
UCL CS 0019 Brad Karp

Individual Unassessed Coursework 2: Debugging Memory Allocator
Due date: 4 PM, 1st February 2024

Value: Unassessed (mark given but not part of module mark)

Introduction

C programmers (that would be us) allocate and free memory explicitly. This means we can write
fast code for modern machines, because we have full control over memory. The bad news is that
it’s all too easy to write programs that crash due to memory problems. But wait: as systems
programmers, we can build tools to help us debug memory allocation problems. For instance, in
this coursework, you will transform a simple memory allocator (e.g., implementation of malloc
and friends) into a debugging memory allocator.

Tasks

1. Transform the malloc library we give you into a debugging malloc library that:

• Tracks memory usage;

• Catches common programming errors (e.g., use after free, double free);

• Detects writing off the end of dynamically allocated memory (e.g., writing 65 bytes
into a 64-byte piece of memory);

• Catches less common, somewhat devious, programming errors, as described in the
remainder of this handout.

2. Augment your debugging malloc library with heavy hitter reporting, which tells a program-
mer where most of the dynamically allocated memory is allocated.

While the above tasks may at first sound imposing, they are achievable in not all that much
code. The remainder of this handout provides guidance in how to achieve them (as do the tests
we provide for your implementation). Read this handout in its entirety carefully before you
begin!

It is important to get started early—CW2 is not trivial! You will need the two weeks allotted
to complete it.

Context

C memory allocation uses two basic functions, malloc and free.

void *malloc(size t size)

Allocate size bytes of memory and return a pointer to it. This memory is not initialized
(it can contain anything). Returns NULL if the allocation failed (because size was too big,
or memory is exhausted, or for whatever other reason).

1

void *free(void *ptr)

Free a single block of memory previously allocated by malloc.

The rules of malloc and free are simple: Allocate once, then free once.

• Dynamically allocated memory remains active until explicitly freed with a call to free.

• A successful call to malloc(sz) returns a pointer (ptr) to “new” dynamically allocated
memory. This means that the sz bytes of data starting at address ptr are guaranteed not
to overlap with the program’s code, its global variables, its stack variables, or with any
other active dynamically allocated memory.

• The pointer argument in free(ptr) must either equal NULL or be a pointer to active
dynamically allocated memory. In particular:

– It is not OK to call free(ptr) if ptr points to the program’s code, or into its global
variables, or into the stack.

– It is not OK to call free(ptr) unless ptr was returned by a previous call to
malloc.

– It is not OK to call free(ptr) if ptr is currently inactive (i.e., free(ptr) was
previously called with the same pointer argument, and the ptr memory block was
not reused by another malloc()).

These errors are called invalid frees. The third error is also called a double free.
Some notes on boundary cases:

• malloc(0) may return either NULL or a non-NULL pointer. If ptr = malloc(0) is not
NULL, then ptr does not overlap with any other allocation and can be passed to free().

• free(NULL) is allowed. It does nothing.

• malloc(sz) returns memory whose alignment works for any object. (We’ll discuss align-
ment in class; for a preview, see CS:APP/3e §3.9.3.) On x86-64 machines, this means that
the address value returned by malloc() must be evenly divisible by 16. You should do
this, too.

Two secondary memory allocation functions are also commonly used in C: calloc and
realloc. The calloc function allocates memory and “clears” it so that all bytes in the allo-
cated region contain zeroes. The realloc function can allocate, free, or resize memory depend-
ing on its arguments. These functions work like this:

void *calloc(size_t nmemb, size_t sz) {
void *ptr = malloc(sz * nmemb);
if (ptr != NULL)

memset(ptr, 0, sz * nmemb); // set memory contents to 0
return ptr;

}

void *realloc(void *ptr, size_t sz) {
void *new_ptr = NULL;
if (sz != 0)

new_ptr = malloc(sz);
if (ptr != NULL && new_ptr != NULL) {

2

size_t old_sz = size of memory block allocated at ptr;
if (old_sz < sz)

memcpy(new_ptr, ptr, old_sz);
else

memcpy(new_ptr, ptr, sz);
}
free(ptr);
return new_ptr;

}

(N.B.: There’s actually a bug in that implementation of calloc! One of our tests would find
it.)

You will work on our replacements for these functions, which are called cs0019 malloc,
cs0019 free, cs0019 calloc, and cs0019 realloc. Our versions of these functions sim-
ply call basic versions, base malloc and base free. Note that the cs0019 functions take
extra arguments that the system versions don’t, namely a filename and a line number. Our header
file, cs0019.h, uses macros so that calls in the test programs supply these arguments automati-
cally. You’ll use filenames and line numbers to track where memory was allocated and to report
where errors occur.

In addition to the debugging allocator, you must design and implement another useful tool,
heavy hitter reports. You will design your solution, implement it, and test it.

Requirements

Your debugging allocator must support the following functionality. The code we hand out con-
tains tests for all this functionality (though we may run further tests when grading). From easier
to harder:

1. Overall statistics—how many allocations/frees, how many bytes have been allocated/freed,
etc.

2. Secondary allocation functions (calloc and realloc) and integer overflow protection.

3. Invalid free detection.

4. Writing past the beginning/end of an allocation.

5. Reporting memory that has been allocated, but not freed.

6. Advanced reports and checking.

7. Heavy hitter reporting.

Further details on what you must implement for each of the above functionalities are provided
below.

Finally, your debugging allocator also must perform acceptably—i.e., it must not inordinately
slow the execution of programs that use it. For this coursework, we define “acceptable” to mean
that the tests we provide (which invoke your debugging malloc) must each run to completion
within 5 seconds. These test programs themselves take just a fraction of a second to run on their
own (not counting time spent in your malloc implementation).

3

Getting Started

Before you follow the instructions below to retrieve the code for CW2, you MUST first
complete the 0019 grading server registration process. You only need to complete that pro-
cess once for the whole term, so if you did so before CW1, you can proceed straight to
retrieving the code for CW2.

If you have not yet done so, STOP NOW, find the email you received with the subject
line “your 0019 grading server token,” retrieve the instructions document at the link in that
email, follow those instructions, and only thereafter proceed with the instructions below for
retrieving the code for CW2.

All programming for this coursework must be done under Linux, with code compiled for an
x86-64 CPU. Grades are determined using automated tests that the 0019 staff run on a grading
server with an x86-64 CPU.1 Even small changes in the software environment (everything from
OS version to compiler and library versions) and changes in CPU architecture (e.g., running
on ARM vs. on x86-64) can cause the same source code to produce different results. As a
consequence it is absolutely crucial that you do your work for the 0019 courseworks using the
same exact software environment and CPU architecture that the grading server uses. Otherwise,
there is a risk that when you test your code, you will see different behavior than the grading server
does. We provide an “official,” supported development environment for the 0019 courseworks
that you must use when building and running your 0019 CW code. This environment matches
the one used on the 0019 grading server, and thus helps ensure that the behavior you see when
you run tests yourself matches the behavior your code exhibits when run on the grading server.

Results from the tests on the 0019 grading server are final; even if your code behaves
differently in some other software environment or on some other CPU than in the supported
0019 development environment, your grade will be the result on the 0019 grading server.2

We provide two main supported ways for you to work on the 0019 CW:

• by logging in remotely over ssh to 0019 Linux x86-64 machines the 0019 instructors
provide that run the software for the supported development environment

• by running the supported development environment locally using Docker.

We explain both these methods below. You only need to use one! The Docker method
is somewhat more effort to set up, but gives you a complete, shell-based Linux development
environment for 0019 on your own machine, regardless of which OS (your “native OS”) you
have installed on your machine to begin with. Our advice is that if you find you have difficulty
getting Docker to work, rather than waste more valuable time on configuring your environment,
you instead use the ssh remote development method, which requires less setup.

Some students’ personal machines have x86-64 CPUs, and some students’ personal machines
have ARM CPUs (Apple M1, M2, or M3 CPUs). While the supported 0019 development envi-
ronment produces code for x86-64 CPUs, both ways of developing (ssh and Docker) will work

1While you receive a grade on CW2 as feedback, CW2 is unassessed—it does not contribute to your mark in the
module. CW3-CW5 will all be assessed, however, and are graded in the same way as CW2: using automated tests
run on a grading server with an x86-64 CPU.

2There is one exception: if a submission produces the expected output strings for any part of the CW2 test suite,
but the submitted code produces those output strings by means other than a good-faith attempt to implement the
functionality required in this CW2 handout, that submission will receive zero marks, regardless of test results.

4

for you, even if your own machine has an ARM CPU. ssh simply has you develop on a server
with an x86-64 CPU, whereas the Docker environment we provide accurately emulates an x86-
64 CPU if you have an ARM machine (as we explain in the information on Docker we provide
below).

If while using the supported 0019 development environment (either via ssh or under the
0019 Docker setup), you consistently (i.e., for many runs) get different results than you do when
your code is tested by the grading server (which we describe below), please contact the course
staff via an Ed private message. We are happy to answer student questions about difficulties
encountered when doing the coursework in the supported 0019 development environment, but
we cannot support any other Linux installation.

Option 1: Using the 0019 x86-64 Linux Lab Machines over ssh

As we previously described in the handout for CW1, for the full duration of 0019, we provide
a set of ten Linux machines with x86-64 CPUs that students can log into remotely via ssh.
Regardless of the OS or CPU on your own personal machine, you can complete CW2 (and every
CW in 0019) by logging into these 0019 Linux machines by ssh and building, testing, and
debugging your code there. Please refer to the 0019 Courseworks web page for instructions on
how to access the 0019 Linux machines by ssh:

http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2024/cw.html

Our intent in 0019 is that students build and run their code using the Linux shell command
line, so that they build proficiency using the shell, which is an extremely powerful develop-
ment environment favored by most of the most skilled system designers, and is convenient to
use over ssh. That said, VS Code supports editing code locally in VS Code’s GUI on your
own machine when developing over an ssh connection to a server. In this mode of use, VS
Code applies edits to source code files stored on the server and can build and run your code
on the server, all through VS Code’s GUI. You can find documentation for how to set up VS
Code this way at https://code.visualstudio.com/docs/remote/ssh. Take particu-
lar care that because UCL CS’s network requires you to ssh first to knuckles.cs.ucl.ac.uk
and from there to one of the 0019 Linux machines, you will need to configure your machine
to use ProxyCommand for VS Code to be able to “jump” through knuckles to reach an
0019 Linux machine, as explained in https://code.visualstudio.com/blogs/2019/
10/03/remote-ssh-tips-and-tricks#_proxycommand.

Option 2: Setting Up and Developing Locally with Docker

The other option (again, you only need one!) is to install the supported 0019 development
environment locally on your own personal machine. We use Docker to provide the supported
local Linux development environment for the x86-64 CPU. Perhaps counterintuitively, Docker
can provide this environment even on machines with ARM CPUs—it can compile C into x86-64
assembly and x86-64 machine code, and even run x86-64 machine code on ARM CPUs.

Docker performs well: Linux starts instantly in a Docker container, and a Linux Docker
container tends to consume less CPU, disk storage, and RAM than a full-blown virtual machine
image does. Using Docker will also give you the interesting experience of having a Linux shell-
based development environment on your own machine.

All of this said, Docker takes a little effort to set up. If you are uncomfortable with the
steps that follow, or if you encounter difficulty following them, we advise simply using ssh to
complete the 0019 courseworks, as described in the previous section of this handout.

To use the supported 0019 development environment on your own machine under Docker,
you must first download and install the Docker Desktop software, which is free for educational

5

http://www.cs.ucl.ac.uk/staff/B.Karp/0019/s2024/cw.html
https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/blogs/2019/10/03/remote-ssh-tips-and-tricks#_proxycommand
https://code.visualstudio.com/blogs/2019/10/03/remote-ssh-tips-and-tricks#_proxycommand

use. You can find links to installer packages for the latest versions of Docker Desktop for Win-
dows, Mac OS X, and Linux online at:

https://www.docker.com/get-started/

Download Docker Desktop on that page and install it. N.B. that there are different packages
for Intel Macs and ARM Macs! Note further that for the entire rest of these instructions, you
must have Docker Desktop not just installed, but running.

Windows users only:
To install Docker on Windows, you must first install Windows Subsystem for Linux version 2
(WSL2). If you already have WSL version 1, you need to update to WSL version 2. Microsoft
explains how to check which version you are running and how to update at:

https://learn.microsoft.com/en-us/windows/wsl/
basic-commands

Next you need to retrieve configuration files for the 0019 Docker Linux development envi-
ronment. To do so, use git to clone the repository with the following command:3

git clone https://github.com/UCLCS0019/cs0019-docker

Change directory into your local repo copy with the shell command cd cs0019-docker.
Next you must customize the Docker image build instructions with your name and email address.
To do so, use your favorite text editor to edit the file Dockerfile.x86-64 if you have an Intel
CPU or the file Dockerfile.arm if you have an ARM CPU, as follows:

Find the line that begins ARG USER. Replace the user name 0019\ User with your
(human) name, taking care to precede any space with a single backslash, as done in
the example in the file (e.g., Jeremy\ Bentham).

Find the line that begins ARG EMAIL. Replace the email address nobody@ucl.ac.uk
with your UCL email address.4

If your machine has an Intel x86-64 CPU, regardless of your native OS, type the command
(note the period at the end, which is part of the command):

docker build -f Dockerfile.x86-64 -t cs0019:x86 .

If you have a Mac with an ARM CPU (Apple M1, M2, or M3), instead run the following
command:

docker build -f Dockerfile.arm -t cs0019:arm .

The above command instructs Docker to build a Docker-compatible Linux image for your
particular CPU. It will take up to 10 or so minutes to complete. Once the above command

3Throughout this handout, if you have set up your GitHub account to use ssh authentication, as the 0019
instructors recommend in Ed posts #5 and #14, then you can replace the https://github.com in all repo URLs
throughout this handout with ssh://git@github.com, so that your git commmands authenticate to GitHub over
ssh.

4If your name and/or UCL email address contain an apostrophe (you know who you are ;-)), you need to precede
any apostrophe with a backslash!

6

https://www.docker.com/get-started/
https://learn.microsoft.com/en-us/windows/wsl/basic-commands
https://learn.microsoft.com/en-us/windows/wsl/basic-commands

completes you are ready to run the supported 0019 Linux development environment on your
machine. Docker calls the running instantiation of an image a container.

One convenient feature of Docker is that you can give a Docker container (in your case, a
running instance of the supported 0019 Linux development environment) access to a directory on
disk in your machine’s native OS. You will store your CW2 GitHub repository (which contains
your code for 0019 CW2) on disk in your machine’s native OS. You can then use any editor of
your choice in your native OS to edit your code, and the Linux container running inside Docker
can then read and write your repo directory’s contents, so that you can build and run your code
in the Linux container. To configure this, you’ll need to choose a directory in your native OS’s
file system that you’d like to share with your 0019 Linux Docker container. We recommend
you create a directory for 0019 CWs in your home directory in your native OS; for example,
if you’re in your home directory, you might type mkdir cs0019-cws in a Terminal window
under Linux or Mac OS to create a directory named cs0019-cws in which you can store all
your git repositories for the 0019 courseworks. Once you’ve chosen a name for this directory,
make a note of the full pathname to it; you’ll need to supply it as part of an argument to Docker
when you start your 0019 Linux Docker container. Let’s call the full pathname to this directory
MY0019DIR.

You’re now ready to start a Docker container for the 0019 Linux image you built earlier. We
provide a script that makes starting the 0019 Linux image under Docker less verbose. While in
the same directory (cs0019-docker), type the shell command:

./cs0019-docker-linux -d MY0019DIR
(where, again, MY0019DIR is the full pathname to the directory in your native OS
where you will keep your 0019 coursework repositories)

Windows users only:
You can’t run the above command directly in PowerShell. First run the bash Linux shell
by typing bash at the PowerShell prompt. Then enter the above command at the bash
command prompt. Also, when you specify MY0019DIR on the command line above, if there
is a Windows drive letter in your pathname, do not use a colon in the pathname after the
drive letter, and instead use backlashes to delimit the drive letter. In other words, don’t
use a MY0019DIR argument that looks like C:\Mydata\...; instead use a MY0019DIR
argument that looks like \C\Mydata\....

The above script instructs Docker to create and run a container from the image you built
previously. If you look at the script’s contents, you will see that on the docker run line, the
most significant command line options include telling Docker to connect the interactive shell
in that container to your terminal so that you can use a Linux shell running in the container
(-it); to delete the container when you exit the shell (--rm); and to make MY0019DIR in your
native OS’s file system accessible within the Linux Docker container, where it will appear under
/home/user/cs0019-cws (-v MY0019DIR:/home/user/cs0019-cws).

In your terminal window, you will immediately be given a shell prompt for a Linux shell
running in your supported 0019 Linux development environment. You can now use this shell to
do all the usual development commands you need (e.g., git to clone your repo, commit changes,
and push them to GitHub, as we explain below; make to build your code; and commands to
run the tests we provide with the various 0019 courseworks). When you’re done using the 0019
Linux development environment, just type exit at the shell prompt to exit the Docker container.
You don’t need to worry about the container’s deletion when you exit it because all changes to
your code (edits to source code, compilation results, etc.) are stored in your native OS’s file
system. Whenever you want to use the 0019 development environment in a Docker container
again, just run the cs0019-docker-linux script again.

7

ARM users only:

Your 0019 Linux development environment in a Docker container has been configured
so that it cross-compiles C code into x86-64 assembly code. And your Docker container will
automatically invoke an x86-64 CPU emulator to run x86-64 machine code. So when you
build CW2 (and subsequent CWs), you will in fact be running x86-64 machine code on an
emulated x86-64 CPU.

While the above all works seamlessly, gdb does not quite work seamlessly in this cross-
development (ARM to x86-64) environment. If you want to run gdb on an executable that
you build as part of CW2, you will need to do so using a gdb script we provide in the
CW2 code we hand out. For example, if you want to run gdb on the executable file named
test001, you may do so by typing the following commands:

• Run gdb at the shell prompt.

• At the (gdb) prompt, run the command source gdb.malloc.

• At the (gdb) prompt, run the command run-malloc test001.

Hereafter, you may run whatever gdb commands you wish in the usual way (setting break-
points, stepping through execution one line of C source a time, etc.). Substitute the name of
any CW2 executable you want to debug for test001 in the above.

Keep in mind that if you find using gdb in this fashion inconvenient, you can always ssh
to the 0019 x86-64 Linux machines we provide at UCL CS, clone your git repository there,
and run gdb there on a native x86-64 box.

Continue below to obtain a copy of the CW2 code in your 0019 Linux development environ-
ment.

Managing Your Code with git

For Courseworks 2 and later in CS 0019, you will manage the revisions of your code, including
submitting it to the instructors for testing and grading, using the git source code control system
and GitHub. git is useful for a great many things, from keeping the revision history of your
code to making it easy to share your code on different machines (if you wind up wanting to
use the Docker environment on your own box and also develop on the ssh-accessible 0019
Linux machines, for example, you can keep your multiple working copies in sync via your main
repository on GitHub). If you’ve not used git before, you can find a wealth of documentation
online; we offer only a bare-bones introduction below.

git manages a set of source code files you are working on in a repository. You keep a local
copy of the repository on a machine where you are editing your code and testing it, and use git
to keep your local copy synchronized with a “master” copy of the repository on a server. In CS
0019, you will use GitHub to host the master copy of your repository. As you do your work
(adding code, fixing bugs, etc.) it is good practice to update the master copy of your repository
on GitHub with the changes you have made locally. There are two steps to doing so: first, you
commit the changes to indicate that they are ready for shipping to the master repository, and
second, you push your committed changes to the master repository.

To start the coursework, though, you must first retrieve a copy of the files we provide for you
to start from using the instructions below:

• First, set up your GitHub repository for your CW2 code by visiting the following GitHub
URL:

8

https://classroom.github.com/a/mhVSWtW7

• If you’re not already logged into GitHub, you may be prompted for your GitHub username
and password. Once you’ve logged into GitHub, you will see a page with a button to ac-
cept GitHub Classroom assignment cs0019-2024-cw2-malloc-UNAME, where UNAME
is your GitHub username. The full string formatted as above is the name of your repository,
which we refer to below as “your repository name.” Press the Accept button.

• GitHub will ask you to reload the page to see when it has finished creating your repository.
Once this is complete, click on the link to the repository name to see the contents of your
new repository.

• In a shell on your chosen 0019 supported development environment (whether while logged
in remotely by ssh to a 0019 x86-64 Linux machine, or in a local shell in your Docker
0019 Linux container), issue the command:

git clone https://github.com/UCLCS0019/YOUR-REPO-NAME
(where YOUR-REPO-NAME is your repository name, as defined above)

You will be prompted for a username and password. Use your GitHub username. Do not
use your GitHub account password, though; GitHub now requires that users use personal
access tokens as passwords when retrieving repositories over HTTPS. Please refer to the
full instructions on how to create a personal access token to learn how to create a personal
access token.

Optional (Mac OS users using Docker only):

If you are using Docker on your Mac, and you have configured your GitHub account to
use ssh key pair authentication, you may also retrieve the CW2 repo over ssh. (See the
bottom of Ed post #5 for a link to instructions on how to set up key pair authentication for
GitHub.) If you use the ssh authentication agent in Mac OS to store your ssh key, our
script for running your 0019 Docker container will forward access to your ssh authenti-
cation agent to Docker, so that commands you run inside the Docker 0019 Linux container
have access to your ssh key.

Docker unfortunately does not support forwarding the Windows ssh authentication agent
into a Docker container. A workaround may be to copy your ssh private key from your
.ssh directory into your MY0019DIR, and then to start ssh-agent inside Docker, and
run ssh-add on the copy of your ssh private key available inside your MY0019DIR.

• In the same shell in your chosen development environment, change directory to the local
copy of your repository with the command:

cd YOUR-REPO-NAME

You will now have a local working copy of the CW2 repository in the environment where
you will develop the code for your solution, and you are located in the working directory where
the CW2 source code is.

All code you write for CW2 must go in the file cs0019.c. You will receive an initial
version of this file (which you must extend to complete CW2) in your repository when you
create it using the steps above.

9

https://classroom.github.com/a/mhVSWtW7
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

As you write your code and improve it (e.g., by fixing bugs, adding functionality, etc.), you
should get in the habit of syncing your changes to the master copy of your CW2 repository on
GitHub. Doing so keeps the history of changes to your code, and so allows you to revert to an
older version if you find that a change causes a regression. It also serves to back up your code
on GitHub’s servers, so you won’t lose work if your local working copy is corrupted or lost. To
bring GitHub up to date with changes to your local working copy, you must first use the git
commit -a command (which will prompt you for a log message describing the reason for your
commit, e.g., “fixed segfault on double free test”), and then the git push command to copy
your changes to GitHub.

Debugging Allocator: Details

Implement the following function:

void cs0019 getstatistics(struct cs0019 statistics *stats)

Fill in the cs0019 statistics structure with overall statistics about memory allocations
so far.

The cs0019 statistics structure is defined as follows:

struct cs0019_statistics {
unsigned long long nactive; // number of active allocations [#malloc - #free]
unsigned long long active_size; // number of bytes in active allocations
unsigned long long ntotal; // number of allocations, total
unsigned long long total_size; // number of bytes in allocations, total
unsigned long long nfail; // number of failed allocation attempts
unsigned long long fail_size; // number of bytes in failed allocation attempts
char* heap_min; // smallest address in any region ever allocated
char* heap_max; // largest address in any region ever allocated

};

Most of these statistics are easy to track, and you should tackle them first. You can pass
tests 1–10 without per-allocation metadata. The hard one is active size: to track it, your
free(ptr) implementation must find the number of bytes allocated for ptr.

The easiest, and probably best, way to do this is for your malloc code to allocate more space
than the user requested. The first part of that space is used to store metadata about the allocation,
including the allocated size. This metadata will not be a struct cs0019 statistics; it’ll
be a structure you define yourself. Your malloc will initialize this metadata, and then return
a pointer to the payload, which is the portion of the allocation following the metadata. Your
free code will take the payload pointer as input, and then use address arithmetic to calculate
the pointer to the corresponding metadata. This is possible because the metadata has fixed size.
From that metadata it can read the size of the allocation. See CS:APP/3e Figure 9.35 “Format of
a simple heap block” for an example of this type of layout.

If you don’t like this idea, you could create a list or hash table size for pointer that
mapped pointer values to sizes. Your malloc code would add an entry to this data structure.
Your free code would check this table and then remove the entry.

Other aspects of CW2 will require you to add more information to the metadata.
Run make check to test your work. Test programs test001.c through test012.c test

your overall statistics functionality. Open one of these programs and look at its code. You will
notice some comments at the end of the file, such as these:

//! malloc count: active 0 total 0 fail 0
//! malloc size: active 0 total 0 fail 0

10

These lines define the expected output for the test. The make check command checks your
actual output against the expected output and reports any discrepancies. (It does so by invoking
compare.pl.)

Secondary allocation functions, integer overflow protection

Your debugging malloc library should support the secondary allocation functions calloc and
realloc. It also must be robust against integer overflow attacks. (See, for example, the
CS:APP/3e Aside “Security vulnerability in the XDR library”, in §2.3, p. 136.)

Our handout code’s cs0019 calloc and cs0019 realloc functions are close to com-
plete, but they don’t quite work. Fix them, and fix any other integer overflow errors you find.

Use test programs test013.c through test016.c to check your work.

Invalid free and double-free detection

cs0019 free(ptr, file, line) should print an error message and then call ABORT()
(note the all caps!) when ptr does not point to active dynamically allocated memory.5

Some things to watch out for:

• Be careful of calls like free((void *) 0x16), where the ptr argument is not NULL
but it also doesn’t point to heap memory. Your debugging malloc library should not crash
when passed such a pointer. It should print an error message and exit in an orderly way.
Test program test017.c checks this.

• The test programs define the desired error message format. Here’s our error message for
test017:

MEMORY BUG: test017.c:9: invalid free of pointer 0xffffffffffffffe0,
not in heap

• Different error situations require different error messages. See test programs test017.c
through test021.c.

• Your code should print out the file name and line number of the problematic call to
free().

Use test programs test017.c through test027.c to check your work.

Boundary write error detection

A boundary error is when a program reads or writes memory beyond the actual dimensions of
an allocated memory block. An example boundary write error is to write the 11th entry in an
array of size 10:

int *array = (int *) malloc(10 * sizeof(int));
...
for (int i = 0; i <= 10 /* WHOOPS */; ++i) {

array[i] = calculate(i);
}

5ABORT() is a wrapper we provide you for C’s abort(). Our wrapper makes sure that any buffered output for
standard output and standard error (where printf() output from the tests goes) is flushed out before abort() is
called; changes made a few years ago to the semantics of abort() in Linux’s glibc C standard library necessitate this
flushing.

11

These kinds of errors are relatively common in practice. (Other errors can happen, such as
writing to totally random locations in memory or writing to memory before the beginning of an
allocated block, rather than after its end; but after-the-end boundary writes seem most common.)

A debugging memory allocator can’t detect boundary read errors, but it can detect many
boundary write errors. Your cs0019 free(ptr, file, line) should print an error mes-
sage and call ABORT() if it detects that the memory block associated with ptr suffered a bound-
ary write error.

No debugging malloc software can reliably detect all boundary write errors. For example,
consider the below:

int *array = (int *) malloc(10 * sizeof(int));
int secret = array[10]; // save boundary value
array[10] = 1384139431; // boundary write error
array[10] = secret; // restore old value!

// dmalloc can’t tell
// there was an error!

Or this:

int *array = (int *) malloc(10 * sizeof(int));
array[200000] = 0; // a boundary write error, but very far

// from the boundary!

We’re just expecting your code to catch common simple cases. You should definitely catch
the case where the user writes one or more zero bytes directly after the allocated block.

Use test programs test028.c through test030.c to check your work.

Memory leak reporting

A memory leak happens when the programmer allocates a block of memory but forgets to free it.
Memory leaks are not as serious as other memory errors, particularly in short-running programs.
They don’t cause a crash directly. (The operating system always reclaims all of a program’s
memory when the program exits.) But in long-running programs, such as your browser, memory
leaks have a serious effect and are important to avoid.

Write a cs0019 printleakreport() function that, when called, prints a report about ev-
ery allocated object in the system. This report should list every object that has been malloc()’ed
but not free()’d. Print the report to standard output (not standard error). A report should
look like this:

LEAK CHECK: test033.c:23: allocated object 0x9b811e0 with size 19
LEAK CHECK: test033.c:21: allocated object 0x9b81170 with size 17
LEAK CHECK: test033.c:20: allocated object 0x9b81140 with size 16
LEAK CHECK: test033.c:19: allocated object 0x9b81110 with size 15
LEAK CHECK: test033.c:18: allocated object 0x9b810e0 with size 14
LEAK CHECK: test033.c:16: allocated object 0x9b81080 with size 12
LEAK CHECK: test033.c:15: allocated object 0x9b81050 with size 11

A programmer would use this leak checker by calling cs0019 printleakreport() before
exiting the program, after cleaning up all the memory they could using free() calls. Any
missing free()s would show up in the leak report.

To implement a leak checker, you’ll need to keep track of every active allocated block of mem-
ory. It’s easiest to do this by adding more information to the block metadata. You will use the
file and line arguments to cs0019 malloc()/cs0019 realloc()/cs0019 calloc().

12

Note: You may assume that the file argument to these functions has static storage duration.
This means you don’t need to copy the string’s contents into your block metadata—it is safe to
use the string pointer.

Use test programs test031.c through test033.c to check your work.

Advanced reports and checking

Test programs test034.c, test035.c, and test036.c require you to update your reporting
and error detection code to print better information and defend against more diabolically invalid
free()s. You will need to read the test code and understand what is being tested to defend
against it.

Update your invalid free message. After determining that a pointer is invalid, your code
should check whether the pointer is inside a different allocated block. This will use the same
structures you created for the leak checker. If the invalid pointer is inside another block, print
out that block, like so:

MEMORY BUG: test034.c:10: invalid free of pointer 0x833306c, not allocated
test034.c:9: 0x833306c is 100 bytes inside a 2001 byte region allocated here

And make sure your invalid free detector can handle the diabolical situations in the other
tests. Which situations? Check the test code to find out!

Heavy hitter reports

Memory allocation is one of the more expensive things a program can do. It is possible to make
a program run much faster by optimizing how that program uses malloc() and by optimiz-
ing malloc() itself. (Did you know that both Google and Meta employ malloc specialists?
Google’s tcmalloc is available at http://code.google.com/p/gperftools/, and Meta
liked jemalloc so much that they hired Jason Evans (https://engineering.fb.com/
2011/01/03/core-infra/scalable-memory-allocation-using-jemalloc/).)

But before optimizing a program, we must measure that program’s performance. Program-
mer intuition is frequently wrong: programmers tend to assume the slowest code is either the
code they found most difficult to write or the last thing they worked on. Thus, before opti-
mizing anything, you want to have data to guide your optimization. In this case, it useful to
have a memory allocation profiler—a tool that tracks and reports potential memory allocation
problems.

Your job is to design and implement a particular kind of profiling, heavy hitter reports, for
your memory allocator. This task includes two parts. You will:

1. Track the heaviest users of malloc() by code location (file and line). A “heavy” location
is a location that is responsible for allocating many bytes.

2. Generate a readable report that summarizes this information.

Rule 1: If a program makes many allocations, and a single line of code is responsible for 20%
or more of the total bytes allocated by a program, then your heavy-hitter report should mention
that line of code (possibly among others).

Rule 2: Your design should handle both large numbers of allocations and large numbers of
allocation sites. In particular, you should be able to handle a program that calls malloc() at
10,000 different file-line pairs.

Rule 3: Your report should include some information that helps the user decide which lines
are likely to be the heaviest hitters, including exact or estimated byte counts per allocation site,
and by ranking the output of the sites by total byte counts.

How should you implement this? That’s up to you, but here are some tips.

13

http://code.google.com/p/gperftools/
https://engineering.fb.com/2011/01/03/core-infra/scalable-memory-allocation-using-jemalloc/
https://engineering.fb.com/2011/01/03/core-infra/scalable-memory-allocation-using-jemalloc/

• Sampling is acceptable. It would be OK, for example, to sample 1/100th of all allocations
and report information for only the sampled allocations. This can cut down the amount of
data you need to store.

– You could sample exactly every nth allocation, but random sampling is usually better,
since it avoids synchronization effects. (For instance, if the program cycled among
4 different allocation sites, then sampling every 20th allocation would miss 75% of
the allocation sites!) For random sampling you’ll need a source of randomness. Use
random() or drand48().

• Clever, yet easy, algorithms developed quite recently can help you catch all heavy hitters
with O(1) space and simple data structures!

– Karp, Shenker, and Papadimitriou, A Simple Algorithm for Finding Frequent Elements
in Streams and Bags, http://www.cs.yale.edu/homes/el327/datamining2011aFiles/
ASimpleAlgorithmForFindingFrequentElementsInStreamsAndBags.pdf.

– Demaine, López-Ortiz, and Munro, Frequency Estimation of Internet Packet Streams
with Limited Space, http://erikdemaine.org/papers/NetworkStats_ESA2002/
paper.pdf. The paper’s context doesn’t matter; the relevant algorithms, “Algorithm
majority” and “Algorithm frequent,” appear on pages 6-7, where they are simply
and concisely presented. (You want frequent, but majority is helpful for under-
standing.)

– You do not need to use these algorithms! But why not take a look? They’re surpris-
ingly simple.

We provide a test program for you to test heavy hitter reports, hhtest.c. You will find
an empty (stub) function cs0019 printheavyhitterreport() in cs0019.c. main() in
hhtest.c invokes this function just before it exits, to print out the heavy hitter statistics gath-
ered during hhtest’s execution. You must supply the code for cs0019 printheavyhitterreport()
in cs0019.c, as well as code within your malloc() implementation that accumulates these
statistics.

hhtest contains 40 different allocators that allocate regions of different sizes. Its first argu-
ment, the skew, varies the relative probabilities that each allocator is run. Running ./hhtest
0 will call every allocator with equal probability. But allocator #39 (which is at httest.c:169)
allocates twice as much data as any other. So when we run our dirt-simple heavy hitter detector
against ./hhtest 0, it reports:

HEAVY HITTER: hhtest.c:169: 1643786191 bytes (~50.1%)
HEAVY HITTER: hhtest.c:165: 817311692 bytes (~25.0%)

N.B. that your detector must follow the above output format. In particular, it must
output hitters in the order of heaviest to lightest, and must include all fields in the above
output, formatted identically.

If we run ./hhtest 1, however, then the first allocator (hhtest.c:13) is called twice as
often as the next allocator, which is called twice as often as the next allocator, and so forth.
There is almost no chance that allocator #39 is called at all. The report for ./hhtest 1 is:

HEAVY HITTER: hhtest.c:13: 499043 bytes (~50.0%)
HEAVY HITTER: hhtest.c:17: 249136 bytes (~25.0%)

14

http://www.gnu.org/software/libc/manual/html_node/BSD-Random.html
http://www.gnu.org/software/libc/manual/html_node/SVID-Random.html
http://www.cs.yale.edu/homes/el327/datamining2011aFiles/ASimpleAlgorithmForFindingFrequentElementsInStreamsAndBags.pdf
http://www.cs.yale.edu/homes/el327/datamining2011aFiles/ASimpleAlgorithmForFindingFrequentElementsInStreamsAndBags.pdf
http://erikdemaine.org/papers/NetworkStats_ESA2002/paper.pdf
http://erikdemaine.org/papers/NetworkStats_ESA2002/paper.pdf

At some intermediate skews, though, there may be no heavy hitters at all. Our code reports
nothing when run against ./hhtest 0.4.

Negative skews call the large allocators more frequently. ./hhtest -0.4:

HEAVY HITTER: hhtest.c:169: 15862542908 bytes (~62.1%)
HEAVY HITTER: hhtest.c:165: 6004585020 bytes (~23.5%)

Try ./hhtest --help to get a full description of hhtest’s arguments. You should test
with many different arguments; for instance, make sure you try different allocation “phases.” A
great software engineer would also create tests of her own; we encourage you to do this!

This idea can be taken quite far. Google, for example, links a heavy-hitter detector with many
important servers. It is possible (within Google) to connect to many servers and generate a graph
of its current heavy hitter allocation sites, including their calling functions and relationships
among functions. Here’s a small example (scroll down the page):

http://goog-perftools.sourceforge.net/doc/heap_profiler.html
and here’s a bigger one:

https://github.com/rsc/benchgraffiti/blob/master/havlak/havlak4a-mallocgc.
png

Evaluation

The breakdown of marks:

• 80% tests of debugging allocator functions (the test programs we hand out, plus others).
If running make check reports *** All tests succeeded! you’ve probably got all
these marks.

• 20% tests of heavy-hitter reports, all using hhtest (provided to you in your repository).
There are four tests in the test suite for your heavy-hitter detector. These four tests together
validate that your heavy-hitter detector complies with the three numbered rules above.
The heavy-hitter report test for Rule 2 invokes your debugging malloc() with 10,000
different file-line pairs and verifies that execution completes within 5 seconds. You can run
this test yourself with ./hhtest -l. You can also run the remaining three heavy-hitter
report tests for Rules 1 and 3 yourself; to see the arguments to hhtest for these tests, look
at the end of the grading report from our grading server (see below).

Grading server

Every time you push your updated code to GitHub, our grading server will retrieve a full copy
of your code, build it (inside a Docker container with the same exact Linux version, compiler,
and libraries as the supported 0019 Linux development environment), run the full suite of tests
for CW2, and push a report containing the results of the tests back into your CW2 repository on
GitHub. The test results file is named grade report.md. The results file will contain complete
output for all tests, both for the basic debugging allocator functions (we provide these tests for
you to run yourself, as well), and for the heavy-hitter reports functions (some of which we don’t
hand out to you, as explained above). The results from the grading server are authoritative: it is
the test results on the grading server at the deadline that determine your grade.

Note that in the heavy-hitter report tests for Rules 1 and 3, our grading server compares
the output of our model solution with your code’s output. The test results file our grading
server places in your repository on GitHub will tell you the arguments to hhtest for these
tests, and whether your code generates the correct output for these tests, but it does not include
the output of the model solution. You can run the tests for Rules 1 and 3 yourself on your

15

http://goog-perftools.sourceforge.net/doc/heap_profiler.html
https://github.com/rsc/benchgraffiti/blob/master/havlak/havlak4a-mallocgc.png
https://github.com/rsc/benchgraffiti/blob/master/havlak/havlak4a-mallocgc.png

own machine, though (by just running ./httest with the appropriate arguments), and if you
examine hhtest.c, you will be able to predict the expected output for these tests!

Once again, we urge you to get started early.

Submitting

While CW2 is unassessed, it has a nominal due date (by which you should complete it) of 4 PM
GMT on 1st February 2024. We will hand out CW3 that day (which is the first assessed CW for
0019), so you will not want to be working on CW2 beyond the 1st.

A note on undefined behavior

Debugging allocators have a nuanced relationship with undefined behavior. As we tell you in
class, undefined behavior is a major no-no, because any program that invokes undefined behavior
has no meaning. As far as the C language standard is concerned, once undefined behavior occurs,
a program may do absolutely anything. Many of our tests (such as 17–30) explicitly invoke
undefined behavior, and thus have no meaning. Yet your code must produce specific warnings
for these cases! What gives?

Well, helpful debuggers catch common bugs, and bugs with malloc and free are disturbingly
common. For this reason, debugging allocators take certain undefined behaviors and define
them. For instance, when a debugging allocator is in force, a program like test020.c with a
simple double free has defined behavior, namely crashing with a specific error message.

When writing a debugging allocator, it’s important to understand the properties of the under-
lying allocator. We have provided you with a very simple base memory allocator in basealloc.c.
This allocator has the following properties:

• Memory is allocated with base malloc and freed with base free.

• Memory freed by base free may be returned by a later base malloc.

• But base free never overwrites freed memory or returns freed memory to the operating
system. (This simple constraint makes it much easier to write a debugging allocator with
base malloc/free than with C’s default malloc/free.)

Thus, the following program is well-defined:

int main(int argc, char *argv[]) {
int *x = base_malloc(sizeof(int));

*x = 10;
base_free(x);
assert(*x == 10); // will always succeed

}

But double-frees and invalid frees are truly undefined, and the following program still has no
meaning.

int main(int argc, char *argv[]) {
int *x = base_malloc(sizeof(int));
base_free(x);
base_free(x); // ERROR ERROR ERROR

}

16

Read the Ed Web Site

You will find it useful to monitor the 0019 Ed web site during the period between now and the
due date for the coursework. Any announcements (e.g., helpful tips on how to work around
unexpected problems encountered by others) will be posted there. And you may ask questions
there. Please remember that if you wish to ask a question that reveals the design of your solution,
you must mark your post on Ed as private, so that only the instructors may see it. Questions
about the interpretation of the coursework text, or general questions about C that do not relate
to your solution, however, may be asked publicly—and we encourage you to do so, so that the
whole class benefits from the discussion.

References

Debugging allocators have a long history. dmalloc (http://dmalloc.com/) is one of the
early ones; you can find a list of some others at:

http://en.wikipedia.org/wiki/Memory_debugger.
Modern compilers integrate both optional allocation debugging features and some debugging
features that are on by default. For instance, Mac OS and Linux’s memory allocators can detect
some boundary write errors, double frees, and so forth. Recent clang and gcc -fsanitize=memory
arguments can catch even more problems.

Feel free to look at the code and documentation for other allocators to get ideas, but make
sure you cite them if you do.

Acknowledgment

This coursework is derived from one created by Eddie Kohler.

17

http://dmalloc.com/
http://en.wikipedia.org/wiki/Memory_debugger

