
1 Methodology

What follows in this Chapter, is a description of the Empathic Visualisation
Algorithm (EVA). The theory behind EVA is presented formally, the method
being based on Slater [1] that automatically maps data to visual structures.
A statement of the research problem will be presented initially.

1.1 Statement of the problem

As stated previously, the problem presented here is that of visualising multi-
dimensional data sets. The overall objective is to construct a visualisation
such that the salient features of the data can intuitively be recognised by
an observer and where the representation gives a holistic view of the data
set. In other words, it can be described as a technique for the visualisation
of complex data in a naturalistic form.

Complex data in the sense that it is presented here, is data that is rel-
atively large both in terms of the amount of data present, and the number
of variables (dimensionality) that the data encompass. The variables them-
selves are usually correlated and hence cannot be treated separately.

The most interesting data are multi-dimensional. Multiple dimensions
refer to the difficult problem of information visualisation where data tables
(matrices of data with cases as rows and attributes as columns) have so
many variables that an Orthogonal Visual Structure (such as a graph) is
not sufficient. They have too many variables to be directly encoded using
1, 2 or 3d dimensional structures. For these kind of data, graphs and charts
lose their effectiveness. Numerous techniques have been described in the
literature that attempt to visualise such data with both advantages and
disadvantages. However, no method claims to achieve the overall objective
of this study.

An example of such multi-dimensional data set is that of accounting
(financial) data. The data shown in Figure 1 represent a Balance sheet and
profit and loss accounts for a single company over a period of 5 years. Apart
from the fact that there is a great amount of data, the data components
are correlated and their values (or range) affect each other with respect to
the decision analysis process. The assessment depends on the simultaneous
effect of several of these variables in different spheres of activity. One, must
also take into consideration the fact that this is data from a single company.
Imagine having hundreds of companies. How do you visualise such data?
How do you get a better understanding of your data set? The prospect of
visualising and understanding data, therefore from multiple companies is,
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in the least, a daunting task.

Figure 1: Sample of data for a single company,

In situations such as the above, information visualisation helps in “un-
derstanding” a set of data (which may be dynamically unfolding in time) by
allowing users to visualise representations of the data, thus using vision to
build “understanding”, and allowing the formation of hypothesis for later
statistical analysis.

There are two main problems involved in this, the first being, the choice
of a suitable mapping from the data to the chosen visual representation
(structure) and disinguishing between arbitrary and automatic mapping.
The possibility of taking into account the user’s emotions during visualisa-
tion in an automatic mapping, is the focal point of this method. The second
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problem highlighted is the choice of a suitable paradigm for the represen-
tation of the data, whether abstract (e.g. using colour) or more realistic.
Different representations may lead to quite different understandings. The
possibilities of naturalistic representations, something encountered in every-
day life, is also addressed in the present study.

Figure 2 shows the placement of “Empathetic Visualisation Algorithm
(EVA)” in the information visualisation classification presented in the liter-
ature.
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Figure 2: Classification of EVA,

The specific aim of this study is the construction of a system for such a
representation, and then to test this in an experimental setting. The system
should be such, that it can be used with as many different data sets and
visual structures as possible - i.e. that is, a generic system rather than one
tied to a particular form of data or visual structure.

1.2 Fundamentals

Throughout this thesis the representation of multivariate data in an n × k
data matrix X, consisting of n cases on k “quantifiable” variables x1, x2, ..., xk

is presented. Each row in the data matrix typically represents an individual
and there are k observations made for each individual. As mentioned above,
the objective is to construct a visualisation of the data matrix such that the
salient features of the data can intuitively be recognised by an observer and
the representation gives an overall view of the data set. Within this overall
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objective there are two further fundamental objectives:

1. Naturalistic visual representation. It should be something encountered
in everyday life, something that does not require special knowledge for
interpretation by a normal human observer.

2. Automatic mapping. The mapping should be that semantically “im-
portant” features in the data are mapped to “important” features of
the visual structure that are significant to human perception or emo-
tion.

Examples of (1) include faces, buildings, body posture, scenery and
other. No human needs to be an expert to recognise the emotional con-
tent of another human face - it is recognisably “happy”, “sad”, “angry”,
“relaxed”, “scared”, “neutral” in addition various combinations of these ba-
sic emotions. Frequently used throughout this thesis, is an example of a
“face” because it is the epitome of a naturalistic visual structure in the
sense that is presented here.

Given a set of data and a visual structure, it is trivially easy to construct
a mapping from the data to a visual structure - for example map variable
xi to the ith facial feature like in Chernoff faces described in the literature.
However, such a mapping is arbitrary - it does not take into account the
impact of the face on the emotions of the observer. The data is of interest
to the observer for some reason; associated with the data is some “value
system” reflecting the interest, importance or consequences of aspects of
the data for the situation of the observer. A fundamental goal, reflected in
(2), is that the perceptually or emotionally significant features of the visual
structure directly reflect the value system over the data. This is termed
visual homomorphism. Hence the mapping from data to visual structure
cannot be arbitrary, but must be constructed in such a way that this visual
homomorphism is realised.

What follows is an explanation of how such a mapping can be con-
structed. Two different types of visualisation problem are considered: the
first is the representation of the data matrix as a whole - one visual struc-
ture representing the entire data matrix, i.e. a face. The second, is where
each row (i.e., individual) in the data is to be represented by a different
instance of the same type of visual structure - so using faces again, each row
is mapped to a different face. In the first case, the problem is to capture
overall features of the same data set. In the second case the problem is
to examine the differences in the individuals, or to examine one individual
changing through time. In fact the method is very similar in both cases
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and does not affect the computation. The difference is on the focus and
interpretation. The overall representation is first considered.

1.3 Assumptions and Notation

Let νs(X), s = 1, 2, ..., p be p functions over the data representing “values”
over the data matrix.

Consider the example where the data matrix represents a set of cus-
tomers of a telephone company, and the variables are quantities such as age,
gender, marital status, income, number of years with the company, number
of telephone calls made per week, monthly phone bill, and so on. One value
might be a function of the overall age distribution of the population - such
as the mean age, the percentage over 65, or the percentage under 20. An-
other value might be the “flatness”of the data - for example the ratio of the
variance of the first principal component to the total variation in the data.
Another value might be the quality of service given by a telephone com-
pany and so on, and many other quantities that characterise the interests
or “value system” of the observer.

Consider a visual structure (Ω). Similarly there are p importance as-
pects, characteristics, of Ω that are measurable and significant to human
perception or emotions, es(Ω), s = 1, 2, ..., p. In the example of the face
these might be the degree of anger, happiness, boredom, fear - or character-
istics such as age, beauty, gender and so on.

The fundamental goal, in terms of any X and any Ω, is to produce a
mapping µ(X) −→ Ω such that ‘values’ over the data matrix are reflected
in characteristics of the visual structure. In particular that es(Ω) is a mono-
tonically increasing function of νs(X) for each s, s = 1, 2, ..., p. For example,
an increase in profitability of a company should result in an increase of
happiness of the corresponding visual structure.

A characteristic is a measurement of some aspect of Ω as a whole (such
as the emotions on a face) rather than some individual feature (such as the
shape of the mouth). It is some measure representing the totality of the
face i.e. the degree of “happiness”. The appearance of “happiness” depends
on many different individual features of the face - specific configurations of
muscle tensions, for example. Similarly, the appearance of beauty, age or
gender is derived from many different features - such as size of the eyes,
inter-ocular distance, shape of the mouth, symmetry, and so on. In other
words, features are the individual components that make up a face - such
as the specific configuration of muscle tensions for a specific face, or the
geometric and material properties of the actual features (eyes, colour of the
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eye, mouth, nose, lips) that make up a face. Knowing its features enable
us to render a face. Once rendered the face will have a set of measurable
“characteristics” (qualities).

Suppose that there are r features of the visual structure: φt(Ω), t =
1, 2, ..., r. Knowing these features Ω can be rendered. Once rendered, we
can measure it to determine its characteristics es(Ω), s = 1, 2, ..., p.

Finally, we introduce feature functions to the data matrix: ft(X), t =
1, 2, ..., r. These functions completely determine the features of the visual
structure, in fact

φt(Ω) = ft(X), t = 1, 2, ..., r (1)

The values of these functions are interpreted as the values of the features
of the visual structure. The aim is to choose these functions f in order to
attain the required correspondence (association) between the value system
over the data and the characteristics of the visual structure and therefore,
to attain the visual homomorphism.

Let ν = (ν1, ν2, ..., νp) and e = (e1, e2, ..., ep). Suppose ‖ ν − e‖ is a
measure of the ‘distance’ between these two vectors. Then the specific goal
is to choose ft(X), t = 1, 2, ..., r such that ‖ ν − e‖ is minimised. If this is
achieved it means that the characteristics of the visual structure produced
by the feature function best represents the “value system” of the data set.

1.3.1 Using Genetic Progamming (GP)

The minimisation problem introduced above can be tackled with a Genetic
Program (GP). Let Fi = (f1i, f2i, ..., fri) be a specific set of feature functions
which, when applied to X, produce the visual structure features. A large
collection of such sets of functions Fi, i = 1, 2..., N is chosen at random.
This collection defines a population of sets of feature functions. The ith
member of the population produces a specific visual structure Ωi. This visual
structure has characteristics es(Ωi), s = 1, 2, ..., p. These characteristics can
be used to produce the distance measurement ‖ νi − ei‖. The distance
measurement can be used to compute a “fitness” for the ith member of
the population. Hence, each member of the population has an associated
fitness, which can be expressed as a probability. An example might be to set
minimum fitness of population to 1, maximum fitness to 100 and interpolate
for values in between. These probabilities determine survival into the next
generation and selection for mating - thus producing a second generation.
The process continues until (possible) convergence. The most fit member of
all populations is chosen for the required mapping.
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It is expected that at each successive generation, the average fitness
would increase, until a generation is reached such that subsequent iterations
produce only negligible increments in fitness. This is interpreted as conver-
gence to a local minimum (solution). Different runs of the Genetic Program
result to different solutions due to randomness of the technique and absence
of an optimal solution. The most fit member of each population is chosen
for the required mapping.

Visualising Individuals in a Data Matrix The method above pro-
duces a visualisation for an entire data matrix. Instead the observer may be
interested in visualising each individual(row) of the data matrix - in order to
look for “special” individuals (eg. companies to add to his investment port-
folio), or where the rows represent the changing of one individual through
time, representing an evolving situation (showing the changes in company
shares during time).

The method is fundamentally unchanged, and only involves a reconsid-
eration of the domain of the feature functions f . Previously, the domain of
these functions was the whole of the data matrix X. Instead, is now the
domain over the variables represented by the columns of the data matrix.
So each individual row of the data produces a set of feature function values,
which therefore determines (renders) a visual structure for each row.

Similarly, the domain of the value functions ν is restricted also to the
variables represented by the columns. Hence each row now produces a dis-
tance measure - that between the characteristics of the visual structure for
that row, and the values over the data for the row. The overall distance for
the ith member of the population of sets of feature functions can therefore
be taken as a combination (e.g., a sum) of the distances over all rows of the
data. The method then proceeds as before.

1.4 Overview

A summary of the steps required in order to implement the method is de-
scribed below, using the notation above. Figure 3 gives a graphical visuali-
sation of the overview of the method.

1. Decide on Ω, the visual structure. Determine the number of features
Ω has. Assuming there are r, ft(X), t = 1, 2..., r feature functions are
required in order to render an individual.

2. The user (or observer), identifies the p important values of the data
set νs(X), s = 1, 2, ..., p.
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Figure 3: Overview of the method.

3. Identify es(Ω), s = 1, 2, ..., p the p characteristics of the visual struc-
ture that measure its totality and are significant to human emotions
and perception. This can be selected by the user or automatically
selected by the system.

4. Identify the fitness function i.e. the function we are trying to minimise,
which is, for example:

n∑

d=1

p∑

s=1

(νds − eds)2 (2)

5. Identify the GP parameters and run the GP.

The steps shown above achieve the visual homomorphism described ear-
lier. In other words, it can be defined as the ‘extraction and visualisation of
qualitative data from quantitative one’.

8



1.5 Discussion

This section has presented a method for automatic determination of a map-
ping from data to visual structure. It requires a user (someone interested
in the data) to construct a set of value functions of interest over the data.
The designer of the visualisation must decide on a type of visual structure,
and a set of perceptually or emotionally significant characteristics of this
visual structure that matches the number of value functions inserted by the
user. The visual structure must be determined by a set of quantifiable fea-
tures. A GP is then used to construct the mapping that minimises some
given measure of distance between what the user inserted as value functions
over the data and what the designer provided as characteristics of the visual
structure. The minimisation criterion is the only factor that specifies the
exact nature of the mapping.

For the method to work it is assumed that the GP will converge. In
such a case we can make the hypothesis that the observer will pick up out
important features of the data from this mapping. We can later test the
validity of this hypothesis.
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