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Abstract—Cloud computing provides on-demand access to IT
resources via the Internet. Permissions for these resources are
defined by expressive access control policies. This paper presents
a formalization of the Amazon Web Services (AWS) policy
language and a corresponding analysis tool, called ZELKOVA,
for verifying policy properties. ZELKOVA encodes the semantics
of policies into SMT, compares behaviors, and verifies properties.
It provides users a sound mechanism to detect misconfigurations
of their policies. ZELKOVA solves a PSPACE-complete problem
and is invoked many millions of times daily.

I. INTRODUCTION

Cloud computing provides on-demand access to IT re-
sources via the Internet. The convenience of accessing re-
sources in the cloud is made secure by user-specified access
control policies. An access control policy is an expressive
specification of what resources can be accessed, by whom,
and under what conditions. Properly configured policies are
an important part of an organization’s security posture. The
scale and diversity of cloud-based services is constantly grow-
ing (e.g., serverless computing, streaming analytics, edge-
computing devices), and each new offering used by an orga-
nization may require a different access policy configuration.
Moreover, customers are combining these services, which
means that the complexity is increasingly moving into policies.
Thus the security challenge for many customers is becoming
one of reasoning about static policies for their dynamic sys-
tems. Cloud customers want a tool that allows them to check
policy configurations based on their security requirements.

Amazon Web Services (AWS) defines a policy language that
lets users govern access to AWS resources. The permissions
granted by a policy rely on the interactions of different state-
ments and conditions. The policy language supports the inter-
play of statements that either grant access (allow statements)
or revoke access (deny statements). Furthermore, conditions
within statements can be based on access details such as the
source address, encryption, and other configuration options.

Users want assurances that their policies grant the right
permissions. To validate that policies express what is intended,
some AWS users have implemented heuristic-based syntactic
checks that detect certain patterns in policies, e.g., the use of
a wildcard that makes resources publicly accessible. Although
helpful, heuristic-based syntactic checks are unsound, since
they do not fully take into account the semantics of the policy
language. Others attempt to explicitly enumerate all possible
requests to a policy but quickly find this intractable.

In this paper, we present the development and application of
ZELKOVA, a policy analysis tool designed to reason about the
semantics of AWS access control policies. ZELKOVA translates
policies and properties into Satisfiability Modulo Theories
(SMT) formulas and uses SMT solvers to check the validity
of the properties. We use off-the-shelf solvers and an in-house
extension of Z3 called Z3AUTOMATA.

ZELKOVA reasons about all possible permissions allowed by
a policy in order to verify properties. For example, ZELKOVA
can answer the questions “Is this resource accessible by a
particular user?” and “Can an arbitrary user write to this re-
source?”. The property to be verified is specified in the policy
language itself, eliminating the need for a different speci-
fication or formalism for properties. In addition, ZELKOVA
provides many built-in checks for common properties.

The SMT encoding uses the theory of strings, regular
expressions, bit vectors, and integer comparisons. The use of
the wildcards ∗ (any number of characters) and ? (exactly one
character) in the string constraints makes the decision problem
PSPACE-complete. However, our experience with real-world
policies is that 99% of policy questions can be answered in
less than 160 milliseconds.

ZELKOVA is the underlying policy analysis engine for
a growing number of AWS services. Used many millions
of times every day, ZELKOVA analyzes policies attached to
resources with compute, storage, messaging, search, analyt-
ics, and other capabilities. A sample of AWS services that
integrate ZELKOVA includes Amazon S3 (object storage),
AWS Config (change-based resource auditor), Amazon Macie
(security service), AWS Trusted Advisor (compliance to AWS
best practices), and Amazon GuardDuty (intelligent threat
detection). Also, ZELKOVA is used by internal AWS Security
auditing tools to enforce security best-practices for policy con-
figurations, e.g., public access to the resources is prohibited.

A. Related work

Policy languages have been used in a variety of domains,
e.g., trust management, distributed authorization, role-based
access, access control of resources [1]–[6]. Several policy
languages are defined as Datalog programs since it enables
efficient verification of properties [2], [6]–[10]. The AWS
policy language is defined with respect to a JSON serialization,
and is designed to be used across various cloud services
and scenarios of access control. ZELKOVA combines all the
components of the policy language in a single analysis tool.



Fisler et al. define a policy formalism that consists of
transitions between different states of the environment that
determine access control in policies [2]. The access control
model in AWS also uses a policy and a dynamic environment
request context to determine permissions, but the environment
does not evolve during a single access request. Other policy
frameworks, e.g., XACML, allow policies across different ap-
plications to be combined [11], [12]. In a closely related work,
Hughes and Bultan transform XACML policies into Boolean
satisfiability problems and use a SAT solver to check partial or-
ders between policies using a bounded analysis. Bounding the
analyses, however, makes it unsound. In contrast, the encoding
to SMT in ZELKOVA is sound. The TRBAC policy model uses
concrete units of time to grant or revoke access [13]. This
is accomplished in the AWS policy language with conditions
on date and time. Finally, the SecGuru tool [14] compares
network connectivity policies using the SMT theory of bit
vectors.

Our present work stands out most along three dimensions.
First, we use an existing industrial policy language, which has
evolved to suit the needs of millions users and use cases. The
language is robust and flexible, with features that have arisen
from practical needs. Second, we work closely with service
teams to integrate our tool and to develop custom pre-built
properties that are relevant to each service’s users. Finally, we
have reached an audience of many millions with our tool.

II. APPROACH

When an access request is made to an AWS service, a
request context is generated which includes the principal
making the request, the resource being requested, and the
specific action being requested. A policy evaluation engine
compares this request context against the policies for the user
and the resource to determine if access is granted or denied.

ZELKOVA verifies AWS policies by reasoning over all
possible request contexts. The fundamental mechanism of
ZELKOVA is the ability to say if one policy is less-or-equally-
permissive than another. Properties can be specified as bound-
ary policies that represent either upper or lower bounds on
desired behavior. ZELKOVA’s less-or-equally-permissive check
then establishes the correctness of these bounds or finds a
counterexample.

A. Policy language overview

The AWS policy language is defined as serialized JSON1,
however, in this paper we describe the core constructs of the
policy language in a simplified abstract syntax. The examples
in this paper are also presented using this abstract syntax.

Fig. 1 shows the abstract syntax for the policy
language. In this syntax, ? denotes optional elements
and ∗ denotes list valued elements. A policy is a
list of statements. Each Statement consists of a tuple
(Principal,Effect,Action,Resource,Condition?). The
Condition is an optional element in the policy while

1https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_
elements.html

Policy→ Statement∗

Statement→ (Effect,Principal,Action,Resource,Condition?)

Effect→ allow | deny
Principal→ principal : string∗

Action→ action : string∗

Resource→ resource : string∗

Condition→ condition : Operator∗

Operator→ (OpName,KeyName,Value∗)

OpName→ StringEquals | StringEqualsIfExists | StringLike |
StringNotEquals | IpAddress | . . .

KeyName→ aws:sourceVpc | aws:sourceIp | s3:prefix | . . .
Value→ string | num | bool

Fig. 1. Simplified abstract syntax for the AWS policy language

the others are required. The Effect construct states whether
the statement allows or denies access. By default, access to
a resource is denied. Allow statements override the default
permissions, and deny statements override the permissions
granted by allow statements. In other words, to get access to
a resource, there must be some allow statement that grants
access and no deny statement that revokes that access. There
is no ordering constraints on statements in a policy.

The Principal construct is used in policies to specify which
users, accounts, services, or entities are granted or denied
access to resources. The principals are identified uniquely
by string values. The Action construct specifies the list of
actions that are either allowed or denied on the corresponding
resource. Various AWS services publish the set of actions that
can be performed by the user for the resources specific to those
services. The Resource construct specifies the list of service
specific resources to which access is either granted or denied.
Every AWS service has its own set of resources and each AWS
resource is uniquely identified by a string value. String values
for Action and Resource can contain the wildcard ∗ which
matches any number of characters and the wildcard ? which
matches exactly one character.

The Condition construct specifies conditions under which
access is granted or denied. In the Condition construct ex-
pressions are constructed using Operators on condition key
value pairs. The condition operators are grouped by their
types: String, Numeric, Date and Time, Boolean, Binary, IP
address, and others. The operator name (OpName) indicates
the type and the comparator. String condition operators provide
comparison on string conditions, e.g., StringEquals checks
string equality, StringLike checks a string against a pattern.
The complete list of operators is defined in the IAM documen-
tation2 and is supported in our implementation. The operators
are applied to condition keys (ConditionKey). Each condition
key is mapped to a corresponding value. Certain condition keys
are defined globally across all services, e.g., aws:sourceIp,
while other condition keys are service specific, s3:prefix.

2https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_
elements_condition_operators.html

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html


(( allow,
principal : students,
action : getObject,
resource : cs240/Exam.pdf),

( allow,
principal : tas,
action : getObject,
resource : (cs240/Exam.pdf,

cs240/Answer.pdf)))
(a) Policy X

(( allow,
principal : ∗,
action : getObject,
resource : cs240/*),

( deny,
principal : students,
action : getObject,
resource : cs240/Answer.pdf))

(b) Policy Y

Fig. 2. Example policies for students and TAs access to exams and answers.

X0 : a = “getObject” ∧ p = “students” ∧ r = “cs240/Exam.pdf”

X1 : a = “getObject” ∧ p = “tas” ∧
(r = “cs240/Exam.pdf” ∨ r = “cs240/Answer.pdf”)

X : X0 ∨X1

Y0 : a = “getObject” ∧ r = “cs240/*”

Y1 : a = “getObject” ∧ p = “students” ∧ r = “cs240/Answer.pdf”

Y : Y0 ∧ ¬Y1

Fig. 3. SMT encoding of policies X and Y from Fig. 2.

B. Example

A policy in the simplified abstract syntax for the Amazon
Simple Storage Service (S3) is shown in Fig. 2. Amazon
S3 is an object store where a logical unit of storage is
called a bucket. S3 stores data as objects in these buckets.
Each resource, e.g., the bucket and the objects in the bucket,
is uniquely identified through an Amazon Resource Name
(ARN). The policy attached to the bucket controls access to
the bucket and the objects in the bucket. The policy in Fig. 2(a)
states that students can read the exam and teaching assistants
can read both the exam and its answers. The other policy,
shown in Fig. 2(b), says that everybody can access all the
contents of cs240/ except that students cannot access the
answers.

Fig. 3 shows the encoding of the policies from Fig. 2. The
encoding for each policy is a formula over three variables p,
a, and r that correspond to the principal, action, and resource
in the resource request context. The formula evaluates to true
whenever the policy grants access. Since policy X has two
allow statements that can grant access, it is represented by
their disjunction. On the other hand, policy Y has one allow
statement Y0 and one deny statement Y1. Thus policy Y only
grants access if Y0 allows access and Y1 does not deny it:
Y0 ∧ ¬Y1. Note that we are abusing notation in Y0 to say
r = “cs240/*” since this, in fact, will correspond to a form
of string matching rather than equality. We discuss the details
of string matching in Section III-A.

To determine if policy X is less-or-equally-permissive than
policy Y , ZELKOVA uses SMT solvers to check if

(X0 ∨X1) =⇒ (Y0 ∧ ¬Y1)

is valid, which is true. The result of this check states that all
requests allowed by policy X are allowed by policy Y .

However, policy Y allows additional permissions. The re-
source “cs240/*” in the allow statement in policy Y allows
the “students” and “tas” principals access to objects (files)
other than “Exam.pdf” and “Answer.pdf”, such as “Class-
Roster.pdf”. Policy Y additionally grants principals other than
“students” and “tas” access to the resources in the bucket
“cs240”, since the deny statement only denies “students”
access to the “Answer.pdf”. This leads to a publicly readable
bucket since any other principal can perform the getObject
action on the contents of the bucket. Thus this policy does
not represent the user’s intentions, and it violates security best
practices. This shows the need for sound analysis of policies.
ZELKOVA provides this by reducing policies to mathematical
formulas and verifying their properties using SMT solvers.

III. SMT ENCODING

In this section, we describe ZELKOVA’s SMT encoding.
The encoding uses the theory of strings, regular expressions,
bit vectors, and integer comparisons. The policy language is
declarative, with no programming constructs such as loops
or dynamically allocated arrays. The semantics of the policy
language are encoded as an SMT formula. The permissions
granted by the policy are encoded as all the permissions
granted by allow statements and not revoked by deny state-
ments:  ∨

S∈Allow

[[S]]

 ∧ ¬
 ∨

S∈Deny

[[S]]

 (1)

Here Allow and Deny are the set of allow and deny statements
in a policy. The semantic meaning of each statement, [[S]], is
the set of permissions granted by an allow statement or the
set of permissions revoked by a deny statement.

Each statement in a policy encodes the constraints over the
principal, action, resource, and conditions:

[[S]] :=

 ∨
v∈P (S)

p = v

 ∧
 ∨

v∈A(S)

a = v

 ∧
 ∨

v∈R(S)

r = v

 ∧
 ∧

O∈C(S)

[[O]]

 (2)

The function P (S) returns all the string values specified
for a principal. Similarly, A(S) and R(S) return the string
values for the actions and resources in the statement. The
function C(S) returns the set of condition operators for a given
statement. The variables p, a, and r map respectively to the
principal, action, and resource values. The permissions in a
statement are granted as a disjunction over string values of the
principal, action, and resource values as well as a conjunction
over the conditions as shown in Eq. (2).



( allow,
principal : ∗,
action : getObject,
resource : cs240,
condition : (StringEquals, aws:sourceVpc, vpc-111bbb222),

(StringLike, s3:prefix, cs240/Exam∗))

Fig. 4. Example policy with two conditions.

Each condition in a policy encodes a constraint over the
corresponding condition key:

[[O]] :=
∧

〈op,k,V 〉∈CO(O)

condExistsk ∧

 ∨
v∈V

op(k, v)

 (3)

Each condition maps to an operator name, a key name, and
a list of values via the function CO(O). The meaning of a
condition is encoded by a disjunction over all the listed values.
The Boolean variable condExistsk states that condition key, k,
must exist in the request context. The variable k represents the
value of the condition key when it exists. The operator (op)
defines the operations on the key and value pair (k, v), e.g.,
equality or inequality.

Next, we present the encoding of a few important classes
of condition operators.

A. String constraints

The encoding of policies in ZELKOVA is largely through
the use of string constraints. This includes both string equality
and inequality constraints, as well as pattern matching against
regular expressions. The principal, action, and resources con-
structs in the policy are encoded as string constraints. String
operators and their corresponding condition keys are also
encoded as string constraints. An example policy with con-
ditions is shown in Fig. 4. The operator StringEquals is
applied to the condition key aws:sourceVpc with a value of
“vpc-111bbb222”, which restricts access to a specific virtual
private network (VPC) in the AWS cloud3. The string operator
StringLike is applied to the condition key s3:prefix with a
value of “grades/∗”, which limits access so that only objects
under the “grades/” directory may be listed.

Fig. 5 shows the SMT encoding for this example. The
Boolean variables vpcExists and s3PrefixExists encode
whether the conditions aws:sourceVpc and s3:prefix

are present in the request context. The constraint
“grades/” prefixOf s3Prefix encodes that “grades/” is a
prefix of the variable s3Prefix. The following request context
corresponds to a satisfying assignment to the set of constraints
in Fig. 5:

{principal: bob,
action : listBucket,
resource : cs240,
condition: {aws:sourceVpc: vpc-111bbb222,

s3:prefix: grades/2018/final/}}

In order to encode ∗ wildcards in strings we use the prefixOf,
suffixOf, and contains string operators. With this encoding we

3https://aws.amazon.com/vpc/

a = “listBucket” ∧ r = “cs240” ∧
vpcExists ∧ vpc = “vpc-111bbb222” ∧
s3PrefixExists ∧ “grades/” prefixOf s3Prefix

Fig. 5. SMT encoding of policy in Fig. 4

( allow,
principal : ∗,
action : listBucket,
resource : ∗,
condition : (StringEquals, s3:prefix,UpLoads),

(StringEqualsIgnoreCase, s3:prefix,Uploads))

Fig. 6. Example policy with mixed case conditions.

can support up to two ∗ wildcards. Later we will see a different
encoding for additional wildcards. Examples of the current
encoding are given in (4).

“cs2∗/Exam∗” 7→ “cs2” prefixOf Var ∧ Var contains “/Exam”

“cs2∗/∗Exam” 7→
“cs2” prefixOf Var ∧ Var contains “/” ∧ “Exam” suffixOf Var

“∗240/∗Exam” 7→ Var contains “240/” ∧ “Exam” suffixOf Var

(4)

When different parts of a pattern can overlap, we disallow
the possible overlaps. For example, “ab∗bc” translates to
“ab” prefixOf Var ∧ “bc” suffixOf Var ∧ Var 6= “abc”.
Note that “abc” would otherwise satisfy the prefix and suffix
constraints, yet it does not match the pattern “ab∗bc”.

B. Regular expression constraints

More complicated string constraints require a more powerful
encoding. In particular, the encoding described above is unable
to represent constraints with the ? wildcard or more than two ∗
wildcards. For example, the following encoding fails because
it does not restrict “b” to appear before “c”.

“a*b*c*d” 7→ “a” prefixOf Var ∧ Var contains “b” ∧
Var contains “c” ∧ “d” suffixOf Var

(5)

In such cases, we use regular expressions to encode these
constraints. For example, (6) shows two encodings based on
the traditional regular expression pattern format where “.”
stands for any single character and “*” is the Kleene star
operator representing zero or more occurrences of the previous
character.

“cs???/Exam∗” 7→ Var matches “cs.../Exam.*”

“cs2∗/Exam/∗/Results/∗” 7→
Var matches “cs2.*/Exam/.*/Results/.*”

(6)

Some condition operators are case sensitive (StringEquals,
StringLike) while others are case insensitive (StringEqualsIg-
noreCase, Bool). Which type of operators are used on the
same condition key determines the exact encoding for case
sensitivity. When a condition key is constrained with only
case sensitive operators, nothing special needs to be done.
When a condition key is constrained with only case insensitive
operators, the targets of all those comparisons are converted
to lowercase which solves the problem. The difficult case is



a = “listBucket” ∧ s3PrefixExists ∧
s3Prefix matches “UpLoads” ∧
s3Prefix matches “[uU][pP][lL][oO][aA][dD][sS]”

Fig. 7. SMT encoding of policy in Fig. 6

when a condition key is constrained with both case sensitive
and case insensitive operators. The previous method of con-
verting to lowercase all targets of case insensitive operators
would interfere with the case sensitive operators. Instead, case
sensitive comparisons are treated normally while the targets
of case insensitive comparisons are encoded into a regular
expression that represents all possible case combinations. For
example, consider the contrived combinations of conditions
in shown in Fig. 6. Here there is both a case sensitive and
a case insensitive constraint on the s3:prefix condition key.
The ZELKOVA encoding of these constraints is shown in Fig. 7
where we use character classes of the form [xX] to represent
a regular expression which matches a single character, either
“x” or “X”.

C. Bit vector constraints

The IpAddress condition operator allows users to restrict
access based on IP addresses. The IpAddress operator is
used in combination with the aws:SourceIp condition. The
values of aws:SourceIp have to be in the Classless Inter-
Domain Routing (CIDR) format. The CIDR format associates
net masks as part of the IP address specification. For example,
the IPv4 in CIDR notation 11.22.33.0/24 means that the first
24 bits of the IP address are considered significant. Consider
the translation of two conditions, one where aws:SourceIp is
set to 11.22.33.0/24 and the other set to 11.22.0.0/16:

C0 : (IpAddress, aws:SourceIp, 11.22.33.0/24) 7→
ipV4Exists ∧ (0x0B162100 = (ipV4 & 0xFFFFFF00))

C1 : (IpAddress, aws:SourceIp, 11.22.0.0/16) 7→
ipV4Exists ∧ (0x0B160000 = (ipV4 & 0xFFFF0000))

(7)

The Boolean variable ipV4Exists encodes the existence of
condition aws:SourceIp, and the bit vector variable ipV4
encodes the actual value. A bitwise AND operation is used to
mask the insignificant bits of the IP address in the constraint.

With this encoding we have [[C0]] =⇒ [[C1]] is valid. There
are 24 significant bits in the IP address in constraint C0 and
only 16 significant bits in the IP address in the constraint C1.
The common routing prefix is the same. Thus, request contexts
that are allowed by C0 are also allowed by C1.

D. Other operators

The conditions on numeric operators only perform integer
comparisons. There are no arithmetic operations in the policy
language and no interactions between numeric values and
string values, e.g., you cannot take the length of a string.
The conditions applicable to the Boolean operators are simply
encoded as Boolean constraints. Conditions with the IfExists

suffix check existence of the condition key in the request

Z3 CVC4 Z3AUTOMATA

UNSAT 965,092 34,908 0
SAT 959,543 39,932 525

Fig. 8. Number of times each solver was the fastest for one million UNSAT
and one million SAT property checks.

context. This suffix can be added to other condition opera-
tors such as StringEquals which results in a new operator
StringEqualsIfExists. The resulting operator can be applied
to the aws:sourceVpc condition key. For example:

(StringEqualsIfExists, aws:sourceVpc, “vpc-111bbb222”) 7→
awsSourceVpcExists =⇒ awsSourceVpc = “vpc-111bbb222”

(8)

IV. Z3AUTOMATA

Z3AUTOMATA is an in-house extension of Z3 designed to
provide a complete decision procedure for the theory of regular
expressions. As described in Section III, ZELKOVA uses the
regular expressions for problems that involve more than two
∗ wildcards, any ? wildcards, or tricky combinations such as
mixing case-sensitive and case-insensitive string comparisons.
Such cases are rare in general, but common at our scale where
we receive many millions of queries every day.

Z3 and CVC4 aim to efficiently solve problems over
word equations, a strictly more general problem than regu-
lar expression matching. This sometimes results in degraded
performance for pure regular expression problems. For ex-
ample, both fail to answer the query “Does there exist a
string that matches ‘ab∗b∗b∗b’ but not ‘a∗b∗b∗b’?”. More
generally, both solvers seem very sensitive to small changes
in the input encoding, where a quickly solved problem in our
domain becomes non-terminating. Yet, the theory of regular
expressions is decidable, and our problems stay within that
theory. Thus Z3AUTOMATA fills an important niche for our
domain.

Fig. 8 shows which solver was the fastest for one mil-
lion UNSAT and one million SAT Zelkova property checks,
both randomly selected. Note that for UNSAT problems,
Z3AUTOMATA is never the fastest solver. The SMT problems
that ZELKOVA generates contain a mix of both simple and
complex string constraints. For the properties that ZELKOVA
checks, an UNSAT result is, in our experience, always due
to the simple string constraints being unsatisfiable. Z3 and
CVC4 can easily and efficiently handle that case, thus
Z3AUTOMATA never wins. In the case where the constraints
are satisfiable, all the constraints must be considered including
the complex ones. Here, Z3AUTOMATA is able to win, often
in cases where Z3 and CVC4 are non-terminating.

Z3AUTOMATA solves regular expression problems using the
standard translation to deterministic finite automata (DFAs) via
non-deterministic finite automata (NFAs). It uses Hopcroft’s
algorithm for DFA minimization [15]. Z3AUTOMATA is para-
metric with respect to the character set and strives to produce
strings using only the printable subsets of a character set. The



( allow,
principal : ∗,
action : getObject,
resource : ∗,
condition : (StringEquals, aws:sourceVpc, vpc-111bbb222)))

( allow,
principal : ∗,
action : putObject, listBucket, . . . ,
resource : ∗)

Fig. 9. A policy check that allows getObject requests only from
vpc-111bbb222.

full range of regular expression (and automata) features are
supported including intersection, union, and complement.

Z3AUTOMATA currently integrates with Z3 only on the SAT
level and treats each regular expression match as an atom. A
good future challenge for the SMT community to solve is how
to integrate this into the traditional Nelson-Oppen framework.

V. ZELKOVA PROPERTIES

Organizations using cloud services want assurances that
policies being authored or modified by users do not violate
general security best-practices, adhere to the security guide-
lines defined by the organization, and do not deny access
to the intended users. Examples of these properties are as
follows: “Ensure that unrestricted public write is not allowed
to a particular resource.” (security best-practice), “Ensure
access to a resource is only allowed from a certain range of
IP addresses.” (organizational security check), and “Ensure
a particular user is allowed to perform a specific action on
a resource” (availability property). These properties can be
specified in the policy language and checked by ZELKOVA.
Verification of properties by ZELKOVA provides assurance that
there are no inappropriately configured resources within an
organization.

A. Organizational security checks

We use the example in Section II to describe how an organi-
zation can specify a property in the policy language such that it
can be checked by ZELKOVA. The example in Fig. 2(b) allows
principal “∗” access to the cs240 resource and denies students
access to Answer.pdf. The principal being set to a wildcard
can lead to unauthorized access of objects by users who are
not members of the University as described in Section II. As
a safeguard measure, suppose, the University administrator
wants to ensure that there is no unauthorized access to data
in the buckets. The administrator and the security lead of the
University decide that an appropriate property to check would
be “the getObject action on the CS department S3 buckets is
only allowed on requests from vpc-111bbb222.” The VPC is
owned by the University, and so access requests from within
the VPC are trusted.

A policy that specifies the property, “getObject actions
are only allowed from vpc-111bbb222” is shown in Fig. 9.
The first allow statement in Fig. 9 permits getObject only
when the request comes from vpc-111bbb222. The second
allow statement permits all other unrelated actions that are not
relevant to the comparison. The policy in Fig. 9 represents

(( allow,
principal : ∗,
action : sendMessage,
resource : ∗,
condition : (ArnEquals, aws:sourceArn,mytopic)))

(a)
(( allow,

principal : ∗,
action : sendMessage,
resource : ∗,
condition : (ForAllValues:ArnEquals, aws:sourceArn,mytopic)))

(b)

Fig. 10. Policies constrained by aws:sourceArn. (a) Policy does not allow
world writability. (b) ForAllValues semantics allow world writability.

a desired upper bound on the set of request contexts that
should be allowed. This bound will only be violated if the
input policy allows a request which Fig. 9 does not allow. In
such a case, the request must be a getObject request (since
all other requests are allowed by the second allow statement
in Fig. 9) and it must come from outside of vpc-111bbb222
(since all putObject requests inside the VPC are allowed by
the first allow statement). Such a request would indeed violate
the proposed property. On the other hand, if ZELKOVA shows
that the input policy implies the policy in Fig. 9 then the upper
bound is establish and the proposed property holds true.

B. Security best-practices

ZELKOVA supports several built-in checks that can be
leveraged to check a variety of security best-practices. Ex-
amples of these include checking whether a policy allows
world accessibility for services such as Amazon S3, Amazon
SQS, Amazon SNS, Amazon Glacier, Amazon Elasticsearch,
and AWS Lambda. These AWS services provide compute,
storage, messaging, and search capabilities. These checks are
used internally by AWS to check adherence to security best
practices and also available to external customers through
services such as Amazon Macie, AWS Config, AWS Trusted
Advisor, and the Amazon S3 console. The built-in checks
provide greater security assurances without requiring the users
to define the properties.

Consider the case of Amazon SQS, a fully managed mes-
sage queueing service. ZELKOVA provides a built-in check
for whether an Amazon SQS policy is world accessible.
Fig. 10(a) shows an example SQS policy which which al-
lows sendMessage to any resource by any principal, pred-
icated on a condition. The condition restricts the source
(aws:sourceArn) of the message to be a specific source
(mytopic). A similar policy is shown in Fig. 10(b). Here, the
operator ForAllValues:ArnEquals is applied to the condition
aws:sourceArn whose value is restricted to mytopic. The
semantics for the operator prefix ForAllValues states that if
the condition aws:sourceArn exists, then its value is mytopic.
The SMT formula for that is as follows:

awsSourceArnExists =⇒ (awsSourceArn = mytopic)

When a request context does not have the condition key
aws:sourceArn set, the above formula is true. Thus any



Fig. 11. S3 Console: Buckets marked Public or Not Public using ZELKOVA
checks.

Fig. 12. Rules in AWS Config that check public read is prohibited (s3-bucket-
public-read-prohibited) and public write is prohibited (s3-bucket-public-write-
prohibited) for an S3 bucket using ZELKOVA.

principal can send a message to the SQS queue. The ZELKOVA
built-in check for SQS world accessibility correctly marks
Fig. 10(a) as not world accessible and Fig. 10(b) as world
accessible.

VI. INDUSTRIAL EXPERIENCE

ZELKOVA is integrated in many AWS services including
Amazon S3, AWS Config, Amazon Macie, AWS Trusted
Advisor, and Amazon GuardDuty. In addition, ZELKOVA is
used by an internal security auditor by the AWS Security team.

The Amazon S3 Console is a web-based interface where
users can provision buckets; manage buckets, objects, and
folders; and set permissions to buckets and objects. A recent
release of the console added a view showing whether a bucket
is publicly accessible (Public) or not (Not Public). The
underlying check is performed by ZELKOVA. Fig. 11 shows
an example of this view.

AWS Config currently supports several managed rules based
on ZELKOVA4, such as a check for AWS Lambda Functions
granting unrestricted access, a check for S3 buckets granting
unrestricted read access, a check for S3 buckets granting
unrestricted write access, deny putObject requests that do not
have server side encryption, and deny actions that do not allow
https traffic. Config will trigger a new ZELKOVA-based check
whenever a new resource is created or the policy attached to it
is changed. Using the Config console, customers can determine
compliance of their S3 buckets against these rules, as shown
in Fig. 12, and receive notifications when permissions change
or view the permissions history in the console. The checks

4https://docs.aws.amazon.com/config/latest/developerguide/
managed-rules-by-aws-config.html
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Fig. 13. Performance of ZELKOVA on one million random policy questions

available in the Amazon Macie and AWS Trusted Advisor
services are similar to those in AWS Config.

ZELKOVA is used by internal security auditing tools, owned
by the AWS Security team, that scan all internal AWS
accounts to check for unintended configurations of resources.
Internal accounts are all AWS accounts owned by the AWS
development teams and personnel. These include policies
attached to various resources such as S3 buckets, SQS queues,
SNS topics, Glacier Vaults, KMS Keys, ElasticSearch Do-
mains, and AWS Lambda Functions. The security auditing
tools periodically scan all the resources and check compli-
ance of the resources policies according to the security best
practices. Violations of checks are automatically ticketed as
discovered, assigned to the owners, and automatically resolved
when policies are fixed. The auditing tools require no manual
intervention by the security engineering team.

While the checks available in Amazon Macie, AWS Config,
Amazon S3 Console, and AWS Trusted Advisor check safety
properties, the ZELKOVA integration in Amazon GuardDuty
checks for an availability property. ZELKOVA ensures that the
requisite permissions are enabled in a user’s policy when they
are on-boarding onto the service.

A. Implementation

ZELKOVA runs on AWS Lambda, a serverless computing
platform that runs applications without users needing to pro-
vision or manage servers. The input to ZELKOVA is a JSON
structure that consists of the policies that are being compared,
or a policy and the name of a built-in ZELKOVA check. The
response from ZELKOVA is also a JSON structure with the
answer to the query. For a comparison of policies, it returns

https://docs.aws.amazon.com/config/latest/developerguide/managed-rules-by-aws-config.html
https://docs.aws.amazon.com/config/latest/developerguide/managed-rules-by-aws-config.html


whether the first policy in the payload is less permissive, more
permissive, equivalent, or incomparable with respect to the
second policy in the payload. For each of the built-in checks,
ZELKOVA takes a policy and returns true or false based on
whether the check is satisfied. If ZELKOVA is unable to handle
any construct in the policy or the solver times out, it returns
unknown.

ZELKOVA uses the solvers Z3, Z3AUTOMATA, and CVC4
in the backend to solve queries [16], [17]. The solvers provide
a combination of string, regular expression, bit vector, and
integer comparison theories. ZELKOVA invokes the solvers in
parallel and returns the results as soon as one of the solvers
provides the answer. We use the Z3 solver with its traditional
sequence string solver. Experiments with other solvers such as
Z3Str3 [18] and other automata-based solvers [19] is part of
our future work.

B. Usage statistics

The total number of invocations of ZELKOVA ranges from a
few million to tens of millions in a single day. The number of
invocations varies based on the services invoking ZELKOVA.
Certain services invoke ZELKOVA at some regular cadence,
e.g., the internal security auditing tools, while other services,
e.g., AWS Config, invokes ZELKOVA when a change is de-
tected in the policies.

Fig. 13 shows the performance of ZELKOVA on one million
randomly selected policy questions. These contain both policy
comparisons and built-in checks. The total time includes time
to parse the input JSON, encode the policies into SMT,
perform the check, and construct the resulting JSON that
is returned. The y-axis represent the count, i.e., number of
policies solved within the time. The graph shows that 99% of
policies are solved within 160 milliseconds.

VII. CONCLUSION

In this paper, we have presented a formalization of the
AWS policy language that controls access to resources. This
is the first instance of formalizing the AWS policy language
as SMT formulas. The advantage of this approach is that it
allows us to use off-the-shelf SMT solvers to verify safety
and availability properties. Given the distributed nature of the
policy language where different services establish their own
list of condition keys, this work provides a single consolidated
service to reason about the semantics of policies applicable
across different services in AWS. The previous state of the art
in policy checks for AWS services used syntactic checks for
policies. Alternatively, given a concrete request context, the
policy evaluation engine allows users to test access control.
In contrast, our formalization into SMT provides the ability
to soundly reason about properties of a policy for all valid
request contexts.

For customers of AWS services, ZELKOVA provides deeper
insights into the policy language, its semantics, and its impli-
cations. The tool enables customers to automatically maintain
their security posture. For people in the SMT and verification
community, this work shows how SMT can verify properties of

a complex industrial policy language that is used by millions
on a daily basis. Moreover, this work is one of the largest and
most widespread uses of formal methods in industry.

There are two avenues of future work. One avenue is to
improve the existing functionality provided in ZELKOVA. This
includes further work on Z3AUTOMATA to make it more
competitive. The second avenue is to enhance the functionality
of the ZELKOVA engine itself. For example, we want to
add support in ZELKOVA to return to the user a concrete
request context using the model generated by the SMT solver
when performing the check. The concrete request context will
provide information to the user on why a certain check passed
or failed. We also want to add support for recommending
policy repairs in cases when the policy fails a certain check.
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