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In many fields of computational physics, it is often required to extrapolate a function from
a region where it is known to a region where it is unknown. In his 2003 paper [1], T. Aslam
presents a general methodology for multidimensional extrapolation. In this approach, the poly-
nomial extrapolation can be formulated by solving a series of linear partial differential equations,
which results in a more robust and flexible method than the geometric scheme commonly used
(i.e. closest point methods).

As an example, we’ll study the case of constant extrapolation. Let there be a function u which
is defined only in a portion of space, and we would like to extrapolate it into the remaining areas
of space (as in figure 1). We assume there exists a level set function ψ such that ψ ≤ 0 defines
the region where u is known, and ψ > 0 is the region where u needs to be extrapolated. ψ is
typically the signed distance function from the interface Γ.

Figure 1 Initial conditions for Aslam’s extrapolation scheme. The function is defined only in the inner region of
radius 2, as u(x, y) = cos(x)sin(y).
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In the case of constant extrapolation, the value of u at the interface Γ is extrapolated as a
constant value along the normal direction (as seen in figure 2),

Figure 2 Constant extrapolation in 400-cells grid.

which is defined everywhere in space as

n̂ =
~∇ψ∣∣∣~∇ψ∣∣∣

The PDE used to achieve constant extrapolation is

∂u

∂t
+H(ψ)n̂ · ~∇u = 0 (1)

where H(ψ) is the Heaviside function

H(ψ) =

{
1 if ψ > 0
0 if ψ ≤ 0

So, to achieve constant extrapolation, one can simply solve equation 1 to steady state. Once
the PDE is steady, then we have n̂ · ~∇u = 0, which yields that u will be constant along the
characteristic direction n̂.

In his paper, T. Aslam to extend this method to higher-order polynomial methods, up to
quadratic extrapolation (as seen in figures 3 and 4).

Figure 3 Linear extrapolation in 400-cells grid.
Figure 4 Quadratic extrapolation in 400-cells
grid.

In tables 1–3 we show the convergence rates for our implementations of constant, linear and
quadratic extrapolations:
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� R1: rate for the error in the L1 norm, taken over the entire grid.

� R∞: rate for the error in the L∞ norm, taken over the entire grid.

� Ravg−band: rate for the mean error in the L1 norm, taken over a 3-cells band around the
interface.

� R∞−band: rate for the error in the L∞ norm, taken over a 3-cells band around the interface.

n R1 R∞ Ravg−band R∞−band

100
200 0.77 0.86 0.98 0.93
400 0.98 1.05 1.09 0.89
800 0.99 0.85 1.05 1.05

Table 1 Numerical accuracy for constant extrapolation.

n R1 R∞ Ravg−band R∞−band

100
200 0.73 0.91 2.10 1.75
400 0.86 0.69 2.02 1.87
800 0.97 1.02 2.08 1.98

Table 2 Numerical accuracy for linear extrapolation.

n R1 R∞ Ravg−band R∞−band

100
200 1.02 0.98 2.55 2.53
400 1.07 1.02 2.33 2.41
800 1.02 1.07 2.10 2.12

Table 3 Numerical accuracy for quadratic extrapolation.

Even though globally only first-order results are achieved, it is usually more important to get
higher convergence rates in the vicinity of the interface Γ.
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