
Web Services Need Consistency

Giacomo Piccinelli
Hewlett-Packard Laboratories

Stoke Gifford Park
Bristol BS34 8QZ, UK

giacomo_piccinelli@hp.com

Anthony Finkelstein & Christian Nentwich
Dept. of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{a.finkelstein|c.nentwich}@cs.ucl.ac.uk

Abstract
Web Services provide a powerful access channel to
business capabilities. Inside the company, resources can be
shared and costs reduced. Outside the company, the
interaction with customers and suppliers can be
streamlined and business opportunities extended. A major
issue with the current Web Service model is the problem of
composition and the difficulties that arise as Web Services
are assembled, typically in a bottom-up manner. We briefly
discuss this issue, and propose a lightweight solution based
on automated consistency checking of Web Service
interfaces.

Introduction
Since their appearance in 1998, the main expectations for
Web Services were for an evolutionary approach to the
accessibility of business assets. Companies could already
count on considerable data-processing capabilities. The
challenge was to make available such capabilities within
the company, as well as to business partners.

Web Services leverage the experience built in technical
communities ranging from distributed systems to software
engineering. For example, significant influences come from
the RM-ODP (Reference Model for Open Distributed
Processing). Technical and business requirements are
distilled into a simple but effective model, which applies
uniformly to different types of resources. The main roles in
the Web Service model are service provider, service
consumer, and service registry. The main artefacts are
services and service descriptions. The operational model is
based on the find-bind-use approach. The consumer looks
for the provider of a given service in the registry. If the
search is successful, consumer and provider establish a
connection and the service delivery process can be
performed. From a technical perspective, open standards
are instrumental for the success of Web Services. Initiatives
such as UDDI (Universal Description, Discovery and
Integration) and the W3C Web Service Activity are
noticeable examples. A more complete overview of the
Web Service landscape can be found in [2].

Considering the current stage of evolution for model,
standards, and technology, the Web Service initiative
reveals a solid bottom-up approach. The emphasis has been
on connectivity and access to resources, which is the
foundation for the development of concrete business
solutions. The downside of the bottom-up approach is that
the gap between the business and the technical notion of

services is still open. A business service is concerned with
the end-to end delivery of a meaningful business outcome,
a much coarser grain than that of the typical Web Service.
There is a significant amount of work and infrastructure
required on top of the Web Service layer in order to create a
business solution.

In this paper, we propose a lightweight approach to the
reconciliation of business services and Web Services. The
approach is based on checking the conformance of, or
consistency between, a set of Web Service interfaces and a
business service policy. These business service policies
constrain the valid compositions of Web Services. To
perform the checking we use xlinkit [1], a consistency
management framework. We first outline the lifecycle of a
Web Service, and discuss consistency issues with respect to
business services. We then describe a framework for
consistency management, which is based on xlinkit.

Web Service Lifecycle
The current scope of the Web Service model influences
significantly the lifecycle of a Web Service. As a very
rough approximation, one Web Service can be compared to
one method in more traditional software contexts. A service
provider is represented by a set of ports (one port for each
Web Service) that the service consumer connects to in
order to request a service instance (invoke the method). The
interaction between provider and consumer substantiates in
one request-response exchange of information. Concepts
such as the identity of a service instance or the aggregation
of multiple services into higher-level entities (e.g. the
equivalent of objects for methods) are not currently
supported by the more established part of the Web Service
model.

The lifecycle of a Web Service starts with the definition
of a capability with a suitable granularity. Examples of
Web Service used inside a company are the printing of a
document, specific queries to databases (e.g. list of
available places on a training course), and the notification
of specific events (e.g. process completion). Examples of
Web Service used by a company for external interaction are
the submission of an order, the notification of payment, and
the request of product information. The business
capabilities are already implemented by the IT system of a
company. The creation of the Web Service layer mainly
consists of the specification and publishing of the service
content. The service specification is formalised using
WSDL (Web Service Description Language). Using the

analogy with methods, a WSDL description captures the
signature for a Web Service. The description of the Web
Service is then categorised and added to the information
base of a UDDI registry. Assuming the back-end
integration is in place, the Web Service is ready for use.

The Need for Consistency
Web Services provide an effective access route to
individual business capabilities. Still, one of the issues that
solution developers are left with is the gap between
individual capabilities and a complete business service.
Even simple business services usually require the
coordinated usage of a number of different capabilities. For
example, submitting orders is only one aspect in the overall
service logic involved in a direct-sale service. Moreover,
the interaction involved in a business service usually goes
well beyond one request-response exchange. In the direct-
sale example, the flow of communication may start with a
product enquiry to end with a payment confirmation. The
business conversation is driven by different roles at
different stages.

The requirements for a business service translate into
requirements for the implementation infrastructure, which
includes the Web Service layer. A coherent view of the
various components involved in the implementation is
essential for the realisation of the overall service. The Web
Service model brings technological homogeneity into the
picture but does not address this coherence.

A Lightweight Approach
Our proposal for the management of consistency among a
dynamic set of Web Services finds concrete instantiation in
the use of the xlinkit framework.
xlinkit is a framework for checking the consistency of

distributed, heterogeneous documents. It comprises a
language, based on first order logic, for expressing
constraints between such documents, a document
management mechanism and an engine that checks the
documents against the constraints. A full description of
xlinkit, including a formal specification of its semantics,
its scalability and an evaluation can by found in [1]. An
interactive tutorial is available at http://www.xlinkit.com
The infrastructure of xlinkit is especially geared towards
the processing of XML-encoded documents, and the
language provides specific capabilities for expressing direct
relations between documents.

We propose to apply xlinkit to the WSDL documents
describing the Web Services related to a business service.
The xlinkit rule language will be used to describe
business service policies that must be adhered to by the
Web Services from which the business service is
constituted.

This is best seen by way of a simple example. A business
service policy might be “every time a message deals with
special offers a transaction ID has to be used”. Such a
policy is required to support auditing of special price deals.

The following are data type definitions in a WSDL file(s):

<types>
 <schema targetNamespace="http:// freightmixer.com/specialoffers.xsd"
xmlns="http://www.w3.org/1999/XMLSchema">
 <element name=“SpecialOffersAvailableForDestination">
 <complexType> <all>
 <element name=“departureCity" type="string"/>
 <element name=“destinationCity" type="string"/>
 <element name=“deliveryMonth" type="string"/>
 <element name=“loadWeight" type=“integer"/>
 <element name=“transactionUniqueIdentifier" type=“integer"/>
 </all> </complexType>
 </element>

 <element name=“SpecialOffers">
 <complexType> <all>
 <element name="price" type="float"/>
 <element name=“transactionUniqueIdentifier" type=“integer"/>
 </all> </complexType>
 </element>
</schema>
</types>

The following is the part of the WSDL file(s) where the
messages are defined.

<message name=“RequestForSpecialOffersInput">
 <part name="body" element="xsd1:
SpecialOffersAvailableForDestination "/>
</message>

<message name=“RequestForSpecialOffersOutput">
 <part name="body" element="xsd1: SpecialOffer"/>
</message>

The policy can be defined simply:

<forall var="m"
in="./freightmixer/wsdl/message[contains(@name,'SpecialOffer')]">
 <forall var="y" in="./freightmixer/wsdl /types/xsd:schema/xsd:element">
 <implies>
 <equal op1="substring-after($m/part/@element,':')"
 op2="$y/@name"/>
 <exists var="e" in="$y/xsd:complexType/*/xsd:element">
 <equal op1="$e/@name" op2="'transactionUniqueIdentifier'"/>
 </exists>
 </implies>
 </forall>
</forall>

The evaluation of xlinkit rules by the check engine
generates hyperlinks that link consistent and inconsistent
elements as defined by the rule. If the policy above were
violated, it would link together the message element and
the xsd:schema element that is referenced by the message.
The user could infer that the schema element needs a
subelement transactionUniqueIdentifier in order to be used
with this message.

Conclusions
We believe that the expressive, declarative and formally
defined xlinkit rules are well suited to expressing
business service policies by way of constraints across
WSDL descriptions. In this style policies are specified
once, and they can be automatically applied to evolving
sets of Web Services related to one or more business
services. The semantic domain for a policy can range from
business-level requirements (e.g. always send the customer
a contact reference) to more technical requirements (e.g.
concerning the use of appropriate XML schemas). The
xlinkit framework is lightweight and itself readily
deployable in as a Web Service. The implicit compositional
constraints seem to be well aligned with bottom up
construction of business services.
The approach outlined above must however, be treated with
some caution. It has only been briefly sketched and is in
need of systematic evaluation. Such an evaluation forms the
next step in our research programme.

References
[1] Nentwich C., Capra L., Emmerich, W. and Finkelstein, A. “xlinkit: a
Consistency Checking and Smart Link Generation Service” ACM
Transactions on Internet Technology, 2(2), May 2002, pp. 151-185.
[2] Piccinelli G., Emmerich W., Zirpins C., and Schütt K. “Web service
interfaces for inter-organisational business processes: an infrastructure
for automated reconciliation” Conference on Enterprise Distributed
Object Computing (EDOC), Lausanne, Switzerland, 2002.

