
1

The Midterm
Brad Karp

UCL Computer Science

CS 0019
7th February 2019

2

Midterm Exam
¢ 21st February, 3:05 PM
¢ Darwin B40 Lecture Theatre
¢ 1 hour 25 minutes
¢ UCL standard calculators permitted
¢ No other reference materials (books, notes) permitted
¢ Covers all assigned readings and lectures through 19th

February and Courseworks 1 -3
¢ Please be sure to bring an HB pencil for filling in

True/False/Don’t Know answer sheet
¢ Absence can only be excused by unforeseeable extenuating

circumstances (through CS ECs process)

3

Rubric
¢ Part I: multi-part short answer questions

§ A scenario, and multiple questions about that scenario, each of
which you answer

§ No choice of questions; all students answer all questions
¢ Part II: True/False/Don’t Know questions

§ A scenario and a series of five statements about that scenario
§ For each statement, you must indicate whether the statement is

true, false, or that you do not know (“T”, “F”, or “D”)
§ Any number of statements may be true (from 0 through 5)
§ For each true statement you identify as true and false statement you

identify as false, you receive 1 mark
§ For each statement whose truth or falsehood you contradict, you

lose 1 mark (negative marking discourages guessing)
§ “D” answers neither gain nor lose marks
§ Sum of “raw” marks for Part II normalized across the class

4

Example Multi-Part Short Answer
Question
Consider the disassembly of the x86-64 code for C function
f1() shown below (in this lecture, on the next slide).
(a) How many arguments does f1() take? [1 mark]
(b) How much space on the stack does a single invocation of
f1() allocate for local variables? [1 mark]
(c) How much of this space on the stack does a single
invocation of f1() use for local variables? [2 marks]
(d) Which registers does f1() save on the stack before it
makes a function call and does f1() restore from the stack
after the function call returns? [2 marks]
(e) For each register in your answer to (d), why does f1()
save that register on the stack? [3 marks]
(f) Write the C function that you would expect to compile
into f1(). [6 marks]

5

_f1:
0: 55 pushq %rbp
1: 48 89 e5 movq %rsp, %rbp
4: 48 83 ec 20 subq $32, %rsp
8: 48 89 7d f0 movq %rdi, -16(%rbp)
c: 48 83 7d f0 00 cmpq $0, -16(%rbp)

11: 0f 84 28 00 00 00 je 40 <_f1+0x3F>
17: 48 8b 45 f0 movq -16(%rbp), %rax
1b: 48 8b 4d f0 movq -16(%rbp), %rcx
1f: 48 83 e9 01 subq $1, %rcx
23: 48 89 cf movq %rcx, %rdi
26: 48 89 45 e8 movq %rax, -24(%rbp)
2a: e8 d1 ff ff ff callq -47 <_f1>
2f: 48 8b 4d e8 movq -24(%rbp), %rcx
33: 48 01 c1 addq %rax, %rcx
36: 48 89 4d f8 movq %rcx, -8(%rbp)
3a: e9 08 00 00 00 jmp 8 <_f1+0x47>
3f: 48 c7 45 f8 00 00 00 00 movq $0, -8(%rbp)
47: 48 8b 45 f8 movq -8(%rbp), %rax
4b: 48 83 c4 20 addq $32, %rsp
4f: 5d popq %rbp
50: c3 retq

6

Answers to Multi-Part Short Answer
Question
(a) One.
(b) 32 bytes.
(c) 24 bytes.
(d) %rbp, %rax
(e) %rbp: callee-saved, used as frame pointer, so must be saved

and restored upon entry and exit to hold correct value upon
return to caller; %rax: caller-saved, used as return value, so
will be clobbered by callee.

(f) long f1(long x)
{

if (x)
return x + f1(x – 1);

else
return 0;

}

7

Example True/False/Don’t Know
Question
¢ Consider the following C structure and its use, which are to be compiled on

an x86-64 machine:
struct foo {

char x[5];
uint16_t i;
char y;

};
struct foo bar[16];
A. sizeof(struct foo) is 8.
B. Swapping the order of x[] and i in the struct foo declaration

changes sizeof(struct foo).
C. malloc(sizeof(struct foo)) will return storage aligned neither

more coarsely nor more finely than needed by struct foo.
D. In general, for any struct str whose members are of any C type,

whether a basic x86-64 C type (e.g., long, char) or a derived type built
from such basic types (e.g., array of chars, struct, pointer), sorting
struct str’s members in increasing order of alignment in the struct
str declaration yields the smallest possible sizeof(struct foo).

8

Example True/False/Don’t Know
Question
¢ Consider the following C structure and its use, which are to be compiled on

an x86-64 machine:
struct foo {

char x[5];
uint16_t i;
char y;

};
struct foo bar[16];
A. sizeof(struct foo) is 8. False.
B. Swapping the order of x[] and i in the struct foo declaration

changes sizeof(struct foo).
C. malloc(sizeof(struct foo)) will return storage aligned neither

more coarsely nor more finely than needed by struct foo.
D. In general, for any struct str whose members are of any C type,

whether a basic x86-64 C type (e.g., long, char) or a derived type built
from such basic types (e.g., array of chars, struct, pointer), sorting
struct str’s members in increasing order of alignment in the struct
str declaration yields the smallest possible sizeof(struct foo).

9

Example True/False/Don’t Know
Question
¢ Consider the following C structure and its use, which are to be compiled on

an x86-64 machine:
struct foo {

char x[5];
uint16_t i;
char y;

};
struct foo bar[16];
A. sizeof(struct foo) is 8. False.
B. Swapping the order of x[] and i in the struct foo declaration

changes sizeof(struct foo). True.
C. malloc(sizeof(struct foo)) will return storage aligned neither

more coarsely nor more finely than needed by struct foo.
D. In general, for any struct str whose members are of any C type,

whether a basic x86-64 C type (e.g., long, char) or a derived type built
from such basic types (e.g., array of chars, struct, pointer), sorting
struct str’s members in increasing order of alignment in the struct
str declaration yields the smallest possible sizeof(struct foo).

10

Example True/False/Don’t Know
Question
¢ Consider the following C structure and its use, which are to be compiled on

an x86-64 machine:
struct foo {

char x[5];
uint16_t i;
char y;

};
struct foo bar[16];
A. sizeof(struct foo) is 8. False.
B. Swapping the order of x[] and i in the struct foo declaration

changes sizeof(struct foo). True.
C. malloc(sizeof(struct foo)) will return storage aligned neither

more coarsely nor more finely than needed by struct foo. False.
D. In general, for any struct str whose members are of any C type,

whether a basic x86-64 C type (e.g., long, char) or a derived type built
from such basic types (e.g., array of chars, struct, pointer), sorting
struct str’s members in increasing order of alignment in the struct
str declaration yields the smallest possible sizeof(struct foo).

11

Example True/False/Don’t Know
Question
¢ Consider the following C structure and its use, which are to be compiled on

an x86-64 machine:
struct foo {

char x[5];
uint16_t i;
char y;

};
struct foo bar[16];
A. sizeof(struct foo) is 8. False.
B. Swapping the order of x[] and i in the struct foo declaration

changes sizeof(struct foo). True.
C. malloc(sizeof(struct foo)) will return storage aligned neither

more coarsely nor more finely than needed by struct foo. False.
D. In general, for any struct str whose members are of any C type,

whether a basic x86-64 C type (e.g., long, char) or a derived type built
from such basic types (e.g., array of chars, struct, pointer), sorting
struct str’s members in increasing order of alignment in the struct
str declaration yields the smallest possible sizeof(struct foo).
True.

