
Using Maximum Entropy in a Defeasible Logicwith Probabilistic SemanticsJames Cussens1 and Anthony Hunter21 Centre for Logic and Probability in IT, King's CollegeStrand, London, WC2R 2LS, UKemail: j.cussens@elm.cc.kcl.ac.uk2 Department of Computing, Imperial College180 Queen's Gate, London, SW7 2BZ, UKemail: abh@doc.ic.ac.ukAbstract. In this paper we make defeasible inferences from conditionalprobabilities using the Principle of Total Evidence. This gives a logic that isa simple extension of the axiomatization of probabilistic logic as de�ned byHalpern's AX1. For our consequence relation, the reasoning is further justi-�ed by an assumption of the typicality of individuals mentioned in the data.For databases which do not determine a unique probability distribution, weselect by default the distribution with Maximum Entropy. We situate thislogic in the context of preferred models semantics.1 IntroductionTraditionally there has been a dichotomy between the probabilistic and logical viewson uncertainty reasoning in AI. However, there does seem to be an intuitive overlapof the two views. Whilst there are logics capturing aspects of probabilistic reasoning([1, 3, 6, 9]), the formal relationship of defeasible logics with probability theoryremains an interesting research topic. In particular, using probability theory givesus an opportunity to clarify aspects of non-monotonic logics.Here we show how using established principles from probability theory, togetherwith the axioms of probability, can provide a useful semantic foundation for a de-feasible logic. For the logic we extend the approach of [6] to allow non-monotonicreasoning from a database of conditional probability statements and ground formu-lae. We justify such non-monotonic inferences by the Principle of Total Evidence.We use this when we have two or more conditional probabilities all of whose condi-tions are satis�ed. From these, the principle selects the conditional probability withthe most speci�c condition. The idea here is that when assessing the probability ofa given event, we should calculate its probability value conditional on all the avail-able evidence. It is clear that the probability-theoretic Principle of Total Evidenceis analogous to the notion of speci�city as used in defeasible logic.If there is no conditional probability statement that matches the available ev-idence, then we can estimate the required probability statement by invoking thePrinciple of Maximum Entropy. This gives the least biased estimate given the con-ditional probability statements already in the database ([8, 2, 10]).In the following we provide an overview of the language, form of database andconsequence relation for the defeasible logic; together with an outline of the formal



semantics. We also discuss how we use Maximum Entropy to support reasoning inthis logic.2 A Representation for Defeasible ReasoningWe use Halpern's language L=1 (�) together with the axiomatization AX1 for L=1 (�)which is correct for �nite domains. Essentially this extends �rst-order classical logicto give a logic of probability. We use ` to denote the consequence relation for AX1.We reason with two kinds of information: We have conditional probability state-ments that give statistical information, and we also have a scenario|a set of groundformulae.A probabilistic database is a pair (�;�), where � is a �nite set of conditionalprobability statements in the language L=1 (�) and �, the scenario, is a �nite set ofclosed object formulae in L=1 (�). The conditional probability terms are restricted tothe form,wx(�(x)j�(x)), where both � and � are formulae with x free, s.t. x is a tupleof variables, � is classically consistent and there are no further variables or functionsymbols in either � or �. These are called completely bound probability terms. Theconditional probability statements are restricted to the form wx(�(x)j�(x)) = �,where wx(�(x)j�(x)) is a completely bound probability term, and � is real. Weabbreviate terms of the form wx(�(x)j�(x) _ :�(x)) to wx(�(x)).A probabilistic database (�;�) is complete w.r.t./ � if, for every completelybound probability termwx(�(x)j�(x)) in L=1 (�), there is a � s.t.� ` wx(�(x)j�(x)) =� holds. However, if a database is not complete then we can complete it using Max-imum Entropy. We discuss this below.3 A Consequence Relation for Defeasible ReasoningGiven a complete probabilistic database (�;�), we wish to ascertain a probabilityvalue for ground literals � if � 62 �. If we use the Principle of Total Evidence, thenthere is only one conditional probability statement in the database that can be used.If the value of this conditional probability is greater than a certain threshold, say�, then we defeasibly infer �. Note, we must have � at least 1/2 for consistency. Ifthe value is less than 1� �, then we defeasibly infer :�. However, if the value is in[1� �; �], then we infer neither � nor :�.We formalize an inference from a database as follows, where � is the probabilisticthreshold value, and the relation j� denotes non-monotonic consequence. Let � bea function that assigns every constant in � a distinct variable. Given a formula �,let �� be the result of replacing every constant c that appears in � by the variable�(c). Let �(�) be the set of variables appearing in ��. The conjunct V(�) is formedfrom all the elements in �, and ` is the consequence relation de�ned by Halpern forL=1 (�): (�;�) j� � i� � ` w�(�)(��j(^(�))� ) > � (1)The non-monotonic consequence relation captures the notion of reasoning froma preferred conditional probability for a query �, where it is preferred on the basis ofthe Principle of Total Evidence. The de�nition ensures the following: (1) the chosen



conditional probability is greater than �; and (2) the function � makes the head ofthe conditional probability equivalent to the query and the antecedent equivalent tothe scenario.4 An Example of Defeasible ReasoningWe take the bird example, where the database (�;�) is de�ned as follows, and� = fbird; 
y; penguin; polly; tweetyg� = fwx(bird(x)) = p1 (2)wx(
y(x)) = p2wx(penguin(x)) = p3wx(
y(x)jbird(x)) = p4wx(bird(x)jpenguin(x)) = p5wx(penguin(x)j
y(x)) = p6wx(
y(x)jbird(x) ^ penguin(x)) = p7g� = fbird(tweety); bird(polly)g (3)For query 
y(tweety), we have: � ` wx(
y(x)jbird(x)) = p4. Now, if p4 > �holds, then by AX1 and (1), we have (�;�) j� 
y(tweety).We extend the scenario to the following,�0 = fbird(tweety); bird(polly); penguin(tweety)g (4)For query :
y(tweety) from the database (�;�0), we have the following:� ` wx(:
y(x)jbird(x) ^ penguin(x)) = 1� p7 (5)Now, if (1�p7) > � holds, then by AX1 and (1), we have (�;�0) j� :
y(tweety).5 A Probabilistic Semantics for the LogicTo provide a semantics for the defeasible logic, we extend the type-1 semantics ([6])which is correct with respect to the AX1 axiomatization for �nite domains|for thispaper we assume all domains are �nite. A type-1 probability structure is a tuple(D;�; F; �) where D is a domain, � assigns to the predicate and function symbolsin the language predicates and functions of the right arity over D (so that (D;�)is just a standard �rst-order structure). F is a �nite algebra generated from the setof all sets de�nable in L=1 (�), and � is a probability function on F . We de�ne theatoms of F , denoted A(F ), as the minimal non-empty sets of F . � is determined bythe values it takes on A(F ).A valuation v, is a function mapping each object variable into an element of D.Given a type-1 probability structure M and valuation v, we proceed by inductionto associate with every object (respectively �eld) term t, an element [t](M;v) of D(respectively IR), and with every formula � a truth value, writing (M; v) j= � if



the value true is associated with � by (M; v). We write M j= � if (M; v) j= �for all valuations v. We also de�ne D� = fd 2 D : (M; v[x=d]) j= �g. Finally forevery probability term wx(�), [wx(�)](M;v) = �n(D�) where n is the number of freevariables in �, and �n is the product measure. We also add the following to thede�nition of satisfaction: (M; v) j= (�;�) i� 8� 2 � [ � : (M; v) j= �. For thisde�nition, if (M; v) j= (�;�) for some valuation v, then (M; v) j= (�;�) for allvaluations v, since (�;�) contains no free variables. So we can replace (M; v) j=(�;�) by M j= (�;�).Using this semantics it is straightforward to de�ne a corresponding notion ofsemantics for the defeasible logic consequence relation, and show correctness results.For this semantics we take the set of models for (�;�) and select a subset of models,denoted [[�;�]]. This subset of models is the set of preferred models for the database,such that M 2 [[�;�]] if, whenever M j= (�;�) and M j= w�(�)(��j(V(�))�) > �, then M j= �. Using preferred models builds on the non-monotonic logics frameworkinitially proposed by [12]. We de�ne preferred satisfaction as follows:M j�� � i� M j= w�(�)(��j(^(�))� ) > � (6)Using this, we de�ne preferred entailment, denoted j�, as follows:8M (M j= (�;�))M j�� �) i� (�;�) j� � (7)We now consider properties of this form of non-monotonic reasoning. For adatabase (�;�), we use the notation (�;�) ` � to represent (� [�) ` �.Theorem1. For the consequence relation ` for L=1 (�), the entailment relation j=for L=1 (�), and a database (�;�), where (� [ �) � L=1 (�), and � 2 L=1 (�), theequivalence (�;�) ` � i� (�;�) j= � holds, since we assume �nite domains.Proof. See [6]. utLemma2. Using the de�nition of preferred entailment, the following equivalenceholds: (�;�) j� � i� (�;�) j= w�(�)(��j(V(�))�) > �.Proof. Assume (�;�) j� � holds, then choose an arbitrary M such thatM j= (�;�). From (7), we have M j�� �, and hence from (6), M j=w�(�)(��j(V(�))� ) > �. Since M was arbitrary this shows (�;�) j=w�(�)(��j(V(�))� ) > �. So (�;�) j� � implies (�;�) j= w�(�)(��j(V(�))� ) > �.Now assume (�;�) 6j� �. >From (7) there exists an M such that M j= (�;�),but M 6j�� �. >From (6), this implies M 6j= w�(�)(��j(V(�))� ) > �. Hence(�;�) 6j= w�(�)(�� j(V(�))�) > �. So (�;�) j= w�(�)(�� j(V(�))�) > � implies(�;�) j� � and the result follows. utTheorem3. For any probabilistic database (�;�), the equivalence (�;�) j� � i�(�;�) j� � holds, where � is a ground literal.Proof. By (1) and Lemma 2, the result obtains by showing the equivalence (�;�) j=w�(�)(��j(V(�))� ) > � i� (�;�) ` w�(�)(��j(V(�))�) > �. This equivalencefollows directly from Theorem 1. ut



6 Properties of the LogicIt is of interest to draw an analogy with the Closed World Assumption (CWA),where extra assumptions can be drawn from the database under certain condi-tions. However, since our non-monotonic consequence relation is based on probabil-ity theory, we avoid some of the problems of the CWA. For pathological examples,such as the following database � = f:� ! �g, the equivalent formula in L=1 (�),wx(�(x)j:�(x)) > � does not hold since wx(�(x)j:�(x)) = 0 follows directly fromprobability theory.Another interesting di�erence between our non-monotonic consequence relationand that of CWA is with regard to the following kind of database: For � 0 = f:� !�g, both :� and :� follow by CWA, and the pair of inferences are inconsistentwith � . In our approach, for a consistent database, the non-monotonic consequencerelation does not allow inconsistent inferences. Indeed, it is straightforward to showthat if (�;�) is satis�able then [[�;�]] is non-empty, since there is no consistent(�;�) and � such that (�;�) j� � and (�;�) j� :�.In comparison with Gabbay's axiomatization of the consequence relation [4], cutholds if no conditional probability values deducible from � lie in the interval (�2; �].Similarly, cautious monotonicity holds if no conditional probability values deduciblefrom � lie in the set (�(1� �)2; 1� �]. However, in general, neither cut nor cautiousmonotonicity hold. Furthermore, in general, re
exivity holds and monotonicity fails.Theorem4. For the consequence relation j�, with query � and database (�;�), thefollowing property does not hold: (�;�) j� � and (�;�) j� � implies (�[f�g) j� �.Proof. Suppose we have that � = fwx(mammal(x)) = 0:55; wx(egg-layer(x)) =0:55; wx(mammal(x)jegg-layer(x)) = 0:2g and � is set to its lowest value: 0.5. Wehave (�; ;) j� mammal(agatha) and (�; ;) j� egg-layer(agatha) but not (�; egg-layer(agatha)) j� mammal(agatha)). utTheorem5. For the consequence relation j�, with query � and database (�;�),the following property does not hold: (�;�) j� � and (�;� [ f�g) j� � implies(�;�) j� �.Proof. Suppose that we have � = fwx(bird(x)) = 0:7; wx(
ies(x)) =0:6; wx(
ies(x)jbird(x)) = 0:9g and � is set to 0.65, then we have (�; ;)j� bird(tweety) and (�; bird(tweety)) j� 
ies(tweety), but not (�; ;) j� 
ies(tweety).utTheorem6. For the consequence relation j�, with query � and database (�;�), thefollowing properties do hold:(Left logical equivalence) ` � � �; (�;� [ f�g) j� 
(�;� [ f�g) j� 
) (8)(Conjunctive Su�ciency) (�;�) j� � ^ �(�;� [ f�g) j� � (9)



(Weak Conditionalization) (�;� [ f�g) j� �(�;�) j� �! � (10)(Right Weakening) � ` �! �; (�;�) j� �(�;�) j� � (11)(Reasoning by Cases)(�;� [ f�g) j� �; (�;� [ f:�g) j� �(�;�) j� � (12)(Correlative Monotonicity)(�;�) j� �; (�;� [ f�g) j� �; (�;�) 6j� �(�;� [ f�g) j� � (13)(Correlative Cut)(�;�) j� �; (�;� [ f�g) j� �; (�;� [ f�g) 6j� �(�;�) j� � (14)(Cautious _ Introduction)(�;� [ f�g) j� 
; (�;� [ f�g) j� 
;� ` :(� ^ � ^ 
)(�;� [ f� _ �g) j� 
 (15)Proof. All of the above follow directly from the probability calculus. ut7 Completing a Probabilistic Database by Using MaximumEntropyWe can increase the applicability of this defeasible logic by providing ways of con-structing a complete database from an incomplete database. A complete databasefully determines a probability distribution � over F , whereas a incomplete databaseonly gives a set of constraints on possible probability distributions over F . Thereforeto complete a database, we need to consider how to select one appropriate probabilitydistribution from the possible distributions allowed by the incomplete database.Here, we consider using MaximumEntropy to complete a database. This providesa unique complete database �� that extends the incomplete database �. Essentiallyentropy is an inverse measure of the information contained in a probability distri-bution. Any probability distribution � has an associated entropy H(�) de�ned asfollows, where ln equals loge.H(�) = Q XB2A(F )�(B) ln �(B) (16)Choosing the distribution with the Maximum Entropy hence corresponds tocompleting a database in an unbiased way ([8, 2, 10]). For example, consider the



database � = fwx(
y(x)) = p2; wx(bird(x)) = p3g which is incomplete with respectto � = f
y; birdg. To complete the database, we need to add the following con-ditional probability statement wx(
y(x)jbird(x)) = p1. Using Maximum Entropy,we calculate (below) that the value of p1 is equal to the value of p2. In this sim-ple example, Maximum Entropy allows us to assume that the two predicates areindependent.Now consider the database�0 = fwx(
y(x)jbird(x)) = p1; wx(
y(x)) = p2; wx(bird(x)) =p3g which is complete with respect to � = f
y; birdg. Suppose we extend �0 tof
y; bird; sparrowg, then �0 is incomplete with respect to �0. Therefore we need togenerate a database that include statements such as wx(
y(x)jbird(x)^sparrow(x)) =p4. Using Maximum Entropy again, we can calculate that p1 = p4. In this situation,we can also see that Maximum Entropy is introducing an assumption that newproperties are irrelevant to the probability distribution unless otherwise stated.Viewing the use of Maximum Entropy as capturing a notion of relevance inprobabilistic data follows the approach discussed by [11]. We can also view the useof Maximum Entropy as an inheritance principle as discussed by [5].For example, for the database � = fwx(
y(x)) = p2; wx(bird(x)) = p3g which isincomplete with respect to � = f
y; birdg, we �nd the value of p1 for wx(
y(x)jbird(x)) =p1, by the use of Lagrange multipliers. The formulae in � provide linear constraintson any distribution satisfying �. For each constraint we de�ne a function on A(F ),denoted f0, f1, and f2 as follows:f0(A(F )) = XB2A(F )wx(B(x)) � 1 = 0 (17)This constraint is that all the probabilities add to 1. We also have,f1(A(F )) = wx(bird(x) ^ 
y(x)) +wx(:bird(x) ^ 
y(x))� p2 = 0 (18)f2(A(F )) = wx(bird(x) ^ 
y(x)) +wx(bird(x) ^ :
y(x))� p3 = 0 (19)Entropy is maximized, subject to the above constraints, by the following scheme.For any B in A(F )@H@(wx(B(x))) + � @f0@(wx(B(x))) + �1 @f1@(wx(B(x))) + �2 @f2@(wx(B(x))) = 0 (20)For each B 2 A(F ) we di�erentiate to give the following:� (ln(wx(bird(x) ^ 
y(x)) + 1) + �+ �1 + �2 = 0 (21)� (ln(wx(bird(x) ^ :
y(x)) + 1) + � + �2 = 0 (22)� (ln(wx(:bird(x) ^ 
y(x)) + 1) + � + �1 = 0 (23)� (ln(wx(:bird(x) ^ :
y(x)) + 1) + � = 0 (24)We rewrite these as follows,wx(bird(x) ^ 
y(x)) = e(��1)+�1+�2 = e(��1)e�1e�2 (25)wx(bird(x) ^ :
y(x)) = e(��1)+�2 = e(��1)e�2 (26)



wx(:bird(x) ^ 
y(x)) = e(��1)+�1) = e(��1)e�1 (27)wx(:bird(x) ^ :
y(x)) = e(��1) = e��1 (28)Following Cheeseman, we abbreviate e(��1) by �0, e�1 by �1, and e�2 by �2.wx(bird(x) ^ 
y(x)) = �0�1�2 (29)wx(bird(x) ^:
y(x)) = �0�2 (30)wx(:bird(x) ^ 
y(x)) = �0�1 (31)wx(:bird(x) ^ :
y(x)) = �0 (32)We could use the above three constraints to solve �0, �1, and �2.f0(A(F )) = �0(�1�2 + �2 + �1 + 1) � 1 = 0 (33)f1(A(F )) = �0�1�2 + �0�1 � p2 = 0 (34)f2(A(F )) = �0�1�2J + �0�2 � p3 = 0 (35)However, we use an alternative way of showing p1 = p2p1 = wx(
y(x)jbird(x))= wx(bird(x) ^ 
y(x))wx(bird(x) ^ 
y(x)) +wx(bird(x) ^ :
y(x))= �0�1�2�0�1�2 + �0�2= �1�1 + 1 (36)Furthermore, we have p2 = �0�1�2 + �0�1. However, we have �0(�1�2 + �2 +�1 + 1) = 1, �0(�2 + 1)(�1 + 1) = 1, �0(�2 + 1) = 1=(�1 + 1), p1 = p2.In this example the maximum entropy completion was straightforward. Unfor-tunately, in general this does not seem to be the case. Quoting from [10], `if weaccept maximum entropy,: : : , the problem of actually computing weights to anyreasonable approximation is NP-hard and thus probably infeasible'. While notingthat using maximum entropy, `yields patterns of reasoning that parallel commondiscourse', Pearl also warns that its biggest shortcoming is `its computational com-plexity' ([11]).In our approach the complexity problem occurs when setting the database up,but once the database is complete, then the reasoning is tractable. The price for thistractability is that the size of a database will grow exponentially with the number ofpredicates in the language. This is in contrast to existing non-monotonic logics wherethere is no analogue to completing the database, but the reasoning is intractable|for example for default logic [7]. We therefore see a trade-o� between completing adatabase and reasoning with a database.
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