
11

LOGICAL HANDLING OF

INCONSISTENT AND DEFAULT

INFORMATION

Philippe Besnard

Luis Fari~nas del Cerro*

Dov Gabbay**

Anthony Hunter**

IRISA

Rennes, France

* IRIT

Universit�e Paul Sabatier

Toulouse, France

** Department of Computing

Imperial College

London, UK

1 INTRODUCTION

The subjects of this chapter are two important and related kinds of uncertainty

in information systems: inconsistent information and default (defeasible) infor-

mation. In many information system applications, there is a need to represent

and reason with inconsistent data. For example, in a tax collection agency,

database records on individual taxpayers should be allowed to have inconsis-

tent information, as such information could be used to direct enquiries by tax

inspectors. Default information , such as rules that are usually true but are

allowed to have exceptions, tends to reduce the size of databases signi�cantly,

yet without signi�cant loss of utility for many applications. For example, a

market research agency could use default information in its consumer pro�les:

for its kind of business such a level of accuracy could be deemed su�cient.

Once we allow uncertainty of either kind in an information system, we must also

incorporate a reasoning component that would conclude answers from this more

general information. Such a component must be based on an appropriate formal

325

326 Chapter 11

model of deduction. It would be natural to consider using classical logic for

this purpose. Unfortunately, classical logic is unsatisfactory because it allows

arbitrary conclusions to be drawn from inconsistent information. Similarly,

default information cannot be handled adequately in classical logic because

there is a dynamic need to change conclusions whenever new information is

added to the system. These shortcomings force us to consider nonclassical

logics for our model of reasoning. These alternative logics are referred to as

logics for practical reasoning.

A number of logical systems have been developed for these forms of reasoning.

In the following two sections we discuss some of the issues behind inconsistent

information and default information, and then we present paraconsistent logic

and default logic as important candidates for reasoning with these respective

forms of information. Then, in Section 4, we present labeled deductive sys-

tems as a general framework for capturing these logics and tailoring them for

individual applications. We conclude in Section 5 with a brief summary.

Note that in this chapter we do not review the literature on handling inconsis-

tent information in relational databases. For this, see Chapters 3 and 4 in this

book. Other references include [3, 4, 9, 17].

2 HANDLING INCONSISTENT

INFORMATION

There are many situations in which information and its contrary both appear in

an information system. In some situations such inconsistencies could be useful,

such as in a collection database, where they could initiate pro�table enquiries.

In other situations they are undesirable, such as in a bank database of customer

accounts, where they need to be identi�ed and corrected (through a revision of

the database).

In some situations it is not even clear that inconsistencies should be corrected.

For example, the tax agency database may include an item of legislation that

prohibits citizens from having more than one spouse. Now, suppose, quite un-

expectedly from the point of view of the database designer, that this database

includes a taxpayer who has two spouses. Although, this creates an inconsis-

tency, revising the database might not be the most appropriate solution.

Logical Handling of Inconsistent and Default Information 327

Using 8 to represent \for all," ^ to represent conjunction, and ! to represent

implication, we can represent the previous example with these formulae

8x; y Spouse(x; y) ^ Spouse(x; z)! y = z

Spouse(MrBigamist ;MsVictim)

Spouse(MrBigamist ;MsMisled)

MsVictim 6= MsMisled

Using classical logic, it would be possible to infer any arbitrary conclusion from

this information. This is because the classical logic incorporates the following

proof rule, called ex falso quodlibet,

� :�

�

:

This proof rule states that from the two items � and :�, any conclusion � may

be inferred. Applying ex falso quodlibet to MrBigamist 's case (substituting

MsVictim = MsMisled for �), we could draw irrelevant and inappropriate

conclusions, such as

Rain-falls(mainly-on-the-plain):

What is required for reasoning with databases in which inconsistencies are al-

lowed to occur is a logic that does not incorporate the rule of ex falso quodlibet.

One such class of logics is the paraconsistent logics (for a review of paracon-

sistent logics see [2]). These logics use the same language as classical logic,

but they use only a subset of the proof rules. This implies that for any given

database we may infer fewer conclusions. Reasoning that is supported by para-

consistent logics includes modus ponens,

� �! �

�

:

So, for example, from

8x; y Spouse(x; y)! Spouse(y; x)

Spouse(MrMartin ;MrsMartin)

we may infer

Spouse(MrsMartin ;MrMartin):

Other reasoning that is supported by paraconsistent logics includes the rule of

disjunctive introduction,

�! � !

� _ � !

:

328 Chapter 11

In many ways, a paraconsistent logic is a useful substitute for classical logic.

But it does lack some intuitive proof rules, such as modus tollens,

�! � :�

:�

:

So, for example, from

8x; y Spouse(x; y)! Spouse(y; x)

:Spouse(MrMartin ;MrsJones)

the conclusion :Spouse(MrsJones ;MrMartin) cannot be inferred, although it

is clearly a desirable inference.

Returning to the original information in the MrBigamist example, a paracon-

sistent logic allows us to infer useful conclusions from the data. Furthermore, it

is very robust in the sense that regardless of the information that is introduced

into the database, the reasoning process will always give sensible conclusions.

Another advantage of a paraconsistent logic is that it does not force any deci-

sion to be made on whether a particular item of information in the database

is \false." Thus, we are not forced to decide which of Spouse(MrBigamist ;

MsVictim) and Spouse(MrBigamist ;MsMisled) is false. Similarly, we do not

have to decide which ofMsMisled 6= MsVictim orMsMisled =MsVictim holds.

In general, a paraconsistent logic can be used to give guidance on the source of

the inconsistency, and indicate actions that should be taken on the database.

For example, paraconsistent logics can be used as a formal basis for truth

maintenance systems, which are meant to partition the database into consistent

subsets of data (for example, [18]).

3 HANDLING DEFAULT INFORMATION

It is noteworthy that practical reasoning relies much more on exploiting gen-

eral rules (i.e., rules that are not necessarily universal) than on a myriad of

individual facts. General rules tend to be less than perfectly accurate and may

therefore have exceptions. Nevertheless, in modeling practical reasoning it is

intuitive to resort to general rules and therefore allow the inference of useful

conclusions, even if it does entail making some mistakes, because not all ex-

ceptions to these rules are necessarily known. Clearly, it is more e�cient to

state (and deal with) a single general proposition than to state (and deal with)

possibly thousands of instances of such a general proposition.

Logical Handling of Inconsistent and Default Information 329

An example of an application in which general rules would be bene�cial is

marketing, where decisions are usually based on generalities about customers

rather than on perfectly accurate information about each and every customer.

Consider the following example. In general, a person who is a customer of a

telephone company has a telephone instrument. Of course, exceptions exist:

deaf people, for instance, have special instruments that are not \telephones"

stricto sensu. So, if Fernandez is a customer of the telephone company, then it

makes sense to conclude that he has a telephone. The statement \a customer

of a telephone company has a telephone, unless proven otherwise" is default

information. The principle by which it is to occur in reasoning is \if x is a

customer of a telephone company, then x has a telephone, unless it is proven

that x counts as an exception."

Such reasoning may be represented with this notation:

PhoneCustomer (x) : :Exception(x)

HasPhone(x)

:

This rule is applied as follows. Given a certain value v for x, if

PhoneCustomer (v)

is inferred and

Exception(v)

cannot be proven, then

HasPhone(v)

is concluded (and is called a default conclusion).

As a special case, if

PhoneCustomer (Fernandez)

is inferred and

Exception(Fernandez)

cannot be proven, then

HasPhone(Fernandez)

is concluded.

Note the exibility of this use of default information. From the fact that Fer-

nandez is a customer of a telephone company, and in the absence of any evidence

that Fernandez counts as an exception, the general rule leads to the conclusion

330 Chapter 11

that Fernandez has a telephone. Importantly, there is no need to prove that

Fernandez is not an exception (for instance, that he is not deaf). It is su�cient

to establish that no proof is available according to which Fernandez may be

classi�ed as an exception; clearly, this is much less demanding.

Furthermore, there is no need to have a list of all exceptions. The default

information

PhoneCustomer(x) : :Exception(x)

HasPhone(x)

need not be modi�ed as information about exceptions evolves. For example,

suppose that \deaf people have no telephones." Then, adding the formula

8x Deaf (x)! Exception(x)

is enough to block the default conclusion HasPhone(x) for x that correspond

to deaf persons (while still permitting the default conclusion HasPhone(x) for

x that do not correspond to deaf persons). As an illustration, consider

PhoneCustomer (Baker)

PhoneCustomer (Cook)

Deaf (Cook)

Then,

PhoneCustomer(x) : :Exception(x)

HasPhone(x)

can be applied to x = Baker because PhoneCustomer (Baker) can be estab-

lished and Exception(Baker) cannot be proven, so the default conclusion

HasPhone(Baker)

is inferred. Consider now the case x = Cook , and try to apply the default

information,

PhoneCustomer (x) : :Exception(x)

HasPhone(x)

;

Clearly PhoneCustomer (Cook) can be inferred. However, the general rule can-

not be applied because Exception(Cook) can be proven (via Deaf (Cook) and

8x Deaf (x)! Exception(x)).

Conveniently, all new exceptions discovered with time can be taken into account

by simply adding them to the knowledge base; there is no need to modify the

general rule. The general rule will simply cease to yield some previous conclu-

sions (the ones corresponding to the newly introduced exceptions). Consider

Logical Handling of Inconsistent and Default Information 331

this example:

PhoneCustomer (Fernandez)

Deaf (Fernandez)

8x Deaf (x) ! Exception(x)

When only PhoneCustomer (Fernandez) was known, HasPhone(Fernandez) was

inferred. If, in addition, Deaf (Fernandez) and 8x Deaf (x)! Exception(x) are

known, then HasPhone(Fernandez) is no longer inferred. Such behavior is

termed nonmonotonic reasoning because a conclusion drawn in the presence

of certain information is withdrawn upon the introduction of additional in-

formation. That is, the set of conclusions does not increase monotonically as

information increases.

An interesting observation is that some exceptions just fail to obey the general

rule, while others explicitly oppose it. For instance, for deaf we might want to

assert both

8x Deaf (x)! Exception(x)

and

8x Deaf (x)! :HasPhone(x)

whereas for hearing-impaired people, we might want to stay agnostic about

whether or not they have telephones, and assert only

8x HearingImpaired (x)! Exception(x)

Also, there is no need to know the reason why an item is an exception to the

general rule. Indeed,

PhoneCustomer (Baker)

Exception(Baker)

is su�cient to block the default conclusion, without providing a reason why

Baker is a telephone company customer without a telephone.

Observe that priorities among general rules can be rendered. Consider an

example of a computer club whose members use telephone lines equipped with

modems to transmit data. They must count as exceptions to our general rule,

unless they have more than a single telephone line:

MemberComputerClub(x) : SingleLine(x)

Exception(x)

:

Consider an individual Smith, such that

PhoneCustomer (Smith)

MemberComputerClub(Smith)

332 Chapter 11

Because :SingleLine(Smith) cannot be proven,

Exception(Smith)

is inferred by this new rule, and the earlier rule is blocked; i.e., HasPhone(Smith)

is not inferred.

If one tries to apply the earlier rule

PhoneCustomer(x) : :Exception(x)

HasPhone(x)

�rst, then HasPhone(Smith) is inferred on condition that :Exception(Smith)

could not be inferred. Applying, the new rule now, yields Exception(Smith),

violating the proviso imposed on the earlier application, and thus voiding it.

To summarize, default logic [19] aims at formalizing reasoning from default

information by means of formulas of classical logic and the so-called default

rules, namely the expressions

� : �

where �, �, and are formulas of classical logic. The inference rules are those

of classical logic plus a special mechanism to deal with default rules: basically,

if � is inferred, and :� cannot be inferred, then infer . The above examples

demonstrated the main ideas; more complete treatment may be found in [1],

for instance.

4 LABELED DEDUCTIVE SYSTEMS FOR

PRACTICAL REASONING

Developing logics for practical reasoning creates new demands on the appara-

tus for de�ning the language and the proof theory. We approach this problem

as follows: we augment the language by labeling its formulae, and we de�ne

the proof theory to manipulate both the formulae and the labels on formu-

lae. This approach has driven the development of a general framework, called

Labeled Deductive Systems (LDS), for presenting logics that handle labeled

formulae [12, 14].

The basic unit of information in LDS is a labeled formula i : �, where i is a

label, and � is an unlabeled formula. A logic can then be de�ned in terms of

Logical Handling of Inconsistent and Default Information 333

allowed operations on the labeled formulae. For example, logical consequence

can be de�ned on labeled formulae,

fi

1

: �

1

; � � � ; i

n

: �

n

g

j : �

where i

1

; : : : ; i

n

are labels, j is a function of i

1

, : : :, i

n

, and �

1

, : : :, �

n

, � are

formulae.

Di�erent applications of LDS are made possible by di�erent de�nitions for the

logical manipulation of formulae � and for the algebraic manipulation of the

labels i. Furthermore, many existing logics �t into the LDS framework, includ-

ing temporal logics [10], modal and many-valued logics [8], resource logics [15],

and nonmonotonic logics [13, 11, 16].

4.1 LDS for Default Logic

We begin by showing how default logic can be handled by LDS. We assume the

usual set of logical formulae, which we denote F , and we label each item in F

with the symbol 0. We assume that default rules have the form,

i :

� : �

;

where �; �; 2 F , and i 2 2

N

is a unique label (i.e., i is a set of integers), and

we let D denote the set of default rules. Instead of using quanti�ed default

rules, we use their instantiated form, as common in default logic. However,

we also introduce labeling of the default rules. As before, we regard � as a

precondition, � as a justi�cation, and as the consequent. A database � is a

subset of D [F .

An example of a database is the default rules

f1g :

PhoneCustomer (Baker) : :Exception(Baker)

HasPhone(Baker)

f2g :

PhoneCustomer (Cook) : :Exception(Cook)

HasPhone(Cook)

and the data

f0g : PhoneCustomer (Baker)

f0g : PhoneCustomer (Cook)

334 Chapter 11

In the following we provide the de�nition of an extension, which is a consistent

set of conclusions of a database.

The notion of an extension in the LDS framework, is captured with two mecha-

nisms. The �rst mechanism concerns the derivation of formulae using the proof

rules of classical logic and the default rules. When we apply a proof rule or a

default rule, we keep track of the data and default rules used by propagating

the labels. For instance, from i : A and j : B we obtain i [j : A ^ B.

The second mechanism concerns the propagated labels. They indicate which

default rules have been applied to obtain a speci�c formula, and hence each

label delineates a subset of the data. Basically, we have to test that the default

rules applied to infer a formula with a given label do not have their justi�cation

contradicted by the subset of data corresponding to that label.

So, for the above example, by the �rst mechanism we get the following labeled

formulae,

f0g : PhoneCustomer (Cook)

f0g : PhoneCustomer (Baker)

f2; 0g : HasPhone(Cook)

f1; 0g : HasPhone(Baker)

and by the second mechanism, we have the following extension,

PhoneCustomer (Cook)

PhoneCustomer (Baker)

HasPhone(Cook)

HasPhone(Baker)

4.2 LDS for Paraconsistent Logic

LDS can also be used for presenting paraconsistent logics. For this we consider

the system C

!

of da Costa [7] that is formalized by the following proof method

of Carnielli et al [5, 6]. First, da Costa introduces the notion of a well-behaved

formula: :(� ^ :�) is not valid in general, but if it does hold for a formula

�, it is a well-behaved formula, and is denoted �

�

. Second, each formula � is

labeled with either a + symbol or a � symbol, and we call + : � and � : �

signed formulae. Intuitively, + : � and � : � can be interpreted as � being true

and � being false, respectively. Any set of sets of signed formulae is called a

form.

Logical Handling of Inconsistent and Default Information 335

Let � and � be two formulae. Below are a set of production rules that can be

used to transform a set of formulae into either a new set of formulae, or set of

sets of formulae.

f�;+ : (� ^ �)g) f�;+ : �;+ : �g

f�;� : (� _ �)g) f�;� : �;� : �g

f�;� : (�! �)g) f�;+ : �;� : �g

f�;+ : (::�)g) f�;+ : �g

f�;� : (:�)g) f�;+ : �g

f�;� : (::�)g) f�;� : �g

f�;� : (� � �)

�

g) f�;� : (�

�

� �

�

)g;where � 2 f^;_;!g

f�;� : (� ^ �)g) ff�;� : �g; f�;� : �gg

f�;+ : (� _ �)g) ff�;+ : �g; f�;+ : �gg

f�;+ : (�! �)g) ff�;� : �g; f�;+ : �gg

f�;+ : (:�)g) ff�;� : �g; f�;� : �

�

gg

Given a form C, we denote by R(C) the result of applying one of the rules to

the form. A tableau is a sequence of forms C

1

; : : : ; C

n

, such that C

i+1

= R(C

i

).

To test if a formulae can be inferred from a set of formulae, we label it with

the � symbol, add it to the data, and construct a tableau. The formula can

be inferred if the tableau is closed. A tableau is closed if every set of formulae

of its form is closed, and a set of formulae is closed if there is a formula � for

which + : � and � : � belong to that set.

For example, consider the following market research data on voting. In this

example, there is a symmetry about whether or not Dick is a Paci�st. In other

words, there is an argument that Dick is a Paci�st, and an argument that Dick

is not a Paci�st.

Dick ! (Republican ^Quaker)

Quaker ! Paci�st

Republican ! :Paci�st

Dick

Running the tableaux rules for this set, the resulting open tableau is the pro-

posed solution to the problem introduced by the inconsistency. Here we consider

only the two main forms, one of which is closed and the other is not. The rest

of the closed forms will be omitted.

336 Chapter 11

C

0

= f+ : (Dick ! (Republican ^Quaker));

+ : (Quaker ! Paci�st);

+ : (Republican ! Paci�st);+ : (Dick)g

C

1

= C

0

[f+ : (Republican ^Quaker)g

C

2

= C

1

[f+ : (Republican)+ : (Quaker)g

C

3

= C

2

[f+ : Paci�st ;+ : (:Paci�st)g

C

4

= ffC

3

[f� : Paci�stgg; fC

3

[f� : Paci�st

�

ggg

The set fC

3

[f� : Paci�stg is closed, and the set fC

3

[f� : Paci�st

�

gg is not

closed. This means that we can restrict our considerations to the following set

of signed elementary expressions of the open set � : Paci�st

�

, + : Paci�st , + :

Quaker , + : Republican, + : Dick . This set gives us a solution to the problem

in the sense that we consider Dick as a Quaker, Paci�st, and Republican, but

his Paci�sm is controversial. This also shows how even though the database

is inconsistent, the technique allows us to identify Paci�st=:Paci�st as being

central to this inconsistency problem.

The computational complexity of the deduction method presented is similar

to classical logic. This is in contrast to the usual nonmonotonic logics, where

complexity is extremely high. This is due to the fact that paraconsistent logics

block certain deductions from inconsistencies, whereas many nonmonotonic log-

ics, such as default logic, use consistency checking to ensure that each extension

is free from inconsistencies.

Nevertheless, it is perhaps now evident that using default or defeasible data,

and using inconsistent data are two interrelated problems. A signi�cant part of

reasoning with default rules is resolving inconsistencies. Similarly, many prob-

lems of inconsistencies in information arise from the use of default information.

Note that the above example captures an equivalence regarding the Paci�st=

:Paci�st nature of Dick. On other words, there is no apparent way of deter-

mining a priority on the information. This contrasts with many examples in

which some kind of priority can be identi�ed to resolve the problem. We return

to this issue later.

4.3 Skeptical and Credulous Views

In reasoning with both inconsistent information and default information, there

is the question of whether to adopt a skeptical or credulous view. In a skeptical

Logical Handling of Inconsistent and Default Information 337

view, the logic is cautious and does not allow conicting inferences, whereas in

a credulous view, the logic is less cautious, and does allow conicting inferences.

The rationale behind a credulous view is that the user makes a selection from

the conicting inferences. For example, take the following defaults rules,

f3g :

Aircraft(x) : RequireRunway(x)

RequireRunway(x)

f4g :

Helicopter (x) : :RequireRunway(x)

:RequireRunway(x)

and the following facts

f0g : Aircraft(Sikorsky)

f0g : Helicopter (Sikorsky)

From this, there are two extensions. The �rst containsRequireRunway(Sikorsky)

and the second contains :RequireRunway(Sikorsky). A credulous view would

allow both as possible inferences, whereas a skeptical view would allow neither.

Similarly, in paraconsistent logics, we may have the following data,

f5g : Aircraft(x)! RequireRunway(x)

f6g : Helicopter (x)! :RequireRunway(x)

f0g : Aircraft(Sikorsky)

f0g : Helicopter (Sikorsky)

In the same way, this paraconsistent logic gives both RequireRunway(Sikorsky)

and :RequireRunway(Sikorsky) as inferences. As with default reasoning, a

credulous view would allow both as acceptable inferences, whereas a skeptical

view would allow neither. However, it is not clear in general whether reasoning

should be skeptical or credulous.

4.4 Resolving Conicts

One solution to these kinds of problems is to use the labels to resolve the

conict. Essentially, the labels can be used to capture extra information about

the formulae in the database, and about the inferences, so that a judicious

choice can be made. For a variety of applications, LDS meets the need for

extra information about data. This may be further object-level information or

metalevel information or semantic information. A label can represent a wide

variety of notions. Take the labeled formula k : �. The label k could capture

any of the following:

338 Chapter 11

the fuzzy reliability of �

the origin, or source, of �

the priority of �

the time when � holds

a proof of � in, for example, a truth maintenance system

So, for example, with the database about aircraft, we could introduce an order-

ing over formulae that captures a notion of speci�city. For the above database,

the default,

f4g :

Helicopter (x) : :RequireRunway(x)

:RequireRunway(x)

is more speci�c than the default,

f3g :

Aircraft(x) : RequireRunway(x)

RequireRunway(x)

since helicopters are a subclass of aircraft. The ordering can then be used to

allow the inference :RequireRunway(Sikorsky) in preference to its complement.

Note that using such a selection technique with paraconsistent logic then means

the system can change inferences in the light of new information. Hence the

behavior is very similar to that of default logic. For example, for the following

data,

f5g : Aircraft(x)! RequireRunway(x)

f6g : Helicopter (x)! :RequireRunway(x)

f0g : Aircraft(Sikorsky)

The inference RequireRunway(Sikorsky) is selected. However, it is then re-

tracted when the fact Helicopter (Sikorsky) is added to the this data.

As another example of how labels can be used to resolve conict, consider

a groupware system that collates o�ce memos, and users query this system

about company regulations. Suppose that information in memo f7g includes

the following statement,

f7g : ExportCustomer(x)! ChargeCustomerInDollars(x)

and memo f8g includes statements,

f8g : ExportCustomer(x)! ChargeCustomerInDeutchmarks(x)

f8g : :ChargeCustomerInDollars(x) _

:ChargeCustomerInDeutchmarks(x)

Logical Handling of Inconsistent and Default Information 339

If a user has the fact ExportCustomer(Philips), then the groupware data is

inconsistent using classical logic. However, if the labels correspond to the data

of the memo, then there is a preference for information from the more recent

memo. In this example, if f7g corresponds to 23 January 1992, and f8g corre-

sponds to 25 February 1993, then the inconsistency can be resolved. As before,

if new information is added to the system, such as new memos, then inferences

might have to be retracted.

This feature of retracting inferences in the light of new data is termed nonmono-

tonicity. It is not a desirable concept per se. It means a lack of monotonicity,

and hence the lack of a property that classical logic and some of its close rel-

atives have. The term nonmonotonic logic was used because the logics being

developed for reasoning with default information seemed to have nonmono-

tonicity as their prime characteristic.

Nonmonotonicity is required when only a partial knowledge of a situation is

possible. Rarely does a system have at its disposal all the information that

would be desirable. However, to wait until all required information has been

assimilated would involve delay, even in�nite delay. Obviously this is not sat-

isfactory. To ameliorate, some nonmonotonic reasoning mechanism must be

resorted to. In other words, we argue that some form of plausible reasoning

is required. Where everything pertinent to the investigation is known, mono-

tonicity is more appropriate.

5 CONCLUSIONS

The ubiquitous usage by organizations of information that incorporates defaults

and inconsistencies contrasts sharply with the low level of computer-based han-

dling of such information. The situation will change as the expanding role of

information technology means that handling of such information will become

increasingly signi�cant. Indeed, as defaults and inconsistencies pervade virtu-

ally any real-world scenario, techniques for handling them must be incorporated

into any information system that attempts to provide a substantive model of

the real world.

In this chapter, we have illustrated the argument to handle default and incon-

sistent information with examples of situations where such information could

be potentially useful. There are a variety of techniques proposed to handle

such information. However, it seems that only via formal techniques, such as

340 Chapter 11

logics of practical reasoning, can we hope to provide a viable framework for

incorporating default and inconsistent information into information systems.

This includes developing logical proof systems and means for harnessing extra

information about formulae, such as semantic or metalevel information. In this

way, we can identify and resolve the conicts that arise when using default or

inconsistent information.

Acknowledgments

The authors wish to thank Philippe Smets, Curtis Dyerson, and Ami Motro

for helpful feedback.

REFERENCES

[1] P. Besnard. Introduction to Default Logic. Springer-Verlag, 1989.

[2] P. Besnard. Paraconsistent logics approach to knowledge representation.

In Proceedings of World Conference on the Fundamentals of Arti�cial In-

telligence, pages 107{114. Angkor, 1991.

[3] A. Borgida. Language features for exible handling of exceptions in infor-

mation systems. ACM Transactions on Database Systems, 10(4): 565{603,

December 1985.

[4] A. Borgida and K. Williamson. Accommodating exceptions in databases

and re�ning the schema by learning from them. In Proceedings of the

Eleventh International Conference on Very Large Data Bases (Stockholm,

Sweden, August 21{23), pages 72{81, 1985.

[5] W. A. Carnielli, L. Fari~nas del Cerro, and M. Lima-Marques. Contex-

tual negation and reasoning with contradiction. In Proceedings of the

Twelfth International Joint Conference on Arti�cial Intelligence (Sydney,

Australia, August), pages 532{537, 1991.

[6] W. A. Carnielli and M. Lima-Marques. Reasoning under inconsistent

knowledge. Journal of Applied Non-Classical Logics, 2: 49{79, 1992.

[7] N. da Costa. On the theory of inconsistent information. Notre Dame

Journal of Formal Logic, 15: 497{510, 1974.

Logical Handling of Inconsistent and Default Information 341

[8] M. D'Agostino and D. Gabbay. Labelled refutation systems. In Proceedings

of the Workshop on Theorem Proving with Analytic Tableaux and Related

Methods (Marseilles, France, April), pages 243{281, 1993.

[9] H. Dreizen and S. Chang. Imprecise schema: A rationale for relations with

embedded subrelations. ACM Transactions on Database Systems, 14(4):

447{479, December 1989.

[10] M. Finger and D. Gabbay. Labelled database management system. In

Proceedings of the International Conference on Database Theory, volume

646 of Lecture Notes in Computer Science, pages 188{200. Springer-Verlag,

1992.

[11] D. Gabbay. Abduction in labelled deductive systems: A conceptual ab-

stract. In Symbolic and Quantitative Approaches to Uncertainty, volume

548 of Lecture Notes in Computer Science, pages 3{12. Springer-Verlag,

1991.

[12] D. Gabbay. Labelled deductive systems. Technical report, Centrum fur

Informations und Sprachverabeitung, Universitat Munchen, 1991.

[13] D. Gabbay. Theoretical foundations for non-monotonic reasoning, part 2:

Structured non-monotonic theories. In Proceedings of Scandinavian Con-

ference on Arti�cial Intelligence, pages 19{40. IOS Press, 1991.

[14] D. Gabbay. Labelled deductive systems: A position paper. In Logic Col-

loquium 90, volume 2 of Lecture Notes in Logic, pages 66{88. Springer-

Verlag, 1993.

[15] D. Gabbay and R. de Queiroz. Extending the Curry-Howard interpretation

to linear, relevant and other resource logics. Journal of Symbolic Logic,

57: 1319{1366, 1992.

[16] A. Hunter. A conceptualization of preferences in non-monotonic proof

theories. In Logics in AI, volume 633 of Lecture Notes in Computer Science,

pages 174{188. Springer-Verlag, 1992.

[17] P. King and C. Small. Default databases and incomplete information.

Computer Journal, 34: 239{244, 1991.

[18] J. Martins and S. Shapiro. A model of belief revision. Arti�cial Intelligence,

35: 25{79, 1988.

[19] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13: 187{214,

1980.

