MATH 151 Engineering Mathematics (Fall 2012, practice only)

You must show necessary details in order to get full points.

1. Calculate the following limit, if it exists.

(a)
$$\lim_{x \to 0} \frac{\sin^{-1} x}{\sin x}$$

(b) $\lim_{x \to \infty} \frac{\ln x^2}{x^{\frac{1}{3}}}$
(c) $\lim_{x \to 0} (1 - 2(x^2 + x))^{\frac{5}{x^3 - x^2}}$

- 2. Find y' if $-e^{y^2} + \tan xy = 0$.
- 3. Let $f''(x) = 2\sin 2t + 3$, f'(0) = 1, $f(\pi) = 3$. Find f(x).
- 4. Find the domain, range and derivative of the function $f(x) = \ln \cos^{-1} x$.

5. Let
$$f(x) = \frac{1+x^2}{1-x^2}$$
.

- (a) Find all critical numbers of f.
- (b) Find the intervals where f is increasing and decreasing.
- (c) Find the intervals where f is concave upward and concave downward.
- (d) Find the local maximum and minimum.
- 6. Find the area of the largest rectangle that can be inscribed inside a circle of radius 1 cm.
- 7. Use the fundamental theorem of calculus in the following problems.
 - (a) Let the function f(x) be defined by $f(x) = \int_{\sqrt{x}}^{0} (\tan t + t^2) dt$. Find f'(x). (b) Compute the definite integral $\int_{-2}^{2} (x^2 - x + \cos x) dx$.
- 8. Find the values of c and d that make h continuous on \mathbb{R} :

$$h(x) = \begin{cases} 2x & \text{if } x < 1, \\ cx^2 + d & \text{if } 1 \le x \le 2\\ 4x & \text{if } x > 2. \end{cases}$$