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Abstract
In previous work we advocated continued development of
specifications in the presence of inconsistency. To
support this we presented quasi-classical (QC) logic for
reasoning with inconsistent specifications. The logic
allows the derivation of non-trivial classical inferences
from inconsistent information. In this paper we present a
development called labelled QC logic, and some
associated analysis tools, that allows the tracking and
diagnosis of inconsistent information. The results of
analysis are then used to guide further development in the
presence of inconsistency. We illustrate the logic and our
tools by specifying and analysing parts of the London
Ambulance Service. We argue that the scalability of our
approach is made possible by deploying the ViewPoints
framework for multi-perspective development, such that
our analysis tools are only used on partial specifications
of a manageable size.

1. Motivation and Background

Inconsistent specifications are an inevitable intermediate
product of a requirements engineering process.
Inconsistencies may arise because of the preliminary
nature of elicited requirements, or indeed because of
inherently conflicting customer needs (for example,
because of multiple, conflicting views that these
customers hold on a problem or solution domain).

A desirable product of a requirements engineering
process is a formal specification which captures customer
requirements. The formality of such a specification is
desirable because it is amenable to formal reasoning and
analysis which, in turn, also facilitate the validation of
customer requirements. The process of translating
informal (often vague and inconsistent) requirements
statements into a precise formal (consistent) specification
is a difficult one. We believe that tools which enable
reasoning and analysis of inconsistent, but formal,
specifications can help improve such a translation
process.

In this paper, we present some formal, light-weight,
logic-based tools that can provide a requirements engineer
with a handle on inconsistencies in specifications. The
aim of these tools is to provide additional “non-intrusive”
reasoning in the presence of inconsistency and simple
analysis of inconsistent information. Such reasoning and
analysis can in turn provide guidance to the requirements
engineer on what course of action to take in the presence
of certain inconsistencies (we still believe, however, that

such action is ultimately a human-driven process). The
“non-intrusive” operation of such tools is necessary
because in many instances, the logic-based tools are
computationally intensive and would otherwise render
automated tool support unusable.

The work presented here complements our previous
work on eliciting requirements from multiple perspectives
using “ViewPoints” [11, 12, 25], and develops our
approach of inconsistency handling in this setting [16].
Our motivation is that inconsistencies are inevitable in
software development (and requirements engineering)
processes and products. They provide a focus for further
development (e.g., requirements elicitation), and can be
regarded as “desirable” in that they highlight issues that
need further attention. As such, they should be tolerated,
analysed and acted upon - in other words, systematically
managed [23].

The focus of this paper is a logic-based approach to
managing inconsistent specifications. In particular, we
focus on an adaptation of classical logic (termed quasi-
classical, or QC, logic) that allows limited reasoning in
the presence of inconsistency (§3), and extend it in simple
ways that facilitate the analysis of inconsistent
specifications (§4). We then develop an example to
illustrate our logical tools (§5) based on the IWSSD-8
case study of the “London Ambulance Service” [15], and
discuss the impact of the kind of analysis we advocate on
our goal of inconsistency handling and management. We
conclude with a short discussion on the role of automated
tool support, and related and future work (§6 and §7). A
more detailed discussion is available in [20].

2. Requirements: From fuzzy to formal

The requirements of many large software systems are
characterised by imprecision. Customers often under- or
over-specify their requirements, and requirements
statements are often contradictory. However, in order to
elicit customer requirements effectively it is essential that
the needs of all stakeholders are captured. To this end we
have used the ViewPoints framework for multi-
perspective development to explicitly represent different
stakeholder requirements [25].

In moving towards a precise specification that we can
validate and then satisfy, there also is the need for some
formal reasoning and analysis. We have found classical
logic to be an appealing form of formal representation
because it allows the capture of a wide range of
development information, and has an existing body of



tools and technology for analysis and reasoning; e.g., [1],
[6] . Unfortunately, a large body of requirements
information, elicited during the early part of the
requirements engineering cycle, is inconsistent, and
therefore there is a need to reason with inconsistent
information. Classical logic, however, is trivialised in the
presence of inconsistency; that is, by the definition of the
logic, any inference follows from inconsistent
information (ex falso quodlibet). Formally,

{ α, Qα } o  β
To address this problem, we developed a quasi-classical

(QC) logic that allows non-trivial reasoning in the
presence of inconsistency.

3. QC Logic: Reasoning in the presence of

inconsistency

The full formal definition of QC Logic may be found in
[4]. Here we provide an informal presentation of the logic
and illustrate its reasoning capabilities with a simple
example1.

The proof theory of QC logic is based on reasoning
with formulae that are in conjunctive normal form
(CNF). These are formulae of the following form:

α1 ∧ ... ∧ αn

where each αi is of the form:

β1 ∨ ... ∨ βm

and each βj is a literal.

The proof theory of QC logic (see appendix) provides
the power to derive a CNF of any formula, together with
the power of resolution:

Qα ∨ β     α ∨ γ
β ∨ γ

Only as a last step in any derivation is disjunction
introduction allowed. This means that any resolvant of a
set of formulae can be derived, but no trivial formulae can
be derived. The proof theory is presented as a set of
natural deduction rules such as:

α  [disjunction introduction]

α ∨ γ

All the QC natural deduction rules hold in classical
logic, but the logic is weaker than classical logic in the
way it is used. QC logic is used by providing any set of
classical formulae as assumptions, and any classical
formula as a query. The query follows from the
assumptions if and only if there is a derivation of a CNF

1 At this point in our work we assume a first order language without
function symbols and existential quantifiers. This gives us certain
computational advantages such as rendering consistency checking
decidable (because, effectively, we are working with a
propositional language).

of the query from the assumptions using the QC natural
deduction rules.

To illustrate the use of QC in the context of the
ViewPoints framework, consider the following simple
example. Suppose we have two partial specifications VP1
and VP2 (representing two stakeholder ViewPoints). In
VP1, there is the association:

has-exactly-one(Ambulance, Operator)

and in VP2 there is the association:

has-exactly-two(Ambulance, Operator)

If we also have the constraint:

∀X,Y, has-exactly-one(X,Y) y  Qhas-exactly-two(X,Y)

then this constraint together with VP1 and VP2 are
inconsistent. However, if we also use the following
additional “domain knowledge”, discovered perhaps during
development, or the result of agreements between
developers:

∀X, Y, has-exactly-one(X,Y) → has-one-or-more(X,Y)

∀X, Y, has-exactly-two(X,Y) → has-one-or-more(X,Y)

then for both VP1 and VP2, and despite the
inconsistency between them, we can still derive the
potentially useful non-trivial inference:

has-one-or-more(Ambulance, Operator).

Reasoning such as in the above example is potentially
useful for a range of activities in the management of
inconsistencies. It allows us to go beyond having to
remove the inconsistencies from our specifications, and
then it allows us to perform the kind of analysis of
inconsistent information described in the next section.

4. Logical  Analysis  of  Inconsistent

Specifications

Our analysis aims at facilitating the tracking and
diagnosis of inconsistencies in order to handle the
consequences of tolerating (and possibly propagating)
such inconsistencies in our specifications. We present
two kinds of analysis both of which are independent of
the QC language itself, but which obviously make more
sense in the context of inconsistent specifications.
Qualification of inferences provides us with some
intuition about our confidence in particular pieces of
information in our specification, while labelling of
specifications provides us with the infrastructure for
tracking inconsistencies and identifying their likely
sources.

4.1. Identifying likely sources of inconsistency

After identifying an inconsistency in a specification,
our analysis attempts to indicate the likely source of that
inconsistency before we decide on a further course of
action. Using labelled QC reasoning, we obtain the labels



of the assumptions used to derive an inconsistency. We
use the term ‘source’ to denote the subset of the
assumptions that we believe to be incorrect.

We use a labelled language to allow us to uniquely
identify each item of our specification. We propagate the
labels by labelling consequences with the union of the
labels of the premises. This means we can identify the
ramifications of each item in the reasoning, since each
inference will be labelled. Labels can be used to
differentiate different types of development information
(e.g., constraints, domain knowledge, etc.) and in
particular they can indicate the sources of information.
For this paper, we adopt the following labelling
strategy2.

Definition 1. Let S  be some set of atomic symbols
such as an alphabet, and L a logic such as QC. If i “ S
and α e L , then i: α is a labelled formula.

So for example, the labelled form of the resolution
proof rule is:

i: Qα ∨ β        j: α ∨ γ
i X  j: β ∨ γ

To illustrate the use of labels, suppose we have the
specification:

{a}: patient-waiting(London-Road)

{b}: Qpatient-waiting(London-Road) ∨ 
ambulance-available(Hospital)

{c}: ambulance-available(Hospital)

and suppose {a}: patient-waiting(London-Road) and {b}:

Qpat ient-wait ing(London-Road) ∨  ambulance-

available(Hospital) have been a stable and well-accepted
part of the specification for some time, and by contrast
{c}: ambulance-available(Hospital) is just a new and
tentative piece of specification. Then for the
inconsistency { a ,   b ,   c } :   ⊥ , we could regard
{c}: ambulance-available(Hospital) as the ‘source’ of the
inconsistency.3

Informally then, a ‘possible source’ of an inconsistency
is a subset of the assumptions used to obtain the
inconsistency, and the remainder of the assumptions are
consistent. Such a subset may be obtained by formally
defining possible sources of inconsistency as follows.

Definition 2. Let ∆  be a set of labelled formulae
representing specification information, and let i be some
label of some inference from ∆. The set of assumptions
from ∆ corresponding to the label is defined as follows:

2 There are many strategies that we could adopt for labelling
software development information. Options include combinations
of the source of the item, and time the item was inserted. For this,
some mapping from labels to their associated meaning needs to
be recorded. For instance, different developers could use
different disjoint subsets of the labels.

3 ⊥ denotes an inconsistency.

Formulae(∆, i) = { j: α e ∆ | j “ i }

For an inconsistency i: k, Formulae(∆, i) is a possible
source of the inconsistency if j “ i and Formulae(∆, i - j)e  CON(∆ ), where CON(∆ ) is the set of consistent
subsets of ∆ (formally defined in §4.2).

There maybe a large number of possible sources of a
single inconsistency, and a number of options for
addressing it, such as working only with the smallest
sources, or working with only the sources that have the
least effect on the number of inferences from the
specification. However, if we are to act on inconsistency
effectively, then we really need to identify the ‘likely’
sources of inconsistency. To do this, we assume that for
any development information, there is some ordering over
that information, where the ordering captures the
likelihood of the information being erroneous. So, if i is
higher in the ordering than j, then i: α is less likely to
be erroneous than j: β . We assume this ordering is
transitive, though not necessarily linear.

Moreover, if we assume there is an ordering over
assumptions, then a more likely source is the smallest
possible source that contains less preferred assumptions.
Assuming such an ordering over development information
is reasonable in software engineering. First, different
kinds of information have different likelihoods of being
incorrect. For example, “method rules” are unlikely to be
incorrect, whereas some tentative specification
information is quite possibly incorrect. Second, if a
specification method is used interactively, a user can be
asked to order pieces of specification according to
likelihood of correctness.

There are a number of ways that this approach can be
developed. First, there are further intuitive ways of
deriving orderings over formulae and sets of formulae.
These include ordering sets of formulae according to their
relative degree of contradiction [17]. Second, there are a
number of analyses of ways of handling ordered formulae
and sets of ordered formulae. These include the use of
specificity [26], ordered theory presentations [27], and
prioritised syntax-based entailment [3].

4.2. Qualifying inferences from inconsistent

information

When considering inconsistent information, we have
more confidence in some inferences over others. For
example, we may have more confidence in an inference α
from a consistent subset of the specification if we cannot
also derive Qα from another consistent subset of the
specification. Therefore, we now provide formal
definitions of some tools for qualifying inconsistent
information. We follow these with an informal summary
and an example. We begin with the definitions of some
useful subsets of our specification.

Definition 3. Let ∆  be a set of labelled formulae
representing specification information. We form the
following sets of sets of formulae:



CON(∆) = { Γ “ ∆ | Γ OQ i : k  }

INC(∆) = { Γ “ ∆ | Γ o Q i : k }

Essentially, CON(∆) is the set of consistent subsets of
∆, and INC(∆) is the set of inconsistent subsets of ∆.4

We can now define MI(∆) as a set of sets of labels,
where each set of labels corresponds to a set of minimally
inconsistent formulae. A set of formulae is minimally
inconsistent  if every proper subset is consistent.
Similarly, we define MC(∆) as a set of sets of labels,
where each set of labels corresponds to a set of maximally
consistent formulae. A set of formulae is maximally
consistent, if the set is consistent and adding any further
formulae to the set from ∆ causes the set to be
inconsistent.5

We can consider a maximally consistent subset of a
specification as capturing a “plausible” or “coherent” view
on the specification. Furthermore, we consider FREE(∆),
which is equal to Ú M C ( ∆ ), as capturing all the
“uncontroversial” information in ∆ . In contrast, we
consider the set MI(∆) as capturing all the “problematic”
data ∆. Note that MC(∆) is equal to Labels(∆) - MI(∆).
Thus, reasoning with FREE(∆) is equivalent to revising
the specification by removing all the “problematic” data.
This means we have a choice. We can either reason with
the data directly using FREE(∆) or we can revise the data
by removing the formulae corresponding to MI(∆).

We can now use these concepts to define three
qualifications for an inference from inconsistent
information6.

Definition 4. Let ∆  be a set of labelled formulae
representing specification information, and let ∆ oQ  i : α
hold. We form the following qualifications for inferences:

α  is an existential inference if ∃k e  MC(∆) such

that i “ k.

α  is a universal inference if ∀k e  MC(∆) ∃j such

that j “ k and ∆ oQ j : α holds.

α is a free inference if i “ FREE(∆).

Informally, a formula is an existential inference if it is
an inference from a consistent subset of the specification.
A formula is a universal inference if it is an inference
from each maximally consistent subset of the

4 oQ is the consequence relation for QC logic.

5 Let ∆ be a set of labelled formulae representing specification

information. If we define the function Labels as follows:

  Labels(∆) = { i | i  : α e ∆ }
then the following set of labels can be formed:

  MI(∆) = {Labels(Γ) | Γ e INC(∆) and ∀Φ e INC(∆)  Φ C Γ}

  MC(∆) = {Labels(Γ) | Γ e CON(∆) and ∀Φ e CON(∆)  Γ C Φ}

  FREE(∆) = Ú  MC(∆)

6 The approach is a derivative of argumentative logics [13].

specification. Finally, a formula is a free inference if it is
an inference from the intersection of the maximally
consistent subsets of the specification.

If α is a free inference, it is also a universal inference.
Similarly, if α  is a universal inference, it is also an
existential inference. Clearly, if α is only an existential
inference, then we are far less confident in it than if it was
a universal inference. If it is a free inference, then it is not
associated with any inconsistent information.

Example. Consider the following assumptions:

{a}: accident-occurred(London-Road) ∧
accident-reported(London-Road)

{b}: accident-occurred(London-Road) ∧Qaccident-reported(London-Road)

{c}: ambulance-available(London-Road)

This gives two maximally consistent subsets:

S e t   1

{a}: accident-occurred(London-Road) ∧ 

accident-reported(London-Road)

{c}: ambulance-available(London-Road)

S e t   2

{b}: accident-occurred(London-Road) ∧ Qaccident-reported(London-Road)

{c}: ambulance-available(London-Road)

From this, accident-reported(London-Road) andQaccident-reported(London-Road) are only existential
inferences, whereas ambulance-available(London-Road) is
a free inference, and accident-occurred(London-Road) is a
universal inference.

These kinds of qualification are useful when reasoning
with inconsistent information because they provide a clear
and unambiguous relationship between the inferences and
problematic data. This could be useful in facilitating
further development in the presence of inconsistency,
since we would feel happier about relying on the less
qualified inferences. Furthermore, they provide a useful
vocabulary for participants in the development process to
discuss the inconsistent information.

Whilst there is an overlap for existential inferencing
with the approach of truth maintenance systems (for
example [10], [8]), we go beyond this by adopting
universal and free inferencing. Furthermore, by adopting
labelling, we integrate our inconsistency management
with QC reasoning and with identifying likely sources of
inconsistency.

4.3. Remarks on utility of analyses

Recall that a primary objective of our analysis of
inconsistent information is to provide the developer with
guidance on how to act in the presence of inconsistency.
Reasoning in the presence of inconsistency that QC logic
facilitates was the first step in achieving this objective.
The simple analyses we have described above provide the



next step. They point to likely sources of inconsistency -
to which more attention could be devoted, and they give
us some indication of the “quality” of our information -
which again guides our actions.

The simplicity of the tools we have presented is
essential for usability and construction of tool support.
Nevertheless, there remains an issue of scalability which
we regard as a major concern. While we are exploring the
limits on scalability by engaging in a number of large
case studies, we are not necessarily trying to prove that
our techniques scale up to industrial size specifications. In
our ViewPoints framework, we already have an approach
for partitioning specifications into more “manageable
units”, which are more amenable to the kinds of analysis
we propose. ViewPoints encapsulate partial specifications
that can be deliberately chosen to be of a size that can be
handled by our techniques. Moreover, the ViewPoints
framework itself and its support tools have been
constructed with the intention of tolerating inconsistency
[12, 24]. Thus, the tools we have presented can be added
to our framework without hindering the ViewPoint-
oriented development process. So for example, while a
requirements engineer is developing his/her ViewPoint
specification, our tools can be happily churning out
(potentially) useful inferences and analysis results.

5. Application Example

To validate and illustrate the work presented in this
paper, we present excerpts of an example application:
eliciting and specifying the requirements of the London
Ambulance Service (LAS). This case study was the focus
of, and common example used by, delegates at the Eighth
International Workshop on Software Specification and
Design (IWSSD-8) [15]. As mentioned earlier (§4.3), by
examining this case study we are not attempting to
demonstrate the scalability of our approach, but rather to
demonstrate its potential usefulness when used in
conjunction with a host of other tools from the
requirements engineer’s toolbox. Thus, we do not expect
the wholesale translation of large, monolithic
specifications into QC logic on which we can then
perform the kind of reasoning we have described. Rather,
our aim is to reduce the complexity of our reasoning and
analysis by restricting them to smaller partial
specifications (ViewPoints) to which we then apply our
tools. The exposition below is somewhat artificial in
order to illustrate the issues and contributions presented in
the paper.

5.1. Requirements document

Consider the requirements for a computer-aided
ambulance despatching system. A reasonable requirements
engineering method involves interviews with the staff
involved in order to elicit the system’s requirements. In
our example, stakeholder analysis yielded, among others,
the following “client authorities” who laid down the
procedures deployed by LAS. The requirements document
for the LAS that contained information such as the

following.

Stakeholder 1: LAS Incident Room Controller

• A medical emergency is either the result of an

illness or accident.

• On receipt of a phone call reporting a medical

emergency, an ambulance should be

despatched to the scene.

• On receipt of a phone call, if the incident is

judged not to be a medical emergency, then the

call should be transferred to another

emergency service (e.g., police or fire brigade).

Stakeholder 2: Operations Manager

• On receipt of a phone call reporting an incident,

if an ambulance is available then it should be

despatched to the scene.

• On receipt of a phone call reporting an incident,

if an ambulance is not available then it should

not be despatched to the scene.

Stakeholder 3: Logistics Manager

• If no ambulance operators (drivers/medics)

are available, then no ambulance is available.

• If no ambulances are available, then initiate a

search for a free ambulance.

• If one year has passed since the maintenance

work was last done on an ambulance, then

perform a safety check on that ambulance.

5.2. Preliminary specification

From the above requirements document, one could
generate, for example, agent hierarchies, data flow
diagrams, action tables, object diagrams, and so on.
Below we use QC logic (as presented in this paper),
directly, to represent this specification information.

Stakeholder 1: LAS Incident Room Controller

{a}: ∀X,Y, accident(X, Y) ∨ illness(X, Y) y         

medical-emergency(X, Y)

{b}: ∀X, Y, call(X, Y) ∧ medical-emergency(X, Y) 

→ despatch-ambulance(X, Y)

{c}: ∀X, Y, call(X, Y) ∧ Qmedical-emergency(X, Y) 

→ transfer-service(X, Y)

Stakeholder 2: Operations Manager

{d}: ∀X, Y, call(X, Y) ∧ ambulance-available(X) → 

despatch-ambulance(X, Y)

{e}: ∀X, Y, call(X, Y) ∧ Qambulance-available(X) →
Qdespatch-ambulance(X, Y)



Stakeholder 3: Logistics Manager

{f}: ∀X, Y, Qhas-one-or-more(X, Y) →        

Qambulance-available(X)

{g}: ∀X, Y, Qambulance-available(X) →                  

initiate-search-for-free-ambulance

{m}: ∀X, over-one-year-since-last-maintenance(X) 

→ initiate-ambulance-safety-check(X)

5.3. Inconsistency handling

From the above preliminary formal specification, we
can now demonstrate the reasoning and analysis described
in sections 3 and 4.

5.3.1. Reasoning

To check certain scenarios with respect to the
preliminary specification, we must add further relevant
facts (e.g., domain knowledge) to model each scenario.
For example, consider the following facts:

{h}: accident(Anthony, London-Road)

{i}: call(Anthony, London-Road)

{j}: Qhas-one-or-more(Ambulance1, Operator)

{k}: Qillness(Anthony, London-Road)

{n}:  over-one-year-since-last-maintenance(Ambulance2)

From this scenario, we can generate the following
(inconsistent) inferences:

{a, b, h, i}:

despatch-ambulance(Ambulance1, London-Road)

{e, f, i, j}:

Qdespatch-ambulance(Ambulance1, London-Road)

Using QC logic, we can still continue reasoning with
the above facts, together with the preliminary
specification, to generate additional inferences such as the
following:

{f, g, j}: initiate-search-for-free-ambulance

{m, n}: initiate-ambulance-safety-check(Ambulance2)

So even though the assumptions are inconsistent, we
can generate a useful inference. It is possible then, for
example, to develop a definition for the initiate-search-

for-free-ambulance procedure, without necessarily having
to resolve the inconsistencies in the preliminary
specification (although one may want to perform the
analysis below before developing a definition for a
procedure that may later have to be retracted).

5.3.2. Analysis: qualifying inferences

The following inferences are only existential inferences,
and hence need to be treated with caution when the
specification is revised or analysed further.

{a, b, h, i}:

despatch-ambulance(Ambulance1, London-Road)

{e, f, i, j}:

Qdespatch-ambulance(Ambulance1, London-Road)

In contrast, the following inference is a universal
inference, and hence is less likely to be retracted when the
specification is revised.

{f, g, j}: initiate-search-for-free-ambulance

The following is a free inference from the specification,
which is reassuring given the preliminary nature of the
specification.

{m, n}:   initiate-ambulance-safety-check(Ambulance2)

5.3.3. Analysis: identifying sources of

inconsistency

For the inconsistency identified above, there are two
sets of labels, in particular, that refer to problematical
data. These are the labels attached to the conflicting
inferences generated above, {a, b, h, i} and {e, f, i, j}. There
are many possible sources of the inconsistency. However,
if we assume the facts we added for the scenario, labelled
from the set {h, i, j, k, n} are not causing the problem, we
order these above the set of labels, {a, b, c, d, e, f, m},
referring to the preliminary specification. Using this
ordering, we obtain a smaller subset containing the likely
sources of the inconsistency, namely {a, b, e, f}. These
pieces of procedural information were elicited from all
three stakeholders, who need to be consulted again in
order to rectify this problem (although we may also have
some ordering of information according to the particular
participant from which it was elicited; e.g. “the boss is
always right”!).

6. Related Work

The overwhelming majority of work on consistency
management has dealt with tools and techniques for
maintaining consistency and avoiding inconsistency.
Increasingly however, researchers have begun to study the
notion of consistency in software systems, have
recognised the need to formalise this notion, and have
proposed techniques for tolerating or even living with
inconsistencies; e.g., [2, 5, 14, 18, 22, 28, 29]. A review
of this work can be found in [19, 20, 23].

Other related approaches address inconsistencies that
arise in software development processes themselves. For
example, an inconsistency may occur between a software
development process definition and the actual (enacted)
process instance [9]. Such an inconsistency between
“enactment state” and “performance state” is often avoided
by blocking further development activities until some
precondition is made to hold. Since this policy is overly
restrictive, many developers attempt to fake conformance
to the process definition (for example, by fooling a tool
into thinking that a certain task has been performed in
order to continue development). Cugola et al. [7] have



addressed exactly this problem in their temporal logic-
based approach which is used to capture and tolerate some
deviations from a process description during execution.
Deviations are tolerated as long as they do not affect the
correctness of the system (if they do, the incorrect data
must be fixed, or the process model - or its active
instance - must be changed). Otherwise, deviations are
tolerated, recorded and propagated - and “pollution
analysis” (based on logical reasoning) is performed to
identify possible sources of inconsistency.

From the AI and logics communities there have been a
number of other related contributions that are relevant,
including fuzzy sets and non-monotonic logics (for a
review, see [19, 21]). Whilst they constitute important
developments that could be incorporated in our
framework, they are not directly oriented to the
inconsistency management issues that we consider with
in this paper. In the main they are focused on resolving
inconsistency by finding the best possible inferences for
any given set of information, whereas we really need to
be able to analyse inconsistent information, consider
options, and track information to find likely sources of
inconsistency.

7. Discussion, Conclusions and Future Work

Our earlier work began by providing a framework for
multi-perspective software development in which
multiple development participants, and the partial
specifications they maintained, were represented by
ViewPoints. The inconsistencies that inevitably arose
between multiple overlapping ViewPoints led us to adopt
an inconsistency handling approach that was tolerant of
such inconsistencies. This approach relied on identifying
inconsistencies, the context in which they arose, and the
actions that could be performed in their presence. We
further recognised that such actions did not need to
remove inconsistencies immediately, but rather allowed
continued reasoning and development in their presence.
Keeping track of deductions made during reasoning, and
deciding on what actions to perform in the presence of
inconsistencies, identified the need to analyse
inconsistencies in this context. This paper addressed the
formal analysis of such inconsistencies..

We summarised the use of a quasi-classical logic to
reasoning in the presence of inconsistency. We then
examined the use of labelled QC logic to “audit”
reasoning results and to “diagnose” inconsistencies. The
labels facilitated the identification of likely sources of
inconsistencies. We further proposed some tools for
qualifying the different kinds of deductions we made
during reasoning. These tools provided us with a measure
of confidence in our specification information.

We believe that such logical analysis provides
developers with heuristics and guidance about what
actions we can perform in the presence of particular
inconsistencies (for example, actions to resolve a conflict,
delay resolution, ameliorate an inconsistent specification,

etc.). Our immediate research agenda is to examine these
inconsistency handling actions further within our
framework. In particular, we would like to examine the
correlation, if any, between certain kinds of analysis
results and the consequent inconsistency handling actions
that could be taken.

We believe that our work provides the foundations for
supporting a software specification process in which
inconsistencies are analysed to determine the course of
action needed for further development. This recognises the
evolutionary nature of software development and provides
a formal, yet flexible, mechanism for managing
inconsistencies.
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APPENDIX A: Formal definition and proof

theory of labelled QC logic

For a more complete description of QC and labelled QC
logic see [4] and [20] respectively.

Language of labelled QC logic

At this point in our work we assume a first order
language without function symbols and existential
quantifiers. This gives us certain computational
advantages such as rendering consistency checking
decidable (because, effectively, we are working with a
propositional language).

Definition A1. Let P be a set of predicate symbols,
V be a set of variable symbols, and C a set of constant
symbols. Let A be a set of atoms, where A = {p(q1,...,qn)
| p e  P and q1,...,qn e   V  »  C}. We call p(q1,...,qn) a
ground atom iff q1,...,qn are all constant symbols,

otherwise we call it unground.

Example. Let has-exactly-one be a predicate symbol;
X,Y be variable symbols; and Cashier, Terminal be
constant symbols. Then has-exactly-one(X,Y) is an
unground atom, has-exactly-one(X,Terminal) is an
unground atom, and has-exactly-one(Cashier,Terminal) is
a ground atom.



Definition A2.  Let F  be the set of classical
propositional formulae formed from a set of atoms A, and
the ∧ , ∨ , →  and Q connectives. We abbreviate the
formula α ∧ Qα by the formula k, which we read as
“inconsistency”. We call a formula grounded iff it is made
from only ground atoms, otherwise we call it ungrounded.

Definition A3. Let L be the set of formulae formed
from F , where if α e   F , and x1,..,xn are the free
variables of α, then ix1,...,ixn α e  L.

Hence the set L contains only universally quantified
formulae, where the quantifiers are outermost, and ground
formulae.

Definition A4. Let oX be some consequence relation

for some logic X, defined by some proof rules. Then, the

logic X is trivialisable if and only if for all α, β in the

language of X, {α, Qα} oX β.

Note that classical logic is trivialisable according to
this definition. The following two definitions are used to
explain the proof theory concisely.

Definition A5. For each atom α e  L, α is a literal
and Q α  is a literal. For α 1    ∨   . .  ∨  α n   e  L ,
α 1  ∨  .. ∨  α n is a clause iff each of α 1 , .. , αn is a
literal. For α 1  ∧  .. ∧  α n e  L , α 1  ∨  .. ∨  α n is in
conjunctive normal form (CNF) iff each of α1, .. , αn is

a clause.

Definition A6. For α 1  ∧  .. ∧  α n e  L , β  e  L , α 1  

∧  .. ∧  αn is a CNF of β  iff α1  ∧  .. ∧  αn o  β  and βo  α 1  ∧  .. ∧  α n and α 1  ∧  .. ∧  α n is in CNF.

Definition A7.  Let S  be some set of atomic
symbols such as an alphabet. If i “ S and α e L, then
i: α is a labelled formula. Let M be the set of formulae.

Proof theory for labelled QC logic

The proof theory of QC logic provides the power to
derive a CNF of any formula, together with the power of
resolution. As a “last step” in any derivation, disjunction
introduction is also allowed. This means that any
resolvant of a set of formulae can be derived, but no
trivial formulae can be derived. This proof theory is
presented as a set of natural deduction rules. All the QC
natural deduction rules hold in classical logic, but some
classical deduction rules, such as (ex falso quodlibet) do
not hold in QC logic. We obtain labelled QC logic by
using only labelled formulae as assumptions, and by
amending the natural deduction rules to propagate the
labels. The label of the consequent of a rule is the union
of the labels of the premises of the rule.

Definition A8.  Assume that ∧  is a commutative
and associative operator, and ∨ is a commutative and
associative operator.

i: å á ∫ [Conjunct elimination]

i: å

i: å ó å ó ∫ [Disjunct contraction]

i: å ó ∫

i: å ó ∫ [Negation introduction]

ŸŸå ó ∫

ŸŸå ó ∫ [Negation elimination]

å ó ∫

i: Åxå [Universal instantiation, where ∫ is obtained from å by

i: ∫ replacing every occurrence of x by the same constant]

i: å ó ∫     j: Ÿå ó © [Resolution]

i Æ j: ∫ ó ©

i: å     j: Ÿå ó ∫ i: å ó ∫      j: Ÿå
i Æ j: ∫ i Æ j: ∫

[Arrow Elimination]

i: å ó (∫ ü ©) i: å ó Ÿ(∫ ü ©)
i: å ó Ÿ∫ ó © å ó (∫ á Ÿ©)

i: ∫ ü © i: Ÿ(∫ ü ©)
i: Ÿ∫ ó © i: ∫ á Ÿ©)

[Distribution]

i: å ó (∫ á ©) i: (å á ∫) ó (å á ©)
i: (å ó ∫) á (å ó ©) i: å á (∫ ó ©)

[de Morgan’s laws ]

i: Ÿ(å á ∫) ó © i: Ÿ(å á ∫)
i: Ÿå ó Ÿ∫ ó © i: Ÿå ó Ÿ∫
i: Ÿ(å ó ∫) ó © i: Ÿ(å ó ∫)
i: Ÿå á Ÿ∫ ó © i: Ÿå á Ÿ∫

i: å [Disjunct introduction]

i: å ó ∫

Labelled QC logic is used by providing any set of labelled
formulae (i.e., any ∆  “ M  as assumptions, and any
classical formula (i.e., any å e L) as a query. For a query
that is a ground formula, it follows from the assumptions
with some label i (denoted ∆ oQ i: å) if and only if there
is a derivation of a CNF of the query, labelled i, from the
assumptions using the labelled QC natural deduction
rules, remembering that disjunction introduction is only
allowed as a last step in a derivation. For a query that is
universally quantified, form a ground formula by
instantiating it with constants that do not appear in the
assumptions, and then treat the query as above.


