
Making Inconsistency Respectable:Part 2 - Meta-level handling of inconsistencyDov Gabbay and Anthony HunterDepartment of Computing, Imperial College180 Queen`s Gate, London SW7 2BZ, UKAbstractInconsistency in a database, when viewed purely logically, seem undesirable. Indeedthe traditional approach to dealing with inconsistency in data is to employ means to re-store consistency immediately. However, it is important to study the larger environmentcontaining such databases, and the circumstances surrounding the inconsistency. We ar-gue that within the larger environment, an inconsistency can be desirable, and useful, if weknow appropriate actions to handle it. In some cases we may wish to remove the inconsis-tency, and in other cases we may wish to keep it. Moreover, we claim that inconsistenciesonly become meaningful when considered in the context of the larger environment, andin particular, of how they arise and are handled. In this paper we present a meta-levelsystem that uses actions for handling inconsistent databases.1 IntroductionIn Part 1 (Gabbay and Hunter 1991), we presented the view that inconsistencies are notnecessarily \bad", and that they can even be a useful as long as we can handle them appro-priately. The traditional view of inconsistency is that it is local and relative to a database.However an inconsistency may have di�erent meaning relative to the larger environment inwhich the database is used and with which it interacts.We argue that dealing with inconsistencies is not necessarily done by restoring consistencybut by supplying rules telling one how to act when the inconsistency arises. To illustrate ourapproach consider an airline booking system. It is normal practice for an airline to sell moretickets for a
ight than there are seats on the
ight. Even though this situation is inconsistentwith the safety regulations, the airline will maintain the inconsistency until shortly beforedeparture. The airline supports the inconsistency because it expects su�cient passengers notto show up at the airport, and therefore for the inconsistency to resolve itself. Furthermore,by maintaining the `overbooking inconsistency' the airline can make more money. This istherefore an example of there being a cost-bene�t in maintaining an inconsistency, and indeedof the inconsistency being desirable for the airline.However, supporting this kind of inconsistency sometimes leads to di�cult situationswhen, prior to departure, more people have checked in than expected. In this eventualitythe airline sta� are required to take some kind of action such as upgrading tourist classpassengers to business class, or o�ering free tickets to passengers who are prepared to catcha later
ight. In extreme situations they may even provide an extra aircraft. But despitethe expense of some of these actions, they are rarely invoked, and therefore the 'overbookinginconsistency' is cost-e�ective overall.Furthermore, we are so used to the wider context of theairline inconsistency that some people might not even recognize it as an inconsistency.

Inconsistency handling in the booking system is an example of a general phenomenonfound in database applications. Viewing the environment containing such databases, and thecircumstances surrounding each inconsistency, indicates that we need to consider inconsis-tencies in terms of how and why they arise, and the actions that are performed on them.Indeed describing an inconsistency via the wider context of the database allows us to moveaway from the negative view of an inconsistency within a database. There are many othercases of database systems that can be described in a similar way to the booking system. Forexample, in a government tax database, inconsistencies in a taxpayers records are used toinvoke inquiries into that taxpayer. Indeed from the perspective of the tax inspector, this isanother application where inconsistencies are useful and desirable.The problem we attempt to address here is the formalization of cases such as the bookingsystem. Below, we consider some general requirements for the underlying languages. Weprovide a de�nition of a system for inconsistency handling, called the DA system, and weconsider some of its positive and negative features.2 Outline of a system for handling inconsistent dataTo formalize inconsistency handling, we need to consider the object-language, and the actionlanguage. For example, for the booking system, we need an object-language for the declarativeinformation about passengers, and
ights, and we need an action language for representing theinconsistency handling undertaken. In e�ect, the action language connects the object-levelinconsistencies to the larger environment in which the database operates.For our action language, we need to be able to talk about the object-level inconsistency,and to be able to act on the inconsistency, either by invoking internal actions or externalactions. Some of the key requirements can be summarized as follows: (1) Meta-languagerepresentation of object-level data and databases; (2) Facility to axiomatize object-level con-sequence relations; (3) State-based meta-languages for reasoning about the states of the dataand databases; and (4) Separation of the object-level and meta-level semantics so that objectlevel inconsistency does not force the meta-level to be inconsistent.One possibility for our state-based meta-language would be some form of linear-timetemporal logic, where we would allow quanti�cation over formulae, and so speci�y how anobject-level database should evolve over time. If a temporal logic speci�cation is consistent, itis satis�able by a class of models. So for example, for the temporal logic speci�cation �! �,the class of models that can satisfy the speci�cation can be de�ned by stating that for eacht 2 N, in each model M on the linear structure (N, �), if M j= � at t, then M j= � at t. Inthis way, we can view the meta-level handling of inconsistent object-level databases in termsof satisfying temporal logic speci�cations.For our object-level we want to be able to reason with the same data using di�erentconsequence relations. For example, it may be desirable to switch from classical logic toparaconsistent, or relevance, or even non-monotonic logics. We also want to label object- levelformulae to support handling. Such labelling may facilitate truth maintenance, or con
ictresolution. To address these requirements of the object-level, we use the framework of theLabelled Deductive System (Gabbay 1991, 1993). In the Labelled Deductive System (LDS)languages are based on using labelled formulae, and de�ning proof rules in terms of both theformulae and the labels. In this way logical reasoning is naturally extended. A wide variety ofnon-standard logics have been considered in terms of LDS, including linear, resource, modal,

and paraconsistent logics. The label can also be used to de�ne new kinds of logic that areappropriate for certain applications. For example the family of prioritized logics are de�nedin terms of preferences expressed over labels, and can be used for non-monotonic reasoning(Hunter 1992). Another example, is the family of restricted access logics for inconsistentinformation, where data is labelled, and for certain combinations of data, access to proofrules is restricted, thereby avoiding trivialization from inconsistent data (Gabbay and Hunter1993).3 Syntax for the DA systemBelow we provide a de�nition of a meta-level system, called the DA system, (the Data andAction system). We assume DA can be used as a meta-language for a variety of object-level languages including labelled languages. Object-level formulae are used as terms in themeta-level. This allows the meta-level to \talk" about object-level data. In this way weare connecting the object-level data to the meta-language via the naming of formulae asterms. The meta-level also has other terms that allow it to talk about things other than theobject-level data.The system is based on �rst-order linear temporal logic, with since and until. The rules offormation for the meta-level terms (ie the terms for DA) are de�ned as follows. Note that thelanguage DA is not typed, and therefore the language makes no distinction between termsthat are object-level formulae, and the other terms:If X is an object-level variable then X is a meta-level variableIf X is a meta-level variable then X is a meta-level termIf s is an object-level logical, predicate or function symbolthen s is a meta-level function symbolIf f is a meta-level function, and t1, . . ,tn are meta-level termsthen f(t1, . . ,tn) is a meta-level termThe rules of formation for the meta-level formulae (ie the formulae of the DA system)are de�ned as usual from the sets of meta-level terms, meta-level predicate symbols, logicalsymbols and the temporal operators f LAST, NEXT, FUTURE, PAST, ALWAYS, . . g.For example, let Holds be a meta-level predicate symbol, let p, q be object-level predicatesymbols, and let X, Y be variables, then the following is a formula,8X,Y ((Holds(p(X)) ^ Holds(q(Y)) ! Holds(p(X) ^ q(Y)))The proof theory is just the usual proof theory for �rst order linear temporal logic, withsince and until, and includes �rst order classical proof theory. We do not present the ax-iomatization here, but but below we do provide a de�nition for the semantics. We need notcommit ourselves further on the signi�cance of time in this meta-language. However, we canuse it for representing the real-time evolution of the database, or for the stepwise progress ofactions on the database.For some object-languages, the meta-language can be used to present an axiomatizationof the consequence relations for the object-level. For example, we can consider an informationsystem as a pair (�, �) where � is a an object-level database and � is a meta-level databasethat contains rules for acting on inconsistency in �. In this way, Holds(�) is a consequence of

� if and only if � is a consequence of �. Though in general, it is not always possible to providea decidable axiomatization for the meta-level relation Holds, since some of the object-levellanguages we may be interested in are not decidable.We have not discussed here issues of di�erentiating di�erent sorts of terms. For example,if p(X) is an object-level formula, then it is likely that for purposes of inconsistency handling,we would wish to prohibit p(p(X)) as a term - since allowing such instatiations can lead toproblems such as the liar paradox. Restrictions on such kinds of terms can be captured byadding appropriate axioms to the meta-level database. For more detailed discussion of issuespertaining to logic meta-languages, the reader is referred to Bowen (1982), Hill (1988), andBarringer (1991).4 Semantics for the DA systemFor this meta-language, we separate the proof theory and semantics for the object- languagefrom the proof theory and semantics for the meta-level. We base the interpretation of DA onthe natural numbers (N, �) as the
ow of time. An interpretation for the DA meta-languageis a tuple (D, N, �, h) where D is a non-empty domain, and h is a truth-assignment function.For this de�nition, the following conditions hold: (1) The set D is the Herbrand Universegenerated from the terms of the meta-langauge; (2) If f is an n-place meta-level function thenf is assigned to the mapping from Dn �! D as de�ned by (�1, . . ,�n) �! f(�1, . . ,�n);(3) If t is a ground meta-level term then t is assigned an object in D. The truth assignmentfunction h is de�ned as follows:For each m-place meta-level predicate symbol P and each n 2 N,then h(n, P): N � Dm �! f0,1gIf P(t1, . . ,tn) is a ground meta-level atom and n 2 Nthen h(n, P(t1, . . , tn)) = h(n, P)(t1, . . ,tn)An interpretation as de�ned above is a model of � i� for all n 2 N, h(n, �) = 1. Thetruth assignment function h can be extended to any meta-level formulae � and � as follows:h(n, � ^ �) = 1 i� h(n, �) = 1 and h(n, �) = 1h(n, �! �) = 1 i� h(n, �) = 0 or h(n, �) = 1h(n, :�) = 1 i� h(n, �) = 0h(n, U(�, �)) = 1 i� 9m(m > n and h(m, �) = 1) and 8k(n < k < m and h(k, �) = 1)h(n, S(�, �)) = 1 i� 9m(m < n and h(m, �) = 1) and 8k(m < k < n and h(k, �) = 1)h(n, 8X.�) = 1 i� 8� 2 D, h(n, �[�/X]) = 1Note that the above de�nitions imply a rigid interpretation of variables. In other words,the binding of a variable is �xed over time. Below we de�ne the semantics for some extratemporal operators that are de�nable using the US operators.h(n, NEXT �) = 1 i� h(n + 1, �) = 1h(n, ALWAYS �) = 1 i� for all i 2 N, h(i, �) = 1For these semantics we have just considered the language for the meta-level. The truth,or falsity, of a formula at the object-level does not necessarily a�ect the truth, or falsity, offormula at the meta-level. For example, an object-level database with the object-level formulaHouse(red) false does not necessarily force the meta-level formula Holds(House(red)) also to

be false. (Though appropriate axioms could be added to the meta-level database to form adirect connection between the object-level and the meta-level.)Separating the semantics for the meta-level from the semantics of the object-level gives usincreased
exibility in handling uncertain and inconsistent object-level data. For example, ifwe view our database from the meta-level, then as we can update or ammend our object-leveldatabase, and if that object-level database becomes inconsisitent it does not necessarily causethe meta-level database to become inconsistent. We discuss this further below. However, it isstaightforward to write speci�cations in the meta-language that can act on any inconsistenciesin the object-level. Furthermore, these speci�cations can be written so that if they are notmet, then the meta-level also becomes inconsistent.The de�nition of the Holds predicate does mean that all the object-level data and conse-quences are re
ected upwards. In other words, via the Holds predicate, all the object-leveldata and consequences are represented at the meta-level, and so changing the object-leveldatabase will cause a change in the meta-level database. In contrast, the re
ection down-wards depends on the DA speci�cation in the meta-level database. The actions speci�ed bythe DA axioms could directly a�ect the object-level - for example by truth maintenance - andhence constitute re
ection downwards, or they may in
uence the outside world - and so notdirectly a�ect the object-level database.5 Executing DA Speci�cationsIn this section we illustrate how we can execute DA speci�cations, and in the next section wereturn to our case study.The traditional view on temporal logics is of declarative statements about the world, orabout possible worlds over time. These relate the truth of propositions in the past, in thepresent and in the future. An alternative view is to consider the logics in terms of a declarativepast, and an imperative future, based on the intuition that a statement about the future canbe imperative, initiating steps of action to ensure it becoming true.More speci�cally, if we write DA speci�cations in the following form, where the antecedentrefers to the past and present, and the consequent refers to the future, then we can executesuch speci�cations so as to construct a model of the speci�cation,ALWAYS(^i �i ! _j�j)Suppose then that we have a speci�cation � in the form of a �nite conjunction of suchclauses such that each �i and �j is either a positive or negative literal. The executing agenttries to execute � in such a way as to build a model of �. It must make � true dynamicallyat each point in time. So at any time point, it will consider each such clause. If ^i�i istrue then it must make the disjunction _j�j true. The choosing of which �j to make true(remember that �j is a future formula) is a subtle (and not necessarily decidable) problem,and the agent will take into account several factors, such as commitment to make other clausestrue, possible future deadlocks, and the environment at the time. Executable temporal logicsthat have been developed include USF (Gabbay 1989), MetateM (Barringer 1989), and MML(Barringer 1991).

6 Case Study: Airline booking systemIn the introduction, we described an airline booking system that uses certain forms of in-consistency advantageously. Below we axiomatize interesting aspects of this system in themeta-language. For the object-level we assume the paraconsistent logic C! (da Costa 1974),though we will use an unlabelled version to ease exposition.For the formalization of this problem we require the following object-level predicates,where P is the set of passengers, F is the
ight, D is the date, and C is the set of `checked- in'passsengers: Passengers(P, F, D); Overbooked(F, D); Checked-in(C, F, D), Commercial(F);and Legal(F). We also require the following object-level functions: size(P) which returns thenumber of elements in P; and capacity(F) returns the maximum number of passengers forthe
ight F. The following two axioms capture conditions under which Overbooked, or itsnegation, hold. The �rst holds when the number of passengers exceeds the capacity of the
ight. The second axiom captures the speci�cation that if the
ight is a commercial
ight,and that the
ight is legal, then the relation Overbooked(F, D) is false.Passengers(P, F, D) ^ Checked-in(C, F, D) ^ size(C) = X ^capacity(F) = Y ^ (X > Y) ! Overbooked(F, D)Commercial(F) ^ Legal(F) ! :Overbooked(F, D)If the `overbooked inconsistency' occurs prior to departure time, no action is speci�ed.However, if it occurs at departure time, then below are speci�ed three courses of action.The �rst is to upgrade the unplaced passengers. If that fails, then the second option is too�er bonus tickets and a later
ight. Finally, if both the previous options fail, then arrangealternative travel. For this we require the following object-level relation, where P is the setof passengers, F is the
ight, D is the date, and X is the set of passengers without seats:Unplaced-passengers(X, F, D), and the following meta-level relations, O�er-upgrade(X, F,D), O�er-bonus-tickets(X, F, D), and Arrange-alternative-travel(X, F, D).ALWAYS(8 X, F, D (Holds(Overbooked(F, D)) ^ Holds(:Overbooked(F, D))^ Departure-time ^ Holds(Unplaced-passengers(X, F, D))! NEXT(O�er-upgrade(X, F, D)))ALWAYS(8 X, F, D Holds(Overbooked(F, D)) ^ Holds(:Overbooked(F, D))^ LAST Departure-time ^ Holds(Unplaced-passengers(X, F, D))! NEXT(O�er-bonus-tickets(X, F, D)))ALWAYS(8 X, F, D Holds(Overbooked(F, D)) ^ Holds(:Overbooked(F, D))^ LAST(LAST(Departure-time)) ^ Holds(Unplaced-passengers(X, F, D))! NEXT(Arrange-alternative-travel(X, F, D)))In this example, we can see how the object-level inconsistency is re
ected upwards, viathe Holds predicate, and how the meta-level actions are suggestions for the user to solve theinconsistency. The way this speci�cation would be executed is that at departure time, ifthere is the inconsistency, then the antecedent of the �rst of these rules would hold, and thesystem would be forced to satisfy the speci�cation by making the O�er-upgrade hold in themeta-level database. This would cause the O�er-upgrade suggestion to be made available tothe user. If at the �rst time-point after this suggestion had been made, the inconsistencystill held, then the antecedent of the second rule in the speci�cation would hold, and thissecond rule would be executed. Finally, if at the second time-point after the departure time,

the inconsistency still held, then the third rule would be executed. Finally, if at the thirdtime-point the inconsistency still held, then the meta-language would have no further actionsto handle the inconsistency. Note, in none of these rules is there a re
ection downwards.Obviously, we require a series of further axioms to fully describe the booking system.However, we have illustrated how the inconsistent object-level does not cause the meta- levelto be inconsistent, and how appropriate external actions can be formalized.7 DiscussionIn this paper, we have illustrated how we can handle inconsistent databases in a formal way.We use a meta-language to specify how we act on an inconsistency, and this leads to a newperspective on inconsistency handling. We now need to use the formal language to furthercharacterize the nature of inconsistency handling. In particular, we wish to identify axiomschemas that capture common features of inconsistency handling.Since the DA system uses temporal logic, it is based on a well-developed theoreticalbasis. It is straightforward to show that the meta-level of the DA system inherits desirableproperties of �rst-order US temporal logic such as a complete and sound proof theory, and ofsemi-decidability. Furthermore for some useful subsets of US temporal logic there are viablemodel building algorithms, such that if the meta-level speci�cation is consistent then thealgorithm is guaranteed to �nd a model of the speci�cation (Barringer 1989).Using this approach to handling uncertain and inconsistent data constitutes a fundamentalmove away from traditional views of database management. From this perspective of the DAlanguage, we don't worry, per se, about the object-level databases. All we worry about issatisfying the speci�cation for the meta-level language. In this way, we give up a requirementto make the object-level database consistent, and rather accept such situations as inevitable.We abstract away from the object-level, and shift the requirement of consistency to the levelof the meta-level being consistent.There have been a number of other approaches to addressing issues of inconsistency indata. There are the paraconsistent logics (for example da Costa 1974, Anderson and Belnap1975), but these only localize inconsistency - they don't o�er strategies for acting on inconsis-tency. In contrast, many approaches force consistency on data without consideration of theenvironment. Truth maintenance systems (de Kleer 1978, Doyle 1979), and belief revisiontheory (Gardenfors 1988) ensure consistency by rejecting formulae upon �nding inconsistency.Similarly, Fagin et al (1983) proposed amending the database when �nding inconsistency dur-ing updating. Even more restrictive is the use of integrity constraints in databases - whichprohibit inconsistent data even entering the database.However, recently, attempts have been made to accommodate inconsistent data in adatabase by taking account of the environment. For example, Balzer (1991) suggests "guards"on inconsistent data to minimize the negative rami�cations, and then to warn the user ofthe inconsistency, and in Naqui and Rossi (1990) inconsistent data is allowed to enter thedatabase, but the time that the data is entered is recorded, and newer the data takes prece-dence over the older data when resolving inconsistencies. We see our approach as generalizingthese approaches. Though, of course, many of the details have not yet been addressed in ourapproach.

8 AcknowledgementsThis work is currently being funded by UK SERC grant GR/G 29861, and by the CECESPRIT DRUMS 2 project. The �rst author is a SERC senior research fellow.9 ReferencesAnderson A and Belnap N (1975) Entailment, Princeton University PressBalzer R (1991) Tolerating inconsistnecy, in proceedings of the 13th International Conferenceon Software Engineering, IEEE PressBarringer H, Fisher M, Gabbay D, Gough G and Owens R (1989) MetateM: A frameworkfor programming in temporal logic, in REX Workshop on Stepwise Re�nement of DistributedSystems, LNCS 430, Springer VerlagBarringer H, Fisher M, Gabbay D, and Hunter A (1991) Meta-reasoning in executable tempo-ral logic, in Principles of Knowledge and Reasoning: Proceedings of the Second InternationalConference (KR91), Morgan KaufmannBowen K and Kowalski R (1982) Amalgamating language and meta-language, in Clark K andTarnlund S, Logic Programming, Academic Pressda Costa N C (1974) On the theory of inconsistent formal systems, Notre Dame Journal ofFormal Logic, 15, 497-510Doyle J (1979) A truth maintenance system, Arti�cial Intelligence, 12, 231 - 297Fagin R, Ullman J and Vardi M (1983) On the semantics of updates in databases, in Proceed-ings of the Second Annual Association of Computing Machinery Symposium on Principles ofDatabase SystemsGabbay D (1989) Declarative past and imperative future: Executable temporal logic forintereactive systems, in Banieqbal B, Barringer H and Pneuli A, Proceedings of Colloquiumon Temporal Logic in Speci�cation, Lecture Notes in Computer Science, 398, SpringerGabbay D (1991) Labelled deductive systems, Technical report, Centrum fur Informationsund Sprachverarbeitung, Universitat MunchenGabbay D (1993) Labelled deductive systems: A position paper, in Proceedings of LogicColloquium '90, Lecture Notes in Logic 1, Springer VerlagGabbay D and Hunter A (1991) Making inconsistency respectable: Part I, in Proceedings ofFundamentals of Arti�cial Intelligence Research '91, LNCS 535, Springer VerlagGabbay D and Hunter A (1993) Restricted access logics for inconsistent information, inProceedings ESQARU`93, LNCS, SpringerGardenfors P (1988) Knowledge in Flux, MIT PressHill P and Lloyd J (1988) Analysis of meta-programs, in Proceedings of the Workshop onMeta-programming in Logic Programming, University of BristolHunter A (1992) A conceptualization of preferences in non-monotonic proof theory, in PearceD and Wagner G, Logics in AI, Lecture Notes in Arti�cial Intelligence 633, Springerde Kleer J (1978) An assumption-based TMS, Arti�cial Intelligence, 28, 127 - 162Naqvi S and Rossi F (1990) Reasoning in inconsistent databases, in Debray S and HermenegildoM, Logic Programming: Proceedings of the North American Conference, MIT Press

