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Appendix

Proposition 5. Algorithm 1 terminates.

Proof. To ensure termination, we show that it is not possible for the GetModels

method to be involved in an infinite recursion. For the first four cases, the formula
is decomposed into strict subformula according to the Boolean connective and
each of these subformulae is a recursive call to the method. For instance, for
the first case, the call for ψ1 ∧ ψ2 involves recursive calls for ψ1 and for ψ2. For
the fifth case, the call is for an epistemic atom, and this constitutes a base case
as it does not involve recursive calls. For the sixth case, either the combination
set is empty set, in which this constitutes a base case as it does not involve
recursive calls, or the formula is decomposed into a finite number of epistemic
atoms each of which is recursive call to the method. Since each formula can only
be decomposed into a finite number of subformulae, and each call decomposes
each formulae into a finite number of strict subformulae each for a recursive call,
or is a base case, the algorithm terminates.

Proposition 2. If T1 and T2 are decomposition trees for φ, then Leaves(T1) =
Leaves(T2).

Proof. Since the propositional rules split the epistemic formulae into epistemic
atoms based on the Boolean connectives, the epistemic atoms that appear in
T1 are identical to those that appear in T2. For an epistemic formula that is
composed of three or more conjuncts (respectively disjuncts), there is a choice
for the decomposition rule to split the formula. For example, ψ1∧ψ2∧ψ3 can be
split as ψ1 and ψ2 ∧ψ3 or as ψ1 ∧ψ2 and ψ3. But this choice does not affect the
epistemic atoms that eventually appear in the branches. Furthermore, for each
epistemic atom, each application of a non-propositional decompositions rule is
identical for both trees. Therefore, Leaves(T1) = Leaves(T2).

Proposition 3. If T1 and T2 are decomposition trees for φ, and the root of T1
(respectively T2) is n1 (respectively n2), then Models(n1) = Models(n2).

Proof. Proof by induction. Let Subtree(n,T ) denote the subtree of T that is
rooted at n.

First, consider the subtree root at n1 (respectively n2) where there is just one
child n′1 (respectively n′2) and that is a leaf. So n′1 (respectively n′2) is obtained by
the term decomposition rule or is an instance of the operational rule producing
the empty set. So if Models(n′1) = Models(n′2), then Models(n1) = Models(n2).

Second, consider the subtree root at n1 (respectively n2) where there is just
one child n′1 (respectively n′2) and that is not a leaf and has been obtained by
the application of the operational decomposition rule that does not produce the
empty set. So Models(n1) = Models(n′1) and Models(n2) = Models(n′2). Hence,
if Models(n′1) = Models(n′2), then Models(n1) = Models(n2).

Third, consider the subtree root at n1 (respectively n2) where there is just
one child n′1 (respectively n′2) and that is not a leaf and has been obtained by



A Model-based Theorem Prover for Epistemic Graphs for Argumentation 13

the application of the negation propositional decomposition rule. So Models(n1)
= Dist(G, π) ∖Models(n′1) and Models(n2) = Dist(G, π) ∖Models(n′2). Hence, if
Models(n′1) = Models(n′2), then Models(n1) = Models(n2).

Fourth, consider the subtree root at n1 (respectively n2) where there are two
children n′1 and n′′1 (respectively n′2 and n′′2 ) and that are not leaves and has
been obtained by the application of the implication propositional decomposition
rule. So Models(n1) = Models(n′1)∪Models(n′′1) and Models(n2) = Models(n′2)∪
Models(n′′2). Hence, if Models(n′1) = Models(n′2), and Models(n′′1) = Models(n′′2),
then Models(n1) = Models(n2).

Fifth, consider the subtree root at n1 (respectively n2) where there are two
children n′1 and n′′1 (respectively n′2 and n′′2 ) that are not leaves and has been
obtained by the application of the disjunction propositional decomposition rule
on a formula with more than two disjuncts, then the formulae at the children
may be different in the two trees. For example, ψ1 ∧ ψ2 ∧ ψ3 can be split as ψ1

and ψ2 ∧ ψ3 or as ψ1 ∧ ψ2 and ψ3. But in both cases, there is a node in each
tree for ψ1, ψ2 and ψ3. So by applying the same argument as for the fourth case
above, Models(n1) = Models(n2).

Sixth, consider the subtree root at n1 (respectively n2) where there are two
children n′1 and n′′1 (respectively n′2 and n′′2 ) that are not leaves and has been
obtained by the application of the conjunction propositional decomposition rule
on a formula with more than two disjuncts, then we can apply the same argument
as in the fifth case above but with intersection rather union used to obtain the
models.

Therefore, for each epistemic atom ψ, if ψ is at n1 in T1 and n2 in T2, then
Models(n1) = Models(n2).

Proposition 5. For the conjunction propositional decompositional rule, with
condition φ, and consequent ψ1 ∣ ψ2, the following holds for a model P : P ∈
Sat(φ,Π) iff P ∈ Sat(ψ1,Π) and P ∈ Sat(ψ2,Π).

Proof. Consider the condition φ = φ1 ∧ φ2. Therefore for all models P , P ∈
Sat(φ1 ∧ φ2,Π) iff P ∈ Sat(φ1,Π) and P ∈ Sat(φ2,Π).

Proposition 6. For the disjunction and implication propositional decomposi-
tion rules, with condition φ, and consequent ψ1 ∣ ψ2, the following holds for a
model P : P ∈ Sat(φ,Π) iff P ∈ Sat(ψ1,Π) or P ∈ Sat(ψ2,Π).

Proof. Consider the disjunction propositional decomposition rule. So the condi-
tion φ = φ1∨φ2. Therefore for all models P , P ∈ Sat(φ1∨φ2,Π) iff P ∈ Sat(φ1,Π)
or P ∈ Sat(φ2,Π). We can make an analogous argument for the implication
propositional decomposition rule.

Proposition 7. For the negation propositional decomposition rules, with con-
dition ¬φ, and consequent φ, the following holds for a model P : P ∈ Sat(¬φ,Π)
iff P ∈ Dist(G, φ) ∖ Sat(φ,Π).

Proof. Holds straightforwardly from the properties of Sat.
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Proposition 8. For the operational decomposition rule with condition p(α1)∗1
. . . ∗n p(αn+1)#x, and consequent ⋁

(v1,...,vn+1)∈Π
x,(∗1,...,∗n)

#

(p(α1) = v1 ∧ . . . ∧
p(αn+1) = vn+1) and a model P , it holds that P ∈ Sat(p(α1)∗1. . .∗np(αn+1)#x,Π)
iff

P ∈ Sat( ⋁
(v1,...,vn+1)∈Π

x,(∗1,...,∗n)

#

(p(α1) = v1 ∧ . . . ∧ p(αn+1) = vn+1),Π)

Proof. Let ψ ∶ p(α1) ∗1 . . . ∗n p(αn+1) and Q = (∗1, . . . ,∗n). We first consider #

being >. Given the assumed consequent, it holds that Πx,Q
# ≠ ∅. For every P ′ ∈

Sat(ψ > x,Π), P ′(α1)∗1. . .∗nP ′(αn+1) > x. Consequently, (P ′(α1), . . . , P ′(αn+1)) ∈
Πx,Q
> . We can therefore show that Sat(ψ > x,Π) ⊆ Sat(⋁(v1,...,vn+1)∈Πx,Q

>

(p(α1) =
v1 ∧ p(α2) = v2 ∧ . . . ∧ p(αn+1) = vn+1),Π).

Let now P ′ ∈ Sat(⋁(v1,...,vn+1)∈Πx,Q
>

(p(α1) = v1 ∧ . . . ∧ p(αn+1) = vn+1),Π).
Based on the properties of Sat, it means that there is (v1, . . . , vn+1) ∈ Πx,Q

> s.t.
P ′ ∈ Sat((p(α1) = v1 ∧ . . . ∧ p(αn+1) = vn+1),Π). Since v1 ∗1 v2 ∗2 . . . ∗n vn+1 > x,
then P ′(α1) ∗1 . . . ∗n P ′(αn+1) > x. Hence, P ′ ∈ Sat(ψ > x,Π), and we can show
that Sat(⋁(v1,...,vn+1)∈Πx,Q

>

(p(α1) = v1∧ . . .∧p(αn+1) = vb+1),Π) ⊆ Sat(ψ > x,Π).
Given the previous result, Sat(ψ > x,Π) = Sat(⋁(v1,...,vn+1)∈Πx,Q

>

(p(α1) =
v1 ∧ . . .∧p(αn+1) = vn+1),Π). The results for other operators can be obtained in
a similar fashion.

For the next proof, we use the following property which is an excerpt from a
more general proposition from [6]:

Proposition 9. Let Π be a reasonable restricted value set, x ∈ Π a value, # ∈
{=,≠,≥,≤,>,<} an inequality, and (∗1, . . . ,∗k) a sequence of operators where ∗i ∈
{+,−} and k ≥ 0. Let max(Π) denote the maximal value of Π. The following
hold:

– Πx
# = ∅ if and only if:

1. # is > and x =max(Π), or
2. # is < and x = 0.

– Π
x,(∗1,...,∗k)

# = ∅ if and only if:
1. k = 0 and Πx

# = ∅, or
2. k > 0, # is >, x =max(Π) and for no ∗i, ∗i = +, or
3. k > 0, # is <, x = 0 and for no ∗i, ∗i = −.

Proposition 10. For the operational decomposition rule with condition p(α1)∗1
. . .∗np(αn+1)#x, and consequent ∅, it holds that Sat(p(α1)∗1. . .∗np(αn+1)#x,Π) =
∅.

Proof. We first consider # being >. Given the assumptions on the consequent, it

holds that Π
x,(∗1,...,∗n)
> = ∅. Based on Proposition 9 it holds that x = 1 and either

n = 0 or for no ∗i, ∗i = +. If n = 0, then the condition is p(α1) > 1 and it is easy to
see that Sat(p(α1) > 1,Π) = ∅. If for every ∗i, ∗i = −, then based on the fact that
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probabilities belong to the unit interval, p(α1) − p(α2) − . . . − p(αn+1) ≥ p(α1).
Hence, if Sat(p(α1) > 1,Π) = ∅, then Sat(p(α1)−p(α2)−. . .−p(αn+1) > 1,Π) = ∅
as well. Hence, for # => and the assumptions stated in the proposition, it holds
that Sat(p(α1) ∗1 . . . ∗n p(αn+1)#x,Π) = ∅. Similar analysis can be carried out
for remaining (in)equalities.

Proposition 4. If T is a decomposition tree for epistemic formula φ, and the
root of the tree is node n, then Sat(φ,Π) =Models(n).

Proof. Let Formula(n) denote the formula epistemic formula assigned to non-
leaf node n. For each non-leaf node n with one child (respectively two children)
Propositions 7, 8 and 10 (respectively Propositions 5 and 6) imply Models(n) =
Sat(Formula(n),Π). Therefore, by induction on the tree, Sat(φ,π) = Models(n)
when Formula(n) = φ for the root n.

Lemma 1. If Π is a reasonable restricted value set, then there is an integer n
s.t. Π is compatible with n.

Proof. First, by the properties of reasonable restricted value sets, we note that
{0,1} ⊆ Π. Let Π contain n + 1 values and let v0, v1, . . . , vn be these values in
ascending order. So v0 = 0 and vn = 1 since these are always in Π.

First, we show that Π is uniformly graduated (i.e. the gap between each pair
of numbers is the same in Π). For each vi in the sequence, where i < n and vi+1 is
the next item in the sequence after vi, and each vj in the sequence, where j < n
and vj+1 is the next item in the sequence after vj we have vi+1 − vi = vj+1 − vj .
To show this, assume vi+1 − vi ≠ vj+1 − vj . Without loss of generality, suppose
vi+1 − vi < vj+1 − vj . Let di = vi+1 − vi. By the definition of a restricted value set,
di is also in Π. Also by the definition of a restricted value set, vj+1 − di is in Π,
Since, vj+1 − di is bigger than vj , vj+1 cannot be the next item in the sequence
after vi. From this contradiction, we have shown that uniform graduation holds
(i.e. vi+1 − vi = vj+1 − vj).

Next, consider the sequence v0, v1, . . . , vn. The gap between each value and
the next is v1 (i.e. vi+1 − vi = v1). Therefore, we have i = vi/v1 for each vi in
the sequence. If we let k = 1/v1, then f(vi) = k ⋅ vi is the integer i, and f is a
bijection from Π to the integers {0, . . . , n}. Furthermore, based on the distance
uniformity and the properties of Π, we can show that k is a natural number. So
Π is compatible with n.

Proposition 6. Let Π be compatible with integer n. The cardinality of the set of
probability distributions for Π and G is given by the following binomial coefficient
(using the stars and bars method [5]) where k = 2∣Nodes(G)∣

(n + k − 1

n
) = (n + k − 1)!

(k − 1)!n!

Proof. Each probability distribution has an assignment for each subset of the
set of arguments Nodes(G). Hence, each probability distribution can be rep-
resented by a k-tuple of values from Π (one value per subset of Nodes(G)).
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Obviously, each k-tuple of values from Π sums to 1. Let the set of these k-tuples
be denoted Tuples(k,Π). From Lemma 1, we assume that Π is compatible with
integer n. So we have a bijection from Π to {0,1, . . . , n} and therefore we have
a bijection from Tuples(k,Π) to the set of k-values from {0,1, . . . , n} that sum
n (denoted Tuples(k,{0,1, . . . , n})). The cardinality of Tuples(k,Π) is the same
as the cardinality of Tuples(k,{0,1, . . . , n}), and we can obtain the cardinality
of Tuples(k,{0,1, . . . , n}) as the binomial coefficient (n+k−1

n
) using the stars and

bars method [5].

Further examples

We give some further examples of decomposition trees in this section.
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