
Ubiquitous Web Application Development -
A Framework for Understanding

Anthony C.W. Finkelstein, Andrea Savigni
Department of Computer Science

University College London,
GP-WC1E 6BT London , United Kingdom

Gerti Kappel, Werner Retschitzegger
Institute of Software Technology and Interactive Systems

Technical University Vienna
A-1040 Wien, Austria

Eugen Kimmerstorfer
Department of Information Systems (IFS),

Johannes Kepler University Linz
A-4040 Linz, Austria

Wieland Schwinger, Thomas Hofer
Software Competence Center Hagenberg (SCCH)

A-4232 Hagenberg, Austria

Birgit Pröll
Institute for Applied Knowledge Processing

Johannes Kepler University Linz
A-4040 Linz, Austria

Christian Feichtner
Siemens AG Österreich,

Program and Systems-Engineering
A-1210 Wien, Austria

ABSTRACT

E-commerce and m-commerce have dramatically boosted the
demand for services which enable ubiquitous access. Ubiquity
with its anytime/anywhere/anymedia nature requiring context-
aware computing and personalisation calls for new engineering
techniques supporting these kind of services. In this paper, we
propose the notion of customisation as the uniform mechanism
to provide the necessary flexibility with respect to both context-
aware computing and personalisation. Customisation is realised
in terms of a reflective architecture consisting of context, profile
and customisation rule management.

Keywords: Modelling, Goal-oriented Software Engineering,
Customisation, Ubiquitous Web Applications

1. INTRODUCTION

The Internet and the World Wide Web in particular have
introduced a new era of computing, providing the basis for
promising application areas like e-commerce [11], [19], and m-
commerce [3]. At the beginning, the Web was merely employed
for simple, read-only applications i.e., systems realised by a
Web server offering static web pages for browsing only.
Nowadays, the Web is more and more used as a platform for
full-fledged, increasingly complex applications, where a huge
amount of data is (partly) managed by underlying database
systems and access to services can be ubiquitous i.e., from
anywhere and any media at any time [1], [24].

What is a web application. For our purposes, a Web
application is an application that was designed from the
beginning to be executed in a Web-based environment. This
apparently trivial definition reveals two very important aspects
of such an application:

(1) A Web application is designed from the start to run in a
Web-based environment. This means that the hypermedia
aspect in terms of hypertext and multimedia in
combination with traditional application logic must be
taken into account throughout the application lifecycle,
which makes it different with respect to a conventional
application.

(2) A Web application is an application, not just a set of Web
pages. In particular, this implies that it enforces the notion
of a session, which differentiates it from the ordinary
request-response Web paradigm. In this context, even a
Web service that dynamically generates pages may not be
considered a Web application. Think for example of a
timetable service that, given desired departure and
destination times and places, returns a set of pages
containing the available trains and connections. In this
case, there is no need for the service to maintain the notion
of session which means that, in our view, this is not a Web
application, but just a Web-based service.

What is an ubiquitous web application. In the context of the
definition given above, an ubiquitous web application is a Web
application that suffers from the anytime/anywhere/anymedia
syndrome. This means that an ubiquitous web application
should be designed from the start taking into account not only
its hypermedia nature, but also the fact that it must run “as is”
on a variety of platforms, including mobile phones, Personal
Digital Assistants (PDAs), full-fledged desktop computers, and
so on. This implies that an ubiquitous web application must take
into account the different capabilities of devices comprising
display size, local storage size, method of input, network
capacity, etc. New opportunities are offered in terms of
location-based, time-based, and personalised services taking
into account the needs and preferences of particular users.
Consequently, an ubiquitous web application must be, on the
one hand, context-aware i.e., aware of the environment it is
running in, and on the other hand it must support
personalisation.

Engineering ubiquitous web applications. Considering these
kind of applications from a software engineering point of view,
as their complexity increases, so does the importance of
modelling techniques [8], [18], [21]. Building models of an
ubiquitous web application prior to its construction is essential
for fully understanding the application, for communication
between project teams, and to assure architectural soundness
and maintainability. There are already a couple of methods
especially dedicated to the modelling of web applications,
which however lack proper support for the issues arising when
dealing with ubiquity.

Contribution. This paper is a suggestion as how this issue
might be addressed. In particular, the contribution of the paper
can be summarised as follows:

(1) We propose the notion of customisation as the uniform
mechanism to provide adaptability (i.e., changing the
application) with respect to both context-aware computing
and personalisation.

(2) We provide a framework which is based on a reflective
architecture since the use of reflection and metadata is
essential for ensuring adaptability.

(3) We suggest a holistic view on the development process of
an ubiquitous web application by introducing
customisation as an additional modelling dimension
influencing all other dimensions of web application
development.

(4) We specially focus on requirements engineering by
enforcing the distinction (borrowed from [5]) between
goals and requirements. However, we consider
requirements as run-time entities, that can change overtime
under the influence of the environment.

Structure of the Paper. The paper is structured as follows.
Section 2 discusses the previous work influencing our approach.
Section 3 proposes a framework which is based on a reflective
architecture. Section 4 introduces customisation as a new
modelling dimension and gives insight into appropriate
modelling concepts pointing the way to next-generation
modelling methods for ubiquitous web applications. Section 5
provides an example. Finally, Section 6 draws some
conclusions.

2. BACKGROUND

The goal of this section is to give a brief overview of the main
influences behind our work, namely Michael Jacksons's “world
and machine” work [10], Axel van Lamsweerde's “Kaos” [5],
computational reflection [15], web application engineering [21],
and customisation approaches [13].

2.1. The World and the Machine

[10] represents a cornerstone in understanding the relationships
between a software artefact and the surrounding world. Jackson
identifies four facets of relationships between the world and the
machine: the modelling facet, in which the machine simulates
the world; the interface facet, where the world touches the
machine physically; the engineering facet, where the machine
controls the world; the problem facet, where the shape of the
world and of the problem influences the shape of the machine
and of the solution.

The discussion of the engineering facet turned out to be
particularly useful to us, and particularly the distinction between
requirements, specifications, and programs. Requirements are
concerned solely with the world, programs are concerned solely
with the machine, specifications are the bridge between the two.
Section 3 will use these concepts in working out the boundaries
between world and machine within our framework.

2.2. Goal-Oriented Requirements Engineering

The seminal works by Yue [27] and van Lamsweerde [5]
opened a new direction in requirements engineering: the goal-
oriented approach. The key achievement of this new approach is
that it makes explicit the why of requirements. Quoting van

Lamsweerde, “[before goal-oriented requirements engineering]
the requirements on data and operations were just there; one
could not capture why they were there and whether they were
sufficient.” [14] van Lamsweerde’s approach provides three
levels of modelling (meta level, base level, and instance level)
that allow to represent the ultimate objectives of the system (the
goals), and shorter-term, more concrete objectives (the
requirements), that operationalise the goals.

2.3. Computational Reflection

“Computational reflection is the activity performed by a
computational system when doing computation about its own
computation.” [15] A reflective system maintains, at run-time,
data structures that materialise some aspects of the system itself,
and that allow it to reason upon, and possibly change, itself.

For our purposes, reflection means that an explicit, run-time
representation of system behaviour is maintained, which reifies
the actual system behaviour in the sense that changes in the
latter are materialised in the meta-level description. Similarly,
changes in the meta-level description reflect back into the
underlying system's behaviour. This “closed loop” approach is
called causal connection.

Reflection, in our view, is a mechanism, not a goal. More
precisely, it is a mechanism for manipulating meta data in a
clean and consistent way. We regard reflection as key in this
field because manipulating meta data is essential in this context
of highly-dynamic services, as these must be able to
dynamically adapt themselves to changing context and changing
requirements.

2.4. Web Application Engineering

Engineering ubiquitous web applications is mainly addressed
with modelling methods stemming from the area of developing
traditional web applications that do not consider ubiquity.
Basically, those methods can be considered along three
orthogonal dimensions: levels, aspects and phases [21].

Levels: content, hyperbase, and presentation. The first
dimension of web application modelling comprises three
different levels in terms of content level, hypertext level, and
presentation level. The content level refers to domain-dependent
data used by the web application and is often managed by
means of a database system. The hyperbase level denotes the
logical composition of web pages and the navigation structure.
The presentation level, finally, is concerned with the
presentation of the hyperbase level i.e., the layout of each page
and user interaction. Note that the emphasis of each of these
levels depends on the kind of web application being modelled.

Aspects: structure and behaviour. The second dimension
comprises the aspects of structure and behaviour, which are
orthogonal to the three levels of the first dimension. Concerning
the content level, besides structuring the domain by means of
standard abstraction mechanisms such as classification,
aggregation and generalisation, the behavioural aspect in terms
of domain-dependent application logic has to be considered,
too. Similarly, at the hypertext level, structure in terms of page
compositions and navigational relationships between them, as
well as behaviour like computing the endpoint of a certain link
at runtime have to be modelled. At the presentation level,
finally, user interface elements and their hierarchical
composition have to be modelled concerning the structural
aspect. The behavioural aspect comprises modelling of reactions
to input events, e.g., pressing a certain button as well as

interaction and synchronisation between user interface
elements. Note that similar to the levels discussed above, the
amount of structure and behaviour which has to be modelled
depends on the kind of web application.

Phases: analysis, design and implementation. The third
dimension of modelling web applications comprises the
different phases of a software life cycle, ranging from analysis
via design to implementation. This dimension is orthogonal to
the two previously presented ones, meaning that structure and
behaviour of content, navigation and presentation has to be
addressed in each phase of the development process. Currently,
there is no consensus on a general process for web application
development. However, the influence of technological aspects
tailoring the model towards the implementation environment,
such as distribution, heterogeneity and database aspects, should
certainly increase within the later phases of the modelling
process.

Shortcomings of Existing Methods. Along these dimensions a
survey of eight approaches for web application engineering
revealed the following shortcomings (for a detailed discussion
see [21]):

Behavioural Modelling is Often Neglected. Modelling the
behavioural aspect of web applications at all levels is often
neglected by existing methods. If behaviour is considered then
mainly at the presentation level. Only those methods that are
based on object-oriented modelling formalisms partly deal with
behaviour modelling at all levels.

No Uniform Modelling Formalism. With the exception of those
few approaches which fully rely on the Unified Modeling
Language (UML) [22], the majority of modelling methods is
based on a mix of mainly proprietary modelling formalisms.

Presentation Level not Captured by Conceptual and Logical
Modelling Concepts. Most of the modelling methods do not
support the presentation level with appropriate analysis and
design concepts. Rather, authoring tools are often suggested for
capturing the presentation level, thus loosing the benefit of
technology independence.

No Process Support. Most modelling methods do not follow a
process for guiding the activities throughout the development of
a web application.

Lack of Customisation Support. Last but not least, one of the
most severe drawbacks is the lack of concepts for customisation
as needed by ubiquitous web applications. The various
approaches focusing on customisation (cf. Sect. 2.5) are mainly
implementation-oriented but do not provide proper concepts for
the analysis phase and the design phases.

2.5. Approaches on Customisation

The following discussion is based on a broad view of
customisation as discussed in [13] and tries to take into account
various customisation issues encountered in application areas
ranging from adaptive user interfaces [9] to adaptive
hypermedia [2] and mobile computing. Especially the latter
makes it necessary to consider not only the user preferences but
also the environment in terms of, e.g., location in order to adapt
the application [17].

We think that customisation could uniformly consider both
personalisation and context-aware computing. Personalisation
provides the application with semantic enhancement, in that
each particular user is provided with specific added value. Such
enhancement actually makes the same application provide

increased value for different users, who ultimately perceive the
application as two different services. On the other hand, the
same application customised for the same user may (and
certainly does) look different when it is run on different devices
and/or in different situations. This is inevitable (for example it
is impossible to show that beautiful applet on a PDA with no
virtual machine installed), but the service (or if you want the
added value) provided to the user should nevertheless be the
same. In this case customisation enables to maintain semantic
equivalence. This is why we talk, in this case, of semantic
equivalence, which means that, despite the different context, the
value provided to the user should still be the same.

3. THE FRAMEWORK

In this section, we propose a framework (shown in Figure 1) for
developing ubiquitous web applications which is based on a
reflective approach.

Context

UserW
o

rl
d

M
ac

h
in

e

Device
Network

Requirements

Customisation
rules

Profiles Application
observer

Meta rules

constrain

realisefill in reify

operationalize

determine

produce

reify

reflect

Meta-level

ServicesEnvironment

Application

determine

Goals

Variable part

Stable part

influence

trigger

Time
Location

.........

Figure 1. The Overall Framework

The rest of this section is devoted to a detailed explanation of
the framework constituents. This explanation will follow a
precise path that moves from the outside inward, i.e., from the
outer world towards the boundaries with the machine, and
finally inside the machine itself.

3.1. Goal

A goal is an objective the system should achieve through
cooperation of agents (user and software) in the software-to-be
and in the environment. In our view goals are immutable, i.e.,
they do not change with the changing environment. They
represent the ultimate objective the service is meant to achieve.
Changing the goals would mean changing the service itself.
Along the lines of [5], a goal is not immediately achievable
through actions performed by one or more agents; in other
words, a goal is a somewhat abstract and long-term objective.

In Figure 1, goals are greyed out, which means that they are the
only part of the framework that is not meant to change at
runtime. More accurately, goals can (and should) have a
runtime image (because their operationalisation into
requirements may dynamically change) but they cannot be
directly modified.

3.2. Service

The service can be defined as something that provides added
value to one or more actors. A service is distinct from an
application because it is a much more general concept, that
could be provided e.g., by means other than computers. For
example, if one of the goals is to maximise system usability, a
service may be that of providing the user with specialised I/O

devices. This is an example of user-centred design, whereby the
system is just a means for meeting user goals, and not a goal on
its own. Thus, services belong in the world, not in the machine.

3.3. Environment

By “environment” we mean whatever in the world provides a
surrounding in which the machine is supposed to operate.
Taking the environment into account is crucial because it
strongly influences the behaviour of the machine. The
environment comprises a number of properties each of which
describes a different facet of the environment itself. Consider
the example of an m-commerce service. In this case the
environment comprises such things as bandwidth, location
(absolute and relative), service availability, characteristics of the
device, and many more issues.

Note that the system has no control whatsoever on the
environment, i.e. the machine should adapt to the environment,
not the other way around. As a matter of the fact, if the
bandwidth is low, the connection is erratic, the PDA's display is
small, this is something that cannot be directly changed by
software. The job of a software engineer can therefore be
summarised as a struggle towards the goal despite the
environment; all we can do with the environment is sense it and
describe it in the best possible way, but we cannot change it.

3.4. Context

Context is defined as the reification of the environment in terms
of its properties. Note that in this case there is no reflection
whatsoever (i.e., no downward arrow) because, as explained in
the previous section, the environment is not modifiable. A
context thus provides a manageable, easily manipulatable
description of the environment. Most important, such
description is continuously, dynamically updated to take into
account the fact that the environment also continuously
changes.

The context is part of the machine, as it is a representation of
the environment (which itself belongs in the world) inside the
system. In other words, the environment is represented in the
context because there exists a machine; without this, the context
would make no sense. Note that the context is the only part of
the system that is application independent, in that it describes
properties of the environment proper, regardless of the
application that is to be built. This is marked in Figure 1 by a
double border around the box termed "context". For a more
detailed discussion see Sect. 4.1.

3.5. Profiles

Profiles, in contrast to the context, represent explicitly-given
information. One prominent example of profiles for
personalisation purposes are user profiles. A profile can
comprise, on the one hand, information that is voluntarily
entered by a user of the application or an administrator e.g.,
device characteristics; on the other hand, information that is
transparently acquired by the system itself including e.g., usage
statistics. Profiles can be either application-dependent or
application-independent. For a more detailed discussion see
Sect. 4.2.

3.6. Requirements

Requirements represent one of the possible ways of achieving a
goal. A requirement operationalises a goal, in that it represents
more concrete, short-term objectives that are directly achievable
through actions performed by one or more agents. One key

assumption that we make is that requirements can change
during system execution, which further differentiates them from
goals. In fact, due to a changing environment, the context may
change in such a way that the operationalisation of the goals is
no longer valid. This calls for monitoring of the context with
respect to the goals: changes in the context may yield the
necessity for changes in the requirements.

Both goals, on the one hand, and context and profiles, on the
other hand, contribute to the operationalisation of goals into
requirements. In very informal terms, one may say that
requirements are a trade-off between the noble goals and the
actual reality. For example, the goal of an ubiquitous m-
commerce application might be to provide for a highly
interactive user experience. Given this goal, if the context is
favourable (e.g., high bandwidth, large colour display, Java
Virtual Machine available) a requirement might be “use a
colourful Java applet to represent the state of the shopping
basket,” whereas if the connection is slow or there is no JVM
available, the requirement may be mitigated into “use a 16-
colour animated gif.”

3.7. Application

The application is the heart of the machine. It implements one
or more services. Note that the relationship between application
and service is a many-to-many one, as one application could
provide many different services; on the other hand, a complex
service may need several distinct (and potentially distributed)
applications to be realised.

An application is made up by a stable part, that provides the
basic functionality, and a variable part, that realises the
customisation. The stable part of the application provides hooks,
so called customisation hot-spots, that allow the variable part to
adapt its behaviour to the particular requirements. Under this
respect, it resembles an object-oriented framework.

3.8. Customisation Rules

Customisation rules are the means by which requirements are
translated into the variable part of the application and can be
thought of as production rules (see Sect. 4.3).

3.9. The Meta Level

The meta level is a representation of the application in reflective
terms. It implements the causal connection with respect to the
application, in that it reifies the state of the application or, in
other words, it continuously monitors the application and
maintains an up-to-date description of its state. This is necessary
because the application functioning can be influenced by the
environment, and can therefore change in unpredictable ways.
Suppose for example that a mobile phone is operating in an area
with strong magnetic fields. In this situation, the phone may
report a good connection but the actual quality provided may be
low due to interference. In such a case, monitoring the
environment is not enough, and there is no way to notice this
interference other than monitoring the application itself.

The relationship with the application is two-way, in that the
meta level can actually affect the base level functionality by
means of meta rules i.e., rules whose domain is the base-level
customisation rules. When faced with particular situations, the
meta rules are triggered and can change or remove existing
rules, or add new ones. A reflective meta level can also be
employed for requirements monitoring, in the sense used in [7].

The meta level is not the primary focus of this paper and will
therefore not be further discussed.

We argue that the “reflective way” is a clean and consistent
manner of performing run-time changes to the underlying level
(which is finally the actual system as perceived by the user).
This approach consists in manipulating the customisation rules
in order to reconcile the service with the requirements. The
causal connection, in particular the downward link (reflection)
provides for the consistency between the service description and
the service itself. Architectural reflective techniques can be
employed to that aim [23].

4. CUSTOMISATION AS A NEW MODELLING
DIMENSION

As already shown in the framework, customisation allows the
incorporation of requirements into ubiquitous web applications.
To provide a holistic view on the development process of an
ubiquitous web application we introduce customisation as an
additional modelling dimension influencing all other
dimensions of web application development (see Figure 2). This
means that customisation has to be considered for all aspects,
levels and phases of a web application.

Aspects

Structure

Behaviour Customisation

Phases

Analysis Design Implementation

Phases

Analysis Design Implementation

Content

Hyperbase

Levels
Presentation

Content

Hyperbase

Levels
Presentation

Figure 2. Scope of Customisation

Taking into account the framework presented in Section 3 in
terms of modelling, three main aspects of customisation have be
captured by proper modelling concepts, namely context, profile
and customisation rules, which are discussed in more detail in
the following.

4.1. Context Modelling

As previously presented, existing approaches for customisation
suggest to capture various context properties [13]. Based on
these existing literature, we propose that context modelling
should at least consider the following context properties:

User Agent: The user agent property refers to the demand for
multi-delivery. It provides information about the device and
browser. Together with a device profile and a browser profile
(see Sect. 4.2) this allows to identify constrains relevant for
multi-delivery.

User: The knowledge about the user takes into account the
necessity of personalisation. Looking at existing technology, the
provided telephone number together with user profile
information (see Sect. 4.2) allows identifying the individual user
and user class.

Network: Context properties concerning the network comprise,
e.g., the bandwidth.

Location: Location copes with the need for mobile computing
and captures information about the location an application is
accessed. Actually, this information is not directly provided by

mobile devices themselves but is obtained via a so-called
location server.

Time: The context property time allows to customise the
application with respect to certain timing constraints e.g.
opening hours of shops or timetables of public transportation.
Currently the time is represented at the server only.

Session, Current Context and History. Since web applications
enforce the notion of sessions these context properties need to
be considered within the boundaries of sessions i.e., each
session has its own context. Furthermore, since the context
within a session is subject to continuous changes, it is necessary
to identify the most recent reification of the environment, which
is further on called current context, using the latest timestamp.
The current context comprises the current values of the context
properties for a given interaction (e.g., the most recent) within
the session of a ubiquitous web application.

Practice has shown that it is necessary to broaden the view on
context in that a context should not only consider the current
context at a given point in time but also historical information.
This is necessary to be able to identify changes in the values of
the context properties over time. Thus context modelling also
needs to include a history dimension, in that a relevant context C
can be formulated as a vector of context property values over
time. For example, to determine user navigation patterns as
done in [16] or the average throughput of a system, it is
necessary to collect information about historic interactions. In
contrast, the information about which device is used allowing
customising the presentation to fit to a restricted display size
mostly requires information of the current device only.

Our understanding of an appropriate context model is shown in
Figure 3 by means of a UML class diagram.

ContextModel

Context

getContext(: String)

History

ContextProperty

get()

Session 1 0..1

UserAgent

get()

User

get()

time

Network

get()

Location

get()

Time

get()

Figure 3. The Context Model

The context, represented by the Context class, is an
aggregation of a number of context properties, each of which is
a subclass of the abstract ContextProperty class. Note that
the Context class is not an aggregation of the generic abstract
class but rather of the specific, concrete subclasses. We chose
this apparently naive representation because we know that we
won’t be adding new subclasses in the near future and we prefer
to have a context vector that explicitly represents the specific
subclasses. Note that, should the necessity arise to add new
subclasses, the change required to the Context class would be
very limited compared to that required on the customisation
rules side.

4.2. Profile Modelling

The proper representation of profile information is already
subject to standardisation efforts. The World Wide Web

Consortium (W3C) is working on a framework for the
management of device and user profile information called
"Composite Capabilities / Preference Profiles" (CC/PP) [25]
which is based on the Resource Description Framework (RDF)
[26]. It specifies how client devices express their capabilities
and users express their preferences to the web application
server. In addition, it defines recommendations about the
content of such profiles. One major goal followed by CC/PP is
to be extensible so that new properties can be defined and
included in the description and users can overwrite vendor-
defined default preferences.

We build on this standardisation effort when modelling profile
information. In the domain of ubiquitous web application, at a
minimum a user profile and a device profile should be
considered. Since the profile information might be application-
dependent the software engineer of the ubiquitous web
application needs to take care to explicitly provide the
information throughout the application run-time. For this the
profile information needs to be considered as any other content
information.

Analogous to the context model described in the previous
section, our profile model encompass the following profiles (see
Figure 4):

User Agent: User agent profiles describe both, the capabilities
of devices, e.g., display size, memory, operating system and the
browsers running on these devices, e.g., kind of browser and
version number. User agent profiles are application
independent.

ProfileModel

1..*

User Location Time Network

1..* 1..* 1..* 1..*

UserAgent

getDeviceType()
getBrowserType()
graphicEnabled()

getUserName()
getUserType()

Profile

1..*

distance()
getStreet()

getLocalTime() getBandwidth()

ProfileModel

1..*

User Location Time Network

1..* 1..* 1..* 1..*

UserAgent

getDeviceType()
getBrowserType()
graphicEnabled()

getUserName()
getUserType()

Profile

1..*

1..*

User Location Time Network

1..* 1..* 1..* 1..*

UserAgent

getDeviceType()
getBrowserType()
graphicEnabled()

UserAgent

getDeviceType()
getBrowserType()
graphicEnabled()

getUserName()
getUserType()

Profile

1..*

distance()
getStreet()

getLocalTime() getBandwidth()

Figure 4. The Profile Model

User: A user profile comprises information about the user’s
preferences with respect to personalization. Note that in general
the user profile is application dependent as opposed to the user
agent profile and the context.

Network: A network profile is application-independent and
could contain e.g., maximal bandwidths of certain connection
types.

Location: An example for a location profile is a road map which
is application independent.

Time: Finally, a time profile, which is again application
independent could encompass time zones or time-of-day
settings.

4.3. Customisation Rules

As already mentioned, customisation rules are the means to
translate requirements into the variable part of the application.
For specifying customisation rules, we propose similar to [4]
the usage of the event/condition/action (ECA) mechanism
which is well known in the area of active database systems [12]
(see Figure 5). The event part of the rule determine the events
which are able to trigger the rule. If the rule incorporates a
condition, the condition is evaluated as soon as the rule is

triggered. If the condition evaluates to true, the rule’s action is
executed.

RuleModel

Condition

CustomizationRule
1

1

0..1

Action

Event
1..*

1..* 1..*

RuleModel

Condition

CustomizationRule
1

1

0..1

Action

Event
1..*

1..* 1..*

Condition

CustomizationRule
1

1

0..1

Action

Event
1..*

1..* 1..*

Figure 5. The Customisation Rule Model

Event Model. Applying the ECA mechanism in the domain of
ubiquitous web application requires a dedicated event model.
The events of this event model need to monitor changes within
both, context and profile information as well as explicit user
requests. Consequently, our event model considers three basic
types of primitive events (see Figure 6):

Changes in the context: We propose the following pre-defined
events indicating changes in the context, namely,
ChangeOfUser, ChangeOfDevice, ChangeOfBandwidth,
ChangeOfLocation, ChangeOfTime. Note, that these events
directly monitor changes within the corresponding context
properties of our context model.

Changes in the profile: Since the properties of certain profiles
are not necessarily limited, we propose at a first attempt one
pre-defined event only, namely ChangeOfProfileProperty.

Request of a User: Each time the user interacts with the system
(e.g., activating a link to another page), a request to ubiquitous
web application is generated. Such a request signals the pre-
defined event userRequest.

To be able to model complex real-world situations we suggest
the notion of so-called composite events. Composite events are
constructed by means of the logical event operators AND, OR,
and SEQ, in addition to the above mentioned primitive events.
For example, for a page which should be both personalised and
optimised for different devices a composite event like
(ChangeOfUser OR ChangeOfDevice) would be required.
Composite events also allow expressing if the actual adaptation
should be done in advance, i.e., independent of any user's
request or on the fly, meaning that adaptation is not done before
it is needed in response to a user's request. In the first case,
customisation rules monitor changes in the context and changes
in the profile only, whereas in the latter, the request of a user
event has to be taken into account too. Several properties of a
rule, such as priority, activation state and transaction mode,
may be used to further specify the actual customisation process
at runtime. This in turn determines when the events are
detected, when the condition is evaluated, and when the action
is executed.

Figure 6 shows a UML class diagram of our event model. Since
we consider events as first-class objects, the application
developer is able to extend the pre-defined event model by
means of subclassing.

Condition. Whereas events specify when adaptation is
potentially necessary due to changes in context or user profile or
due to a user's request, conditions determine whether (and
which) adaptation is actually desired by considering both
context and profile information. Thus, conditions are the means
to test whether a certain requirement is violated or not.
Conditions are in fact predicates which can be combined by
means of logical operators.

EventModel

PrimitiveEvent

AND OR SEQ

EventOperator
1..*

ChangeOf Context ChangeOfProfileProperty UserRequest

*

1..*

ProfileModel::Profile

ContextModel::Context

CompositeEvent

Event
2..*

monitors 1

1

1

monitors

1

ChangeOfUser ChangeOfDevice

ChangeOfLocation ChangeOfTime

ChangeOfBandwidth SessionStart

SessionEnd

FollowLink

...

EventModel

PrimitiveEvent

AND OR SEQ

EventOperator
1..*

ChangeOf Context ChangeOfProfileProperty UserRequest

*

1..*

ProfileModel::ProfileProfileModel::Profile

ContextModel::ContextContextModel::Context

CompositeEvent

Event
2..*

monitors 1

1

monitors 1

1

1

monitors

1

1

monitors

1

ChangeOfUser ChangeOfDevice

ChangeOfLocation ChangeOfTime

ChangeOfBandwidth SessionStart

SessionEnd

FollowLink

...

Figure 6. The Event Model

Action. Actions are used to realise necessary variations i.e.,
they represent a sequence of activations of the hook methods
provided by the stable part of the application. Thus, actions
generate the variable part of the application, e.g., an additional
link at a certain page. In this way, actions ensure the fulfilment
of requirements.

5. AN EXAMPLE

This section presents an example comprised of some
customisation rules along with the requirements that generated
them. The example refers to an interactive, Web-based tourist
guide. The requirements are expressed as a directed acyclic
graph going from higher-level goals to requirements proper (the
leaves of the graph)1.

Figure 7 shows a partial derivation graph. Obviously, this does
not in any way claim to be complete, but only serves the
purpose of showing the underlying process. Figure 8 shows
another excerpt, this time relative to non-functional
requirements of ubiquity and customisability.

ProvideGuidance
ToTourists

GuideTouristsShowSites
C

ShowSite
Descriptions

C

ShowRoutes
C

ShowMaps
C

Figure 7. A (very partial) goal derivation graph.

MaximiseUbiquity

MakeInfoAvailable
OnGSM

MakeInfoAvailable
OnWAP

ProvideContext
SensitiveInfo

MakeInfoAvailable
OnLowBandwidth

MakeInfoAvailable
OnLowBandwidth

Maximise
Customisability

CustomiseApps
AccordingToProfile

AllowProfile
Definition

Figure 8. Another partial excerpt of a goal derivation graph.

The customisation rules are formulated in pseudo code and are
attached to the modelled classes by UML-annotations. Those
annotations are stereotyped with «CustomisationRule» to
indicate their function. The specification of the requirement the
customisation rules is realising is marked with "R:". The "E:",
"C:", and "A:" indicate the event, condition, and action of the
customisation rule, respectively.

1 For space reasons, only tiny snapshots of the actual graph will
be shown.

RouteDescription

TouristicSight

show()
switchTo()

0..1

name
location
currentRepresentation

SightDescription

show()

description: String Map

findRoute(street: String)

description : String

0..*

0..1

language

map: Graphic

SightMapSightMap RouteMapRouteMap
0.*

1

1

1 1

«CustomisationRule»
R: ShowSiteDescriptions, MakeInfoAvaliableOnGSM
E: changeOfDevice
C: Profile.UserAgent->

graphicEnabled(CONTEXT['current'].UserAgent) == 'FALSE'
A: textMode { TouristicSight->switchTo('text') }

«CustomisationRule»
R: ShowRoutes, ProvideContextSensitiveInfo
E: changeOfLocation
C: Profile.Location->distance(CONTEXT['current'].Location,

CONTEXT['StartTime'].Location) >= '5 km'
A: recomputeRoute {

street := Profile.Location->getStreet(CONTEXT['current'].Location);
RouteDescription->findRoute(street) }

«CustomisationRule»
R: ShowRoutes, ProvideContextSensitiveInfo
E: changeOfLocation
C: Profile.Location->distance(CONTEXT['current'].Location,

CONTEXT['StartTime'].Location) >= '5 km'
A: recomputeRoute {

street := Profile.Location->getStreet(CONTEXT['current'].Location);
RouteDescription->findRoute(street) }

«CustomisationRule»
R: ShowMaps, MakeInfoAvailableOnLowBandwidth
E: changeOfBandwidth
C: Profile.Network->getBandwidth(CONTEXT['current'].Network) <= '10 KB'
A: resizeGraphics {

bandwidth := Profile.Network->getBandwidth(CONTEXT['current'].Network);
SightMap->resize(bandwidth);
RouteMap->resize(bandwidth) }

show()
resize()

Figure 9. Examples of Customisation Rules2

The first rule specifies the requirement to use text only on non-
graphic enabled devices. The event detects that the device
changed, the condition evaluates the graphical capability of the
device by accessing the device’s profile and the action activates
the hook method switchTo() of the customisable object
TouristicSight. The second rule customises the graphic
resolution according to the bandwidth. For this, the event
detects bandwidth variations, the condition checks whether the
bandwidth falls below 10 KB, and the action resizes the two
maps (SightMap and RouteMap) proportionally. The last
rule recalculates a route if the user moves 5 km away from those
position the calculation of the route was based on. The rule is
triggered by the user's change of the location, the condition uses
the method distance() to calculate the distance between the
current position of the user and the position the route was
calculated before. The action re-computes the new route taking
the user’s current position as input parameter.

6. CONCLUSIONS

Ubiquitous web applications are web applications suffering
from the anytime/anywhere/anymedia syndrome. This means
that engineering such ubiquitous web applications need to take
into account specific constraints arising from the application's
environment and the preferences of the individual users.
Customisation can serve as a uniform mechanism to tackle these
constraints.

This paper has proposed a framework for understanding for
developing ubiquitous web applications based on a reflective
approach. Such applications are modelled as machines which
interact with the world and which comprise components that
allow reflection on the world. Our approach also considers
customisability. On the basis of this framework a holistic view
on the development process of ubiquitous web applications has
been presented incorporating customisation as additional
development dimension next to the three orthogonal dimensions
of levels, aspects, and phases. Customisation will consist of
context, profile and customisation rule management. First ideas
on handling these three components during the development
process have been presented.

2 For readability reasons, we have introduced CONTEXT[<time>]

as a shortcut for session.history[<time>].context.

Acknowledgements

This work was partially funded by UWA (Ubiquitous Web
Applications), an EU-funded Fifth Framework Programme
project (IST-2000-25131) and the strategic research project
CustWeb (Modeling Customizable Web Application) at the
Software Competence Center Hagenberg (SCCH).

7. REFERENCES

[1] G. D. Abowd, E. D. Mynatt, "Charting Past, Present, and
Future Research in Ubiquitous Computing", ACM
Transactions on Computer-Human Interaction, Vol. 7, No.
1, March 2000.

[2] P. Brusilovsky, "Adaptive Hypermedia: An Attempt to
Analyse and Generalize", Multimedia, Hypermedia, and
Virtual Reality: Models, Systems, and Applications, P.
Brusilovsky, P. Kommers, and N. Streitz (eds.), Springer.
Berlin, 1996.

[3] D. Chakraborty, H. Chen, "Service Discovery in the future
for Mobile Commerce", ACM Crossroads, Winter 2000.

[4] S. Ceri, P. Fraternali, and A. Bongio, "Web Modeling
Language (WebML): a modeling language for designing
Web sites", Proc. of the 9th World Wide Web Conference
(WWW9), Amsterdam, May 2000.

[5] A. Dardenne, A. van Lamsweerde, and S. Fickas, "Goal-
directed Requirements Acquisition", Science of Computer
Programming; Vol. 20, 1993.

[6] G. Ehmayer, G. Kappel, and S. Reich, "Connecting
Databases to the Web - A Taxonomy of Gateways", Proc.
of the 8th Int. Conf. on Database and Expert Systems
Applications (DEXA), France, Springer LNCS 1308,
September 1997.

[7] S. Fickas, and M.S. Feather, "Requirements Monitoring in
Dynamic Environments", Proc. of the Second IEEE
International Symposium on Requirements Engineering,
1995.

[8] A. Ginige, D. B. Lowe, and J. Robertson, "Hypermedia
Authoring", IEEE Multimedia, Vol. 2, No. 4, 1995.

[9] M. D. Good, J. A. Whiteside, D. R. Wixon, S. J. Jones,
"Building a User-Derived Interface", Communications of
the ACM (CACM), Vol. 27, No. 10, October 1984.

[10] M. Jackson, "The World and the Machine", Proc. of the
17th International Conference on Software Engineering,
Seattle, Washington, USA, April 1995.

[11] G. Kappel, W. Retschitzegger, and B. Schröder, "Enabling
Technologies for Electronic Commerce", Proc. of the XV.
IFIP World Computer Congress, Vienna/Austria and
Budapest/Hungary, August/September 1998.

[12] G. Kappel, W. Retschitzegger, "The TriGS Active Object-
Oriented Database System - An Overview", ACM
SIGMOD Record, Vol. 27, No. 3, September 1998

[13] G. Kappel, W. Retschitzegger, W. Schwinger, "Modeling
Customizable Web Applications - A Requirement's
Perspective", International Conference on Digital
Libraries: Research and Practice (ICDL), Koyoto, Japan,
November 2000.

[14] A. van Lamsweerde, "Requirements Engineering in the
Year 00: A Research Perspective", Proc. of th 22nd

International Conference on Software Engineering
(ICSE'2000), 2000.

[15] P. Maes, "Concepts and Experiments in Computational
Reflection", Proc. of OOPSLA87, Sigplan Notices, ACM,
Oct. 1987.

[16] B. Mobasher, R. Cooley, and J. Srivastava, "Creating
Adaptive Web Sites Through Usage-Based Clustering of
URLs", Proc. of the 1999 IEEE Knowledge and Data
Engineering Exchange Workshop (KDEX), November
1999.

[17] R. Oppermann, and M. Specht, "A Nomadic Information
System for Adaptive Exhibition Guidance", Proc. of the
International Conference on Hypermedia and Interactivity
in Museums (ICHIM), D. Bearman and J. Trant (eds.),
Washington, September 1999

[18] T. Powell, Web Site Engineering, Prentice Hall, 1998.

[19] B. Pröll, W. Retschitzegger, R. R. Wagner, and A. Ebner,
"Beyond Traditional Tourism Information Systems -
TIScover", Journal of Information Technology and
Tourism, Vol. 1, Inaugural Volume, 1998.

[20] Rational Software Corporation, The Rational Unified
Process, http://www.rational.com/products/rup/.

[21] W. Retschitzegger, and W. Schwinger, "Towards
Modeling of DataWeb Applications - A Requirements'
Perspective", Proc. of the Americas Conferenc on
Information Systems (AMCIS) Long Beach California,
Vol. I, August 2000.

[22] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual, Addison-Wesley,
1998.

[23] F. Tisato, A. Savigni, W. Cazzola, and A. Sosio, "
Architectural Reflection. Realising Software Architectures
via Reflective Activities ", Proc. of the 2nd Engineering
Distributed Objects Workshop (EDO 2000), California,
USA, November 2000.

[24] M. Weiser, "Some computer science issues in ubiquitous
computing", CACM, Vol. 36, No. 7, July 1993.

[25] World Wide Web Consortium (W3C), Composite
Capabilities/Preference. Profiles,
http://www.w3.org/Mobile, 2000.

[26] World Wide Web Consortium (W3C), Resource
Description Framework (RDF), http://www.w3.org/RDF,
2000.

[27] K. Yue, "What Does It Mean to Say that a Specification is
Complete?", Proc. of the Fourth International Workshop
on Software Specification and Design (IWSSD-4),
Monterey, CA, USA, 1987.

