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In many fields of computational physics, it is often required to extrapolate a function from
a region where it is known to a region where it is unknown. In his 2003 paper [1], T. Aslam
presents a general methodology for multidimensional extrapolation. In this approach, the poly-
nomial extrapolation can be formulated by solving a series of linear partial differential equations,
which results in a more robust and flexible method than the geometric scheme commonly used
(i.e. closest point methods).

As an example, we'll study the case of constant extrapolation. Let there be a function u which
is defined only in a portion of space, and we would like to extrapolate it into the remaining areas
of space (as in figure 1). We assume there exists a level set function v such that ¢ < 0 defines
the region where u is known, and 3 > 0 is the region where u needs to be extrapolated. 1 is
typically the signed distance function from the interface I'.
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Figure 1 Initial conditions for Aslam’s extrapolation scheme. The function is defined only in the inner region of
radius 2, as u(x,y) = cos(z)sin(y).



In the case of constant extrapolation, the value of u at the interface I' is extrapolated as a

constant value along the normal direction (as seen in figure 2),
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Figure 2 Constant extrapolation in 400-cells grid.

which is defined everywhere in space as
VY
n = —
vy
The PDE used to achieve constant extrapolation is

ou e
E—i—H(qL)n'Vu—O

where H (1)) is the Heaviside function

1 ify>0
H(w):{ 0 ifp<0

So, to achieve constant extrapolation, one can simply solve equation 1 to steady state. Once
the PDE is steady, then we have n - Vu = 0, which yields that u will be constant along the

characteristic direction 7.

In his paper, T. Aslam to extend this method to higher-order polynomial methods, up to

quadratic extrapolation (as seen in figures 3 and 4).

Figure 3 Linear extrapolation in 400-cells grid.
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Figure 4 Quadratic extrapolation in 400-cells

In tables 1-3 we show the convergence rates for our implementations of constant, linear and

quadratic extrapolations:



e RRy: rate for the error in the L norm, taken over the entire grid.

R rate for the error in the L., norm, taken over the entire grid.

Ruvg—band: rate for the mean error in the Ly norm, taken over a 3-cells band around the
interface.

® Roo_pana: rate for the error in the L., norm, taken over a 3-cells band around the interface.

n Rl Roo Ravgfband Roofbcmd

100

200 0.77 0.86 0.98 0.93
400 0.98 1.05 1.09 0.89
800 0.99 0.85 1.05 1.05

Table 1 Numerical accuracy for constant extrapolation.

n Rl Roo Ravgfband Roofband

100

200 0.73 0.91 2.10 1.75
400 0.86 0.69 2.02 1.87
800 0.97 1.02 2.08 1.98

Table 2 Numerical accuracy for linear extrapolation.

n Ry R Ravg—band Roo_pand

100

200 1.02 0.98 2.55 2.53
400 1.07 1.02 2.33 241
800 1.02 1.07 2.10 2.12

Table 3 Numerical accuracy for quadratic extrapolation.

Even though globally only first-order results are achieved, it is usually more important to get
higher convergence rates in the vicinity of the interface I'.
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