the instructors determine that a student’s submission produces output that matches
the expected output without implementing the required functionality; such submissions will receive zero marks.

3

http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2024/cw/cw4-maps/


Stop now to read and understand p-allocator.c.

Here’s how to interpret the memory map display:

• WeensyOS displays the current state of physical and virtual memory. Each character rep-
resents 4 KB of memory: a single page. There are 2 MB of physical memory in total. (Ask
yourself: how many pages is this?)

• WeensyOS runs four processes, 1 through 4. Each process is compiled from the same
source code (p-allocator.c), but linked to use a different region of memory.

• Each process asks the kernel for more heap memory, one page at a time, until it runs out of
room. As usual, each process’s heap begins just above its code and global data, and ends
just below its stack. The processes allocate heap memory at different rates: compared to
Process 1, Process 2 allocates twice as quickly, Process 3 goes three times faster, and Process
4 goes four times faster. (A random number generator is used, so the exact rates may vary.)
The marching rows of numbers (in the animated version of this map on the 0019 web site)
show how quickly the heap spaces for processes 1, 2, 3, and 4 are allocated.

Here are two labeled memory maps showing what the characters mean and how memory is
arranged. These are best read in color; if you’re reading the black-and-white hardcopy handout,
visit the 0019 web site at the link above for the color versions!

The virtual memory display is similar:

• The virtual memory display cycles successively among the four processes’ address spaces.
In the base version of the WeensyOS code we give you to start from, all four processes’
address spaces are the same (your job will be to change that!).

• Blank spaces in the virtual memory display correspond to unmapped addresses. If a process
(or the kernel) tries to access such an address, the processor will generate a page fault
hardware exception.

4



• The character shown at address X in the virtual memory display identifies the owner of the
corresponding “physical” page.

• In the virtual memory display, a character is in reverse video if an application process
is allowed to access the corresponding address. Initially, any process can modify all of
physical memory, including the kernel. Memory is not properly isolated.

Running WeensyOS

As noted at the start of this handout, WeensyOS runs under the QEMU x86-64 CPU emulator
on Linux. The supported 0019 Linux development environment already has QEMU installed.

Read README-OS.md in your CW4 repository for information on how to run WeensyOS. If
QEMU’s default display causes accessibility problems, you will want to run make run-console.
To make run-console the default, run export QEMUCONSOLE=1 in your shell.

There are several ways to debug WeensyOS. We recommend adding log printf() state-
ments to your code. The output of log printf() is written to the file log.txt outside
QEMU, into your CW4 working directory. We also recommend that you use assertions (of
which we saw a few in the lecture on Undefined Behavior; try man assert at the Linux shell
to learn more) to catch problems early. For example, call the helper functions we’ve provided,
check page table mappings() and check page table ownership(), to test a page ta-
ble for obvious errors.

Memory System Layout

The WeensyOS memory system layout is defined by several constants:
Constant Meaning
KERNEL START ADDR Start of kernel code
KERNEL STACK TOP Top of kernel stack; one page long
console Address of CGA console memory
PROC START ADDR Start of application code. Applications should not be able to

access memory below this address, except for the single page
at console.

MEMSIZE PHYSICAL Size of physical memory in bytes. WeensyOS does not sup-
port physical addresses ≥ this value. Defined as 0x200000
(2 MB).

MEMSIZE VIRTUAL Size of virtual memory. WeensyOS does not support virtual
addresses ≥ this value. Defined as 0x300000 (3MB).

Writing Expressions for Addresses

WeensyOS uses several C macros to construct addresses. They are defined at the top of x86-64.h.
The most important include:

5



Macro Meaning
PAGESIZE Size of a memory page; defined as 4096 (or equiva-

lently, 1 << 12)
PAGENUMBER(addr) Page number for the page containing addr. Expands

to an expression analogous to addr / PAGESIZE.
PAGEADDRESS(pn) The initial address (zeroth byte) in page number

pn. Expands to an expression analogous to pn *
PAGESIZE.

PAGEINDEX(addr, level) The index in the levelth page table for addr.
level must be between 0 and 3. 0 returns the level-1
page table index (address bits 39–47); 1 returns the
level-2 index (bits 30–38); 2 returns the level-3 index
(bits 21–29); and 3 returns the level-4 index (bits 12–
20).

PTE ADDR(pe) The physical address contained in page table entry pe.
Obtained by masking off the flag bits (setting the low-
order 12 bits to zero).

Before you begin coding, you should both understand what these macros represent and be
able to derive values for them if you were given a different page size.

Kernel and Process Address Spaces

The version of WeensyOS you receive at the start of CW4 places the kernel and all processes in
a single, shared address space. This address space is defined by the kernel pagetable page
table. kernel pagetable is initialized to the identity mapping: virtual address X maps to
physical address X.

As you work through CW4’s stages, you will shift processes to using their own independent
address spaces, where each process can access only a subset of physical memory.

The kernel, though, must remain able to access any location in physical memory. Therefore,
all kernel functions run using the kernel pagetable page table. Thus, in kernel functions,
each virtual address maps to the physical address with the same number. The exception()
function explicitly installs kernel pagetable when it begins.

WeensyOS system calls are more expensive than they need to be, since every system call
switches address spaces twice (once to kernel pagetable and once back to the process’s page
table). Real-world operating systems avoid this overhead. To do so, real-world kernels ac-
cess memory using process page tables rather than a kernel-specific kernel pagetable. That
makes a kernel’s code more complicated, though, since kernels can’t always access all of physical
memory directly under that design.

The Five Stages of WeensyOS

We describe below the five implementation stages you must complete in CW4: what you need to
implement in each, and hints on how to do so.

Stage 1: Kernel Isolation

In the starting code we’ve given you, WeensyOS processes could stomp all over the kernel’s
memory if they wanted to. Better prevent that. Change kernel(), the kernel initialization

6



function, so that kernel memory is inaccessible to applications, except for the memory holding
the CGA console (the single page at (uintptr t) console == 0xB8000.)4

When you are done, WeensyOS should look like the below. In the virtual map, kernel memory
is no longer reverse-video, since the user can’t access it. Note the lonely CGA console memory
block. (As with all these maps, you will want to view the figure below in its online, color version
at the URL given earlier in this handout.)

Hints:

• Use virtual memory map(). A description of this function is in kernel.h. You will
benefit from reading all the function descriptions in kernel.h. You can supply NULL for
the allocator argument for now.

• If you really want to look at the code for virtual memory map(), it is in k-hardware.c,
along with many other hardware-related functions.

• The perm argument to virtual memory map() is a bitwise-or of zero or more PTE
flags: PTE P, PTE W, and PTE U. PTE P marks Present pages (pages that are mapped).
PTE W marks Writable pages. PTE U marks User-accessible pages—pages accessible by
applications. You want kernel memory to be mapped with permissions PTE P | PTE W,
which will prevent applications from reading or writing the memory, while allowing the
kernel to both read and write.

• Make sure that your sys page alloc() system call preserves kernel isolation: Applica-
tions shouldn’t be able to use sys page alloc() to screw up the kernel.

Stage 2: Isolated Address Spaces for Processes

Implement process isolation by giving each process its own independent page table. Your OS
memory map should look like this when you’re done (animated, color version online):

4Making the console accessible in this way, by making the range of RAM where the contents of the display are
held directly accessible to applications, is a throwback to the days of DOS, whose applications typically generated
console output in precisely this way. DOS couldn’t run more than one application at once, so there wasn’t any risk
of multiple concurrent applications clobbering one another’s display writes to the same screen locations. We borrow
this primitive console design to keep WeensyOS simple and compact.

7



That is, each process only has permission to access its own pages. You can tell this because
only its own pages are shown in reverse video.

What goes in per-process page tables:

• The initial mappings for addresses less than PROC START ADDR should be copied from
those in kernel pagetable. You can use a loop with virtual memory lookup()
and virtual memory map() to copy them. Alternately, you can copy the mappings
from the kernel’s page table into the new page tables; this is faster, but make sure you copy
the right data!

• The initial mappings for the user area—addresses greater than or equal to PROC START ADDR—
should be inaccessible to user processes (i.e., PTE U should not be set for these PTEs). In
our solution (shown above), these addresses are totally inaccessible (so they show as blank),
but you can also change this so that the mappings are still there, but accessible only to the
kernel, as in this diagram (animated, color version online):

8



The reverse video shows that this OS also implements process isolation correctly.
How to implement per-process page tables:

• Change process setup() to create per-process page tables.

• We suggest you write a copy pagetable(x86 64 pagetable *pagetable, int8 t
owner) function that allocates and returns a new page table, initialized as a full copy of
pagetable (including all mappings from pagetable). This function will be useful in
Stage 5. In process setup() you can modify the page table returned by copy pagetable()
according to the requirements above. Your function can use pageinfo[] to find free
pages to use for page tables. Read about pageinfo[] at the top of kernel.c.

• Remember that the x86-64 architecture uses four-level page tables.

• The easiest way to copy page tables involves an allocator function suitable for passing to
virtual memory map().

• You’ll need at least to allocate a level-1 page table and initialize it to zero. You can also set
up the whole four-level page table skeleton (for addresses 0...MEMSIZE VIRTUAL - 1)
yourself; then you don’t need an allocator function.

• A physical page is free if pageinfo[PAGENUMBER].refcount == 0. Look at the other
code in kernel.c for some hints on how to examine the pageinfo[] array.

• All of process P’s page table pages must have pageinfo[...].owner == P or Ween-
syOS’s consistency-checking functions will fail. This will affect your allocator function.
(Hint: Don’t forget that global variables are allowed in your code!)

If you create an incorrect page table, WeensyOS might crazily reboot. Don’t panic! Add
log printf() statements. Another useful technique that may at first seem counterintuitive:
add infinite loops to your kernel to track down exactly where a fault occurs. (If the OS hangs
without crashing once you’ve added an infinite loop, then the crash you’re debugging must occur
at a point in the kernel’s execution after your infinite loop’s place in the code.)

9



Stage 3: Virtual Page Allocation

Thus far in CW4, WeensyOS processes have used physical page allocation: the page with phys-
ical address X is used to satisfy the sys page alloc(X) allocation request for virtual ad-
dress X. This strategy is inflexible and limits utilization. Change the implementation of the
INT SYS PAGE ALLOC system call so that it can use any free physical page to satisfy a sys page alloc(X)
request.

Your new INT SYS PAGE ALLOC code must perform the following tasks:

• Find a free physical page using the pageinfo[] array. Return -1 to the application if
you can’t find one. Use any algorithm you’d like to find a free physical page; in our model
solution, we just return the first one we find.

• Record the physical page’s allocation in pageinfo[].

• Map that physical page at the requested virtual address.

Don’t modify the physical page alloc() helper function, which is also used by the pro-
gram loader. You can write a new function if you need to.

Here’s how our OS looks after this stage (animated, color version online):

Stage 4: Overlapping Virtual Address Spaces

Now the processes are isolated, which is excellent. But they’re still not taking full advantage of
virtual memory. Isolated address spaces can use the same virtual addresses for different physical
memory. There’s no need to keep the four processes’ address spaces disjoint.

In this stage, change each process’s stack to start from address 0x300000 == MEMSIZE VIRTUAL.
Now the processes have enough heap room to use up all of physical memory! Here’s how the
memory map will look after you’ve done it successfully (animated, color version online):

10



If there’s no physical memory available, sys page alloc() should return an error to the
caller (by returning -1). Our model solution additionally prints “Out of physical memory!”
to the console when this happens; you don’t need to.

Stage 5: Fork

The fork() system call is one of Unix’s great ideas. It starts a new process as a “copy” of an
existing one. The fork() system call appears to return twice, once to each process. To the child
process, it returns 0. To the parent process, it returns the child’s process ID.

Run WeensyOS with make run or make run-console. At any time, press the “f” key.
This will soft-reboot WeensyOS and cause it to run a single process from the p-fork application,
rather than the gang of allocator processes. You should see something like this in the memory
map (color version online):

That’s because you haven’t implemented fork() yet.

11



How to implement fork():

• When a process calls fork(), look for a free process slot in the processes[] array.
Don’t use slot 0. If no free slot exists, return -1 to the caller.

• If a free slot is found, make a copy of current->p pagetable, the forking process’s
page table, using your function from earlier.

• But you must also copy the process data in every application page shared by the two pro-
cesses. The processes should not share any writable memory except the console (otherwise
they wouldn’t be isolated). So fork() must examine every virtual address in the old page
table. Whenever the parent process has an application-writable page at virtual address V,
then fork() must allocate a new physical page P; copy the data from the parent’s page
into P using memcpy(); and finally map page P at address V in the child process’s page
table. (There’s a Linux man page for memcpy().)

• The child process’s registers are initialized as a copy of the parent process’s registers, except
for reg rax.

• Use virtual memory lookup() to query the mapping between virtual and physical ad-
dresses in a page table.

When you’re done, you should see something like the below after pressing “f” (animated,
color version online):

An image like the below, however, means you forgot to copy the data for some pages, so the
processes are actually “sharing” stack and/or data pages when they should not (animated, color
version online):

12



Tips

The kernel defines a constant, HZ, which determines how many times per second the kernel’s
clock ticks. Don’t change this value—there is absolutely no need to do so while solving CW4,
and doing so will likely cause your code to fail our tests!

Running the Tests and Submitting

Unlike for prior courseworks in 0019, the automated tests for CW4 are not intended to
help you debug! As stated at the start of this handout, the visual memory map displayed
by QEMU as your WeensyOS kernel runs is the best way to determine how your code is
behaving in all the stages of CW4. The automated tests for CW4 are simply for you to
confirm that you’ve completed a stage (and they are the tests the grading server will use to
assign grades). So run with make run to visualize how memory is being used while you are
coding and validating your design. Then only switch to the automated tests below when you
think you’re done a stage and want to double-check.

There are five tests, one for each stage. You can run each of them with the shell commands make
grade-one through grade-five. Note that the stage numbers are written out in text and not
using digits. Each stage’s result is all-or-nothing; pass or fail. The tests report success or failure,
and nothing more (see above—the graphical memory map is how you should determine how
your code is behaving).

There are three invariants in all five stages’ tests that your code must uphold; if your code
doesn’t uphold any invariant, you’ll receive an error to that effect and fail the test (regardless of
stage). These invariants are:

• The CGA console must be accessible by all processes (this requirement is discussed in the
text above on stage 1).

13



• If we consider process P, there should be no virtual page in P’s page table at a user-space
address (i.e., whose address is above the kernel/user virtual address split point) that is
owned by P but not accessible by P.

• When we run our tests, we configure the WeensyOS kernel to exit after 10 seconds of execu-
tion (1000 WeensyOS kernel “ticks”).5 If a bug in your code makes the kernel crash before
1000 WeensyOS kernel ticks, you’ll fail the test on which that happens. Alternatively, if
your kernel enters an infinite loop, and thus never reaches our exit at 1000 ticks:

– If you are running the tests in your development environment, your kernel will get
stuck in the infinite loop and never exit, so the tests will hang and you’ll need to
terminate your hung kernel. Do so by opening another terminal window and issuing
the command make kill, which will kill all QEMU processes you have running.
To get another terminal window in your same running Docker container, open the
Docker Desktop dashboard, go to the Containers tab, click on your running container,
and then click on the Terminal tab. In the terminal window that appears, you can
then change directory to your CW4 repo and type the above make kill command.
If you are using the ssh Linux boxes, you can ssh a second time to the same Linux
box, change directory to your CW4 repo, and type the above make kill command.

– When the grading server runs the tests, it will eventually time out and kill the entire
Docker container where the tests of your code are running after 10 minutes (which
will cause you to fail all tests).

These invariants are reasonable: regardless of what your memory map display looks like, a
good solution should neither crash nor enter an infinite loop.

There is only one kernel.c file; you implement the five stages cumulatively in it. As such,
when you add further stages’ functionality, you should not break that of prior stages. You can
confirm this visually when you scrutinize the memory map shown by QEMU. Our tests also
verify it: each stage’s test runs all prior stages’ tests. If any of the prior stages’ tests fail, the
“current” stage’s test is deemed to have failed.

One interesting consequence of the cumulative nature of CW4 is that if you introduce a
regression in your changes for some stage after the first stage that causes one or more prior
stages’ tests to fail, you’ll not only lose the marks for the current stage you are working on, but
also lose them for any prior stage whose tests your regression causes to fail. If you need to submit
(whether at the deadline or late), and find this has happened, do not despair: simply revert your
code to the last good version before your regression (using the life-saving history provided by
GitHub—so do make sure you commit and push often!), and you’ll be back to passing those
earlier stages’ tests again.

Once again, we urge you to get started early.

Submitting via GitHub

We will deem the timestamp of your CW4 submission to be the timestamp on GitHub’s server of
the last push you make before the submission deadline of 4 PM GMT on 7th March 2024. Your
mark will be the mark you receive on the automated tests for that version of your code. 0019
follows the UCL-wide standard late coursework penalties, as described on the 0019 class web
site.

If you wish to submit after the deadline, you must take the following steps for your course-
work to be marked:

5We also disable ALLOC SLOWDOWN in p-allocator.c and p-fork.c during our tests, so that memory allo-
cation proceeds much more quickly, at machine speed rather than human-vision speed. Thus 1000 ticks are plenty of
time for the workload to run and exhibit how your kernel’s virtual memory system behaves.

14

http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2024/admin.html
http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2024/admin.html


1. When you wish to receive a mark for a version of your code that you push to GitHub after
the submission deadline, you must begin your commit log message for that commit with
the exact string LATESUBMIT. Our grading system will not record a mark for your late
submission unless you comply with this requirement. We follow this policy so that if a
student accidentally pushes a further commit after the deadline, they aren’t penalized for a
late submission.

2. You may make only one late submission (i.e., one GitHub commit with the initial string
LATESUBMIT. If you make more than one late submission, we will only mark the first one.

Academic Honesty

This coursework is an individual coursework. Every line of code you submit must have been
written by you alone, and must not be a reproduction of the work of others—whether from the
work of students in this (or any other) class from this year or prior years, from the Internet, or
elsewhere (where “elsewhere” includes code written by anyone anywhere, or provided by an AI
tool).

Students are permitted to discuss with one another the definition of a problem posed in the
coursework and the general outline of an approach to a solution, but not the details of or code
for a solution. Students are strictly prohibited from showing their solutions to any problem
(in code or prose) to a student from this year or in future years. In accordance with academic
practice, students must cite all sources used; thus, if you discuss a problem with another student,
you must state in your solution that you did so, and what the discussion entailed.

Any use of any online question-and-answer forum (other than the CS 0019 Ed web site) to
obtain assistance on this coursework is strictly prohibited, constitutes academic dishonesty, and
will be dealt with in the same way as copying of code. Reading any online material specifically
directed toward solving this coursework is also strictly prohibited, and will also be dealt with in
the same way.

You are free to read other reference materials found on the Internet (and any other reference
materials), apart from any source code that implements x86 virtual memory. You may of course
use the code we have given you. Again, all other code you submit must be written by you alone.

Copying of code from student to student (or by a student from the Internet or elsewhere)
is a serious infraction; it typically results in awarding of zero marks to all students involved,
and is viewed by the UCL administration as cheating under the regulations concerning Plagia-
rism, Collusion, and/or Falsification. Penalties imposed can include exclusion from all further
examinations at UCL. The course staff use extremely accurate plagiarism detection software to
compare code submitted by all students (as well as code found on the Internet) and identify in-
stances of copying of code; this software sees through attempted obfuscations such as renaming
of variables and reformatting, and compares the actual parse trees of the code. Rest assured that
it is far more work to modify someone else’s code to evade the plagiarism detector than to write
code for the assignment yourself!

Read the Ed Web Site

You will find it useful to monitor the 0019 Ed web site during the period between now and the
due date for the coursework. Any announcements (e.g., helpful tips on how to work around
unexpected problems encountered by others) will be posted there. And you may ask questions
there. Please remember that if you wish to ask a question that reveals the design of your solution,
you must mark your post on Ed as private, so that only the instructors may see it. Questions
about the interpretation of the coursework text, or general questions about C that do not relate

15



to your solution, however, may be asked publicly—and we encourage you to do so, so that the
whole class benefits from the discussion.

References

CS:APP/3e Chapter 9, particularly §9.7

Acknowledgement

Eddie Kohler created WeensyOS.

16


