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Abstract: Software modelling standards such as the unified modelling language (UML) provide complex visual languages for
producing the artefacts of software systems. Software tools support the production of these artefacts by providing model
constructs and their usage rules. Owing to the size and complexity of these standards specifications, establishing the
compliance of software modelling tools to the standards can be difficult. As a result, many software tools that advertise
standards compliance may fail to live up to their claims. This study presents a compliance testing framework to determine the
conditions of compliance of tools and to diagnose the causes of non-compliance issues. The Java-UML lightweight
enumerator (JULE) tool realises this framework by providing a powerful technology to create a compliance test suite for
modelling tools. JULE generates test cases only up to non-isomorphism to avoid combinatorial explosion. An experiment
with respect to the UML 1.4 is presented in this study. The authors test ArgoUML for its compliance with the UML 1.4
specification. The authors also report some findings on four UML 2.x tools, including Eclipse Galileo UML2, Enterprise
Architect 7.5, Poseidon for UML 8.0 and MagicDraw 16.6.

1 Software development standards and
compliance assessment of software tools

Software modelling standards such as the unified modelling
language (UML) provide complex modelling languages for
producing artefacts of software systems. Software tools enact
software development processes, automate activities and
support the production of artefacts defined in the standards.
An important issue today in the software tools industry is
interoperability. Standards compliance enables interoperability
and allows software modelling tools to interchange software
artefacts. However, establishing standards compliance in
software tools can be difficult. Some preliminary findings [1]
show that many existing tools advertising standards
compliance fail to live up to their claim.
In addition, determining the conditions of standards

compliance of these tools is not trivial, owing to the size and
complexity of the standards specifications. Because software
standards are defined using many model constructs and
usage rules, generating correct and complete compliance test
suites for these standards specifications is not a
straightforward task. The difficulty arises from two main
reasons. Firstly, many test cases may not be considered valid
because they are not appropriate to the usage rules of the
language under consideration, that is, it is unnecessary to test
a large number of invalid test cases that are impossible to
occur in reality. Secondly, despite the fact that it is possible
to generate all test cases within the given bounds on the
number of the model elements present, when the size bounds
increase, the number of test cases increases rapidly because

of combinatorial explosion. This limits the test coverage to a
very small number of model elements.
It can be said that compliance testing for software tools

supporting other domain-specific languages (DSLs) also
suffers from similar problems. Because our framework
present here supports test generation for modelling
languages defined using EMOF/OCL [2, 3], this, in
principle, allows test generation for other DSLs such as the
architecture analysis and design language (AADL) [4] that
can be represented as a UML profile from which our
technique may generate test directly.
In this paper, we propose a novel framework to determine

standards compliance level of UML modelling tools. This
framework is realised in the Java-UML lightweight
enumerator (JULE) tool [5, 6] that provides automated
support for compliance test suites generation focusing on the
model analysis operations of software modelling tools. Our
compliance testing is limited to experiments on the work
products on which the software tools operate to determine
whether conditions of compliance are maintained by the
tools. These experiments are conducted on a case-by-case
basis. Each test case is a pair of a work product, here – a
software model – and its condition of compliance indicating
whether the model satisfies or violates some constraints
defined in the standards specification.
In general, the model analysis operation is a Boolean

function. It takes a software model as an input and returns a
Boolean value as an output – TRUE if the model satisfies
the constraints and FALSE otherwise. Therefore there are
two types of non-compliance errors that could possibly
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exist. The first type of error occurs when a software tool
rejects a valid model (returns FALSE instead of TRUE).
The second type occurs when a software tool accepts an
invalid model (returns TRUE instead of FALSE).
A test suite requires two categories of test cases to be

considered sufficient – demonstrations and counterexamples.
The demonstrations are the set of valid models employed to
ensure that a software tool does not reject well-formed
models. The counterexamples are the set of invalid models
used to check that a software tool does not accept ill-formed
models. Fully compliant tools must accept all demonstrations
and reject all counterexamples in the test suite.

2 Compliance testing for the
UML specification

This work focuses on one of the most important software
modelling standards – the UML [7] – which has become
the de facto standard for object-oriented software
modelling. The UML is a large document of technical
specifications. A great deal of the specification is the
abstract syntax defined with the metamodelling approach
using meta object facility (MOF) [2]. MOF is the meta-
meta model used to describe the UML standards
specification – the UML metamodel. This UML metamodel
consists of a set of metaelements that are used to create
model elements in a UML model. Each model element in a
UML model is an instance of a metaelement in the UML
metamodel. Software tools support the production of
software systems by providing a functionality to create
instances of these metaelements such as Classifier and
Association. Software tools bridge the gap between the
UML metamodel and its models. For any UML model
created with the tools, the properties of the metaelements
must be preserved; that is, the one-to-one correspondence
between the metaelements provided in the UML tools and
those specified in the UML metamodel must be established.
In addition to the UML metamodel, an important feature of

the UML specification is the object constraint language
(OCL) [3]. The OCL can enhance the expressive power of
the UML. Formal constraints or ‘well-formedness rules’ are
specified as part of the language specification to restrict the
construction of UML models. These rules allow the models
built according to the UML specification to be verified for
their well formedness. A subset of the well-formedness
rules in the UML specification is used in the case studies to
check that the core constructs of the specification are
implemented in the tools correctly. This subset includes the
rules that govern the usage of Association, Composition,
Aggregation and Generalisation in the UML class diagram.
To illustrate this, Fig. 1 shows a well-formedness rule and its

relevant parts of the UML metamodel described in the UML 2.2
specification. This rule enforces the number of member ends of a
specialising association to be the same as those of its generalising
association. This rule requires, at the minimum, two test cases as
presented in Fig. 2. The demonstration on the left shows an
association A0 connecting to two member ends – a and b. In
addition, A0 is specialised by another association A1 which
connects to the same number of member ends – c and d. In
contrast, the counterexample on the right shows an association
B0 connecting to two member ends – e and f, but B0 is
specialised by the association B1 that connects to three
member ends – g, h and i – instead of only two.
To execute the test cases in Fig. 2, a software tool creates

the test model of each of the test cases and then verifies it.

The result of this verification, also called actual result, is
then compared with the expected result to conclude a pass/
fail compliance test result. A compliant tool must return
TRUE when validating the demonstration and FALSE when
validating the counterexample.

3 Pseudo-exhaustive compliance testing

The heart of compliance test generation is to automatically
generate only necessary models and to avoid generating
unnecessary ones. Exhaustively generating all models can
suffer from combinatorial explosion. To effectively test for
compliance, it is important to generate only the set of non-
isomorphic models, each member of which is an exemplar
of an equivalence class of model configurations, within
which structure is preserved but the identities of the model
elements vary. Because OCL well-formedness rules are
defined at the metamodel level, individual model-element
identities are not relevant.
Consider another example from the UML 1.4 standards

specification in Fig. 3, an association must have at least two
association ends. Each association end must have exactly
one string as its name. The well-formedness rule 2
constrains each association end within an association to
have a unique name. The two models 4a and 4b in Fig. 4
are generated with respect to this specification. Both the
models have one end of association with a unique name

Fig. 2 Demonstration and a counterexample for [rule 1]

Fig. 1 Subset of the core package of the UML 2.2 specification

Fig. 3 Metamodel and well-formedness rule of association
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and two other ends sharing the same name. Clearly, 4a and 4b
are isomorphic and are in the same equivalence class. Only
one of the two models is required to be included in the test
suite.
Formally, let Ec be the set of model elements of type c and

suppose there are t types of metaelements present – namely
c0, . . . , ct – a model M consists of some model elements
from E where E ¼ Ec0 < . . . < Ect – and let L(M ) be the
set of links of M, together with a function nM which
associates with each link a pair of model elements in M.
Two models M0 and M1 are said to be isomorphic if there
is a bijection e: Ec(M0) ! Ec(M1) and z: L(M0) ! L(M1),
where each link nM0(l ) ¼ st in M0 is preserved by
nM1(z(l )) ¼ e(s)e(t) in M1.
For a small number of model elements, non-isomorphic test

case generation can produce a succinct test suite. When the
number of model elements increase, non-isomorphic test case
generation can reduce the size of the test suite significantly.
Fig. 5 shows the numbers of model-elements n increasing
from two to seven, total configurations, test cases and the
classification of test cases into demonstrations and
counterexamples. For n ¼ 2, the model-elements include a
single association, two association ends and two strings, out
of four total configurations only two test cases are generated.
For n ¼ 7, there are over 98 million total configurations but
the size of test suite may be reduced to only 90 test cases.

4 How JULE works

Test generation is performed by the four components of JULE
depicted in Fig. 6: the OCL translator for processing OCL

statements (compilation); the combinatorial package for
generating the test data (enumeration); Crocopat [8], a tool
for relational computation based on binary decision diagrams
(BDDs) [9] that is a compact representation of Boolean
expressions, for creating expected test output (classification);
and JUnit [10] generator, for producing test programs in Java
(test case generation).
Given an OCL well-formedness rule, JULE parses the rule,

constructs a test data specification for generating test and
creates a relational manipulation language (RML) [8]
program for producing test oracle. Some examples of this
translation are shown in Table 1.
A test data specification is a part of the UML metamodel and

the number of model elements for the metamodel types present.
With this specification, JULE employs its combinatorial
package to enumerate a set of non-isomorphic test cases.
This activity is described in detail in the Section 5. Each of
the test cases is then submitted to Crocopat together with
the RML program. The result returned is an expected test
result which indicates whether the test case is a
demonstration or a counterexample. Section 6 describes the
process of test classification and how each pair of test
model and its expected test result is concretised as a JUnit
test case. An example of the JUnit test case is shown below
in Fig. 7.

5 Partition–graphicalisation–multiplication
method

This section elaborates the enumeration and classification
components discussed in Section 4. After processing the
UML metamodel and a well-formedness rule, the partition–
graphicalisation–multiplication method, implemented in
the combinatorial package of JULE, is used to generate a set
of non-isomorphic models from a finite set of model elements
of types present in the metamodel. Then, the output of this
method is classified into two sets, demonstrations
and counterexamples using an implementation of BDDs,
Crocopat.
The partition–graphicalisation–multiplication method

consists of three steps that is, partition, graphicalisation and
multiplication. First the method enumerates integer–
partition pairs for each relationship present in the well-
formedness rule according to the multiplicity constraints of
that relationship. From the integer–partition pairs, the
method generates non-isomorphic bipartite graphs based on
the principle that two bipartite graphs generated from two
different partition pairs are guaranteed to be non-isomorphic
because the degrees of the nodes in the graphs are always
different. Finally, the bipartite graphs from each relationship
are combined with those of other relationships in the same
well-formedness rule to construct the test models.

5.1 Partition

To enumerate test models within a given number of model
elements, the partition step must consider the number of
model elements of each type together with multiplicityFig. 5 Size of test suite for well-formedness rule 2

Fig. 6 Components of JULE and the test generation process

Fig. 4 Two isomorphic models – 4a and 4b
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constraints to assign each model element its possible in- and
out-degrees of connections. The result of this step is called the
integer–partition pairs. The definitions of integer partitions,
restricted integer partitions and integer–partition pairs are
introduced as follows.

Definition 1: Integer partition – an integer partition P (q) ¼
[p0, p1, . . . , pn] is defined as a list of integers where
q ¼ ∑

i¼0
n pi. For instance, P (3) ¼ [3], [2, 1] and [1, 1, 1].

Definition 2: Restricted integer partition – the integer
partition may be extended to a restricted integer partition
P (q, l, u, m, n) where q ¼ ∑

i¼0
r pi such that m2 1 ≤ r ≤

n2 1 and l ≤ pi ≤ u. For example, P (3, 1, 3, 2, 3) ¼ [2, 1]
and [1, 1, 1].

Definition 3: Integer–partition pair r(S, T, q, l, u, v, w) –
given two domains of model elements S and T, a number of
edges q and a multiplicity constraint {l, u, v, w}, a partition
pairs r represents a pair of restricted integer partitions [Ps

(q, l, u, 0, |S|), Pt (q, v, w, 0, |T|)]. For instance, given the
domain S ¼ {s0}, T ¼ {t0, t1, t2}, where q ¼ 3 and a
multiplicity constraint {2, 3, 1, 1}, the partition pairs of (S,
T, q, 2, 3, 1, 1) is [2][1, 1] and [3][1, 1, 1].
To illustrate this, consider again the well-formedness rule 2

in Fig. 3. Where n ¼ 3, it follows that the domain
Association ¼ {self}, AssociationEnd ¼ {end0, end1,
end2} and String ¼ {n0, n1, n2}. The multiplicity constraint
of the relationship Connection between Association and
AssociationEnd is {2, 3, 1, 1} which produces the partition
pairs as follows:

[2][1, 1] and

[3][1,1,1].

The multiplicity constraint of the relationship Name
between AssociationEnd and String is {1, 1, 0, 1}. This
produces the partition pairs as follows:

[1, 1, 1][3],

[1, 1, 1][2, 1] and

[1, 1, 1][1, 1, 1].

5.2 Graphicalisation

Graphicalisation is the term used to refer to the process of
creating a graph when the in- and out-degree of each node
in the graph is known, but the exact edges of the graph are
unknown. We use this term to refer to the process of
creating bipartite graphs from a partition pair which
indicates the degrees of the nodes in the resulting bipartite
graphs.
The problem of graphicalisation can be viewed as a special

case of network flow problem [11] where a network N is a
digraph with two extra nodes a source node and a sink
node. In our setting, we have a bipartite graph of two sets
of nodes that is, the source domain and the target domain.
Each of the nodes in the source domain has a set of edges
each of which has capacity one connecting to each and
every node in the target domain. The source node also has
a set of edges to every node in the source domain. The
capacities of these edges are set according to the values in
the first partition of the given partition pair. Each node
in the target domain also has an edge to the sink node
where the capacity of each edge is set according to the
value of each part in the second partition of the given
partition pair.
Consider further the example from well-formedness rule 2,

the source domain AssociationEnd of model-elements {end0,
end1, end2} and the target domain String of model-elements
{n0, n1, n2}, given a partition pair [1, 1, 1][2, 1], we can
depict this setting in Fig. 8.
Having formulated this problem into a special case of

network flow, we use Fig. 9 to enumerating all bipartite
graphs from a partition pair. The algorithm takes one source
node at a time to pick the required target nodes from the
target domain. Every time the algorithm tries all possible

Table 1 Some translations from OCL statements to RML programs

OCL statements RML programs

a.name name(a,X)

a.memberEnd memberEnd(a,X)

a.memberEnd.size() #(memberEnd(a,X))

self.parents()- . forAll(p|
p.memberEnd.size() ¼ self.memberEnd.size())

FA(p,parent(self,p)-.

#(memberEnd(p,X)) ¼ #(memberEnd(self,Y)))

Fig. 7 Code snipet from a JUnit test case for the well-formedness
rule

Fig. 8 Network flow of a partition pair
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n-combination ways of picking different nodes. This
continues until the last target node is selected. If a graph is
invalid at any step in this process, it is immediately discarded.

5.3 Multiplication

The third step is to combine the bipartite graphs produced
from each relationship to form the set of complete models.
The operation union is employed to create the Cartesian
product of the graphs generated in the graphicalisation step.

Definition 4: The union operation – a graph AG and a
bipartite graph BG is defined as a new graph G having
nodes V (G) ¼ V (AG) < V (BG) and edges E(G) ¼
E(AG) < E(BG). Suppose that, there are n different
permutations b1..n(S(BG)), each of which has its source
vertices S(BG) assigned with a different labelling, we
have the graph BGi for a permutation bi(S(BG)). To
generate all graphs of AG < BG, the union of the graph
AG and the bipartite graph BG is defined as a set of graphs
Gs where

Gs = AG< BG = (AG< b0(S(BG)),

AG< b1(S(BG)), . . . , AG< bn(S(BG)))

In our running example, let a graph AG in Fig. 10 be a graph
between Association and AssociationEnd and a graph BG in
Fig. 10 be a bipartite graph between AssociationEnd and
String, the union of AG and BG must then consist of six
models shown in Fig. 11. These models can be classified
into only two equivalence classes A and B each of which
consists of isomorphic members – class A consists of the
model 10a and 10c and class B the model 10b, 10d, 10e
and 10f.
Fig. 12 describes the partition–graphicalisation–

multiplication method. There are two arguments on the
correctness of this method. The first argument is the
soundness of the test cases that is, no invalid test cases
are generated; in other word, the method generates

only the models appropriate to the UML metamodel. The
second argument is that the test suite is complete that is,
at least one model is generated from each equivalence class.
Soundness – line 3 calculates the range m . . . n of the

possible numbers of edges considering the numbers of
model elements and the given multiplicity constraints. Line
5 and 6 creates partition pairs and assigns in- and out-
degrees of each node with respect to the range m . . . n and
the multiplicity constraint of each node. In line 9, a set of
bipartite graphs graphicalised from each partition pair
using Fig. 9 is constrained by the degrees of each node.
Because all test cases are constructed by joining these
bipartite graphs together, it follows that the test cases are
also valid.
Completeness – to show that the test suite produced is

complete, there are three observations on the partition–
graphicalisation–multiplication method. Firstly, the set of
all partition pairs created from each relationship is
complete. All partitions of the source domain and of the
target domains are combined as a set of Cartesian products
in line 7 to create a complete set of possible partition pairs.
Secondly, all possible bipartite graphs are generated from a
partition pair using Fig. 9. Therefore the bipartite graphs
graphicalised are guaranteed to cover all possible
configurations. Thirdly, the union operation in line 11
ensures that all configurations arise from combining two
graphs – the front graph and the concatenating graph. By
permutating all the source nodes of the concatenating
graphs, all possible configurations that can be constructed
by joining two graphs are created. Some of these graphs
can be discarded when they are found to be an
isomorphism of another graph. Fortunately, checking for
isomorphism in the union operation can be done
effectively since only a small number of nodes in the
concatenating graph are needed to be considered.

6 Test classification and concretisation

JULE uses Crocopat to classify the output from the partition–
graphicalisation–multiplication method into demonstrations
and counterexamples. Beyer et al. [12] describes Crocopat
as a high-level BDD package that allows querying and
manipulating of graphs and other relational structures
through RML, the language based on first-order predicate
calculus. JULE translates an OCL well-formedness rule into
an RML program. In our running example, the well-
formedness rule ‘self.allConnections()- . forAll(r1, r2/
r1.name ¼ r2.name implies r1 ¼ r2)’ would be translated
into an RML program in Fig. 13 below.
JULE then uses each output from the partition–

graphicalisation–multiplication method to create its
representation in Rigi standard format (RSF) [13]. For
example, the model 10a in Fig. 11 can be represented in
RSF as shown Fig. 14.
CrocoPat interprets the RML program in Fig. 13 to create a

BDD which consists of a set of variable nodes corresponding
to the model elements and their properties to which the well-
formedness rule refers, together with two terminal nodes
labelled 0 and 1. Crocopat then reads the RSF files and
evaluates them using the BDD created. According to the
evaluation reached at one of the terminal node, each of the
test models is marked as to whether it is a demonstration or
a counterexample. For instance, the model 10a is marked as
a counterexample.
Then, each pair of the test model and its expected test result

(demonstration or counterexample) is concretised as a JUnit

Fig. 9 Enumerating all bipartite graphs from a partition pair

Fig. 10 Two bipartite graphs for the union operation
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test case. The JUnit generator uses Velocity [14] as its code
generating engine and replaces the variables in the Velocity
template with the object names and types, the names of the
methods for creating links between the objects, and the
expected test result for the test case.
An example of the JUnit test case is shown previously

in Fig. 7. Each test case starts with the code that creates
the test model in the tool’s repository, follows by the
code that invokes the model validation function of the
tool, and finishes with the assertion code that checks if the
validation result corresponds with the expected test result.

Using the core package of the UML 1.4 specification,
JULE generates 15 test suites, each of which is generated
for a particular well-formedness rule. In total, there are
more than 3000 test cases. Executing these test cases in
ArgoUML, some previously unknown non-compliance
issues are uncovered. We report our experiment and these
non-compliance issues in the next section where the test
results are analysed and the diagnosis of the causes of non-
compliance is discussed.

7 Testing ArgoUML

ArgoUML [15] is a major open-source tool that supports the
UML 1.4 standards specification, provides model analysis
feature and is available under the Berkeley software
distribution (BSD) licence. The feature list of ArgoUML
states that ‘ArgoUML is compliant with the OMG Standard
for UML 1.4. The core model repository is an
implementation of the Java metadata interface [16] which

Fig. 11 Union of graph AG and BG in Fig. 10 consists of six models

Fig. 12 Partition–graphicalisation–multiplication method Fig. 13 RML program for the well-formedness rule 2
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directly supports MOF and uses the machine readable version
of the UML 1.4 specification provided by the OMG’.
ArgoUML employs two methods for analysing design

models, first the design critics which analyse the models,
suggest design improvements and indicate syntax and well-
formedness errors and second, the preventive approach by
embedding the well-formedness rule in methods for
building a new model element. Before adding a new model
element to the model, a build method is invoked to check
whether the given parameters for building the new element
are consistent with their relevant well-formedness rules. If
the parameters are inconsistent with the rules, the method
throws an exception indicating the problems.
The source code was checked out from the ArgoUML

repository at http://argouml.tigris.org/svn/argouml/ from
release VERSION-0-26-ALPHA-1. Testing was conducted
in the package org.argouml.model.mdr in the class
CoreFactoryMDRImpl.java. The test cases were executed
on a Pentium IV 1.50 GHz machine with memory 512 MB
using JUnit3 in Eclipse 3.2 as a test runner. The sizes of
the test suites range from 9 to 287 test cases. The test
reports produced by JUnit give the list of test cases that
were passed, failed or unfinished (errors). Using these
reports the failures were identified and the causes of failures
in the implementation were analysed.

7.1 Non-compliance Issue I

The first experiment shows that even a short and
uncomplicated well-formedness rule can be misinterpreted
by programmers. The well-formedness rule for the
AssociationEnd metaelement constrains that ‘the Classifier
of an AssociationEnd cannot be an Interface or a DataType
if the association is navigable away from that end’. The
OCL expression of this rule is shown in Fig. 15.
We used JULE to generate test cases within a bound to the

input size of two AssociationEnds, one Association, three
Classifiers, an Interface and a DataType. There were 27 test
cases generated, 20 of them are demonstrations and 7 are
counterexamples.
Running these test cases in JUnit against ArgoUML found

two failures that were both demonstrations. One of them was
shown in Fig. 16 where the classifier of the context object is
DataType and in the other failed test case, Interface. In both
models, the other end of the association is not navigable,
compliant with this well-formedness rule. However,
ArgoUML reports that they are ill formed. The
implementation is overconstrained.

By increasing the scope of the input size, the number of test
cases increased accordingly. An example of these larger test
cases is the one in Fig. 17. The test results from the larger
test suites were consistent with those of the smaller ones.

7.2 Diagnosis I

From the test results, a diagnosis can bemade.ArgoUML rejects
models whenever an end of the association has its participant of
type either DataType or Interface that is not navigable. By
running these failed test cases in Eclipse’s debug mode, this
diagnosis can be confirmed with the source code shown in
Fig. 18. When the value of the variable type became an
instance of DataType or Interface and the value of the variable
navigable was false, the exception is thrown immediately.
This confirms our initial diagnosis. The code snippet below –
line 1 and 2 shows the erroneous conditions. The
IllegalArgumentException was thrown from line 3–8.

7.3 Non-compliance Issue II

The next problem uncovered was the second well-formedness
rule applied to AssociationEnd. This rule states that ‘an
instance may not belong by composition to more than one
composite instance’. The OCL statement of this well-
formedness rule is shown in Fig. 19.
For this rule, JULE generated only nine test cases from

one AssociationEnd, three AggregationKinds – Aggregate,
Composite and None and three integers: 0, 1 and 2.
Because these integers represent semantically different
contexts, each combination of these values (the values of
AggregationKinds and the integers) results in a semantically
different model. The number of test cases is equivalent to
the total number of Cartesian products of the two sets (3
possible aggregationKinds × 3 possible integers).
Testing ArgoUML with the nine test cases reported two

failures shown in Fig. 20. The two tests are the association
ends that are composite and have upperbound zero and two,
respectively. Clearly, both test cases are counterexamples;
however, they went undetected.

7.4 Diagnosis II

Running these two test cases in Eclipse’s debug mode found a
problem in line 3 of code in Fig. 21 that always returns false
no matter what the value of the variable multi is. Tracing to
the getMaxUpper method discovered a fault – this method

Fig. 14 RSF representation of a test model

Fig. 15 Well-formedness rule for AssociationEnd

Fig. 16 Test case for the AssociationEnd well-formedness rule
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always returns 0. This can be fixed easily by changing line 9
of the code in Fig. 22 to return max and ArgoUML can detect
all counterexamples correctly.

7.5 Non-complaince Issue III

The next issue was one of the rules that constrain the
semantics of Generalisation. This rule simply states that
‘Circular inheritance is not allowed’. The OCL of this well-

formedness rule is shown in Fig. 23. This rule excludes the
self-element from being in one of its allParents.
The four test cases shown in Fig. 24 are counterexamples

where self was involved, at some point, in a circular
inheritance. In the first model in Fig. 24a, self is a child of
itself. In the model in Fig. 24b, self has a parent that is a
child of itself through a generalisable element. In Figs. 24c
and d, self is a grandparent and great-grandparent of itself.
All these models are invalid; however, ArgoUML can
detect the cases of circular inheritance in Fig. 24b only.

Fig. 18 Code snippet from the buildAssociationEnd method

Fig. 19 Another well-formedness rule for AssociationEnd

Fig. 17 Larger test case for the AssociationEnd well-formedness rule

Fig. 22 getMaxUpper method

Fig. 23 Well-formedness rule for GeneralisableElement

Fig. 24 Test cases for GeneralisableElement

a–d Counterexample

Fig. 20 Two test cases for AssociationEnd

Fig. 21 Code snippet for the buildAssociationEnd method

IET Softw., 2011, Vol. 5, Iss. 2, pp. 120–131 127
doi: 10.1049/iet-sen.2010.0032 & The Institution of Engineering and Technology 2011

www.ietdl.org



7.6 Diagnosis III

The buildGeneralisation method is shown in Fig. 25. The
condition in line 5 should be ‘ ¼¼ ’ instead of ‘! ¼ ’ –
only when a child and its parent are the same object should
the method throw an exception, not otherwise. The code in
line 5 therefore can be changed to ‘‖ (child1 ¼¼ parent1)’.
Next, consider the cases in Figs. 24c and d, the grandchild

and great-grandchild circular inheritances. The code that
handled these non-compliance issues was implemented in
another part of the buildGeneralisation method as shown in
Fig. 26.

Generalisation gen : parent.getGeneralisation()
takes all generalisations of the parent object. This is however
incomplete, self.allParents is not limited to only the parents of
the object from which it directly inherits, but according to the
UML standards specification, ‘the operation allParents returns
a set containing all the generalisable elements inherited by
this generalisable element (the transitive closure), excluding
the GeneralisableElement itself’. The implementation in the
buildGeneralisation method deviates from this statement;
this implementation only expresses the OCL in Fig. 27, but
not equivalent to the original statement.
It was pointed out by a member of the ArgoUML team that

circular Generalisation could be handled by one of the critics
instead of by the build method. We tested ArgoUML with the
model in Figs. 24c and d and found that there is a critic
reporting problems in these models. Using this critic,
ArgoUML can deal with all four cases of circular
inheritance correctly. It can then be concluded that
ArgoUML is compliant with this well-formedness rule.

8 Related works

8.1 Bounded exhaustive-testing and other
techniques

Our compliance testing approach was inspired by a trend in
software testing developed for programs that take complex
data structures as input. Tools such as TestEra [17] and
Korat [18] generate test cases using pre-conditions of
program specifications to generate test data and post-
conditions as test oracles.

TestEra uses Alloy Analyzer [19] to enumerate test cases and
uses symmetry breaking predicates to generate only one non-
isomorphic test case from each equivalence class of the test
data that has the same structure. Korat also generates the test
data effectively by monitoring access to all the fields of the
candidate input and pruning the search tree to avoid paths that
lead to isomorphism. The test generation of Korat differs
from the one in this work. Test cases in Korat are checked for
their isomorphism by comparing the objects’ identities. The
partition–graphicalisation–multiplication algorithm does not
take objects’ identities into consideration; it uses the degrees
of nodes to produce non-isomorphic graphs.
In [20], TestEra was used for testing the Galileo tool [21] as

an experiment on the practicality of bounded-exhaustive
testing. This study shows a positive result that meaningful
test cases, the fault trees – in this case, can be generated
when the scope of the input is large enough.
Close to bounded-exhaustive testing is the test generation by

disjunctive normal form (DNF) partitioning. Aichernig et al.
[22] takes a subset of OCL and provides a method for
partitioning OCL statements, then uses a constraint solver to
generate test cases for mutation-testing according to the DNF.
Another line of research from Farchi et al. [23] demonstrates
test suite generation for parts of the POSIX standard and for
the Java exception handling specification. Their method
derives behavioural models from standards specifications. In
contrast, JULE focuses on the static semantics part of
modelling language specifications.

8.2 Lightweight formal method and other analysis
tools

In the lightweight formal method [24], formal models are
checked for consistency and correctness by way of testing
based on input generated within only a small scope. A
number of tools and techniques have been developed to
support lightweight software methodology including the Alloy
Analyser and the USE tool [25, 26] for UML. Analysis
problems of UML models are one of the major research issues
in the area of automated software engineering. A large body
of research has been developed in the past few years.
One standard approach is to transform a UML model into a

model in a semantic domain that is formally defined and
supported by verification tools already. For example, in [27],
UML state charts are mapped to communicating sequential
processes (CSP). Consistency constraints of the UML state
charts can then be specified and validated using the language
and tools for CSP. Baresi and Pezzè [28] demonstrate the
translation of object-oriented models to Petri nets that enable
consistency checking and verification using tools for state
exploration and concurrency analysis. In [29], UML
interaction diagrams are transformed into automata for model
checking to verify whether their interactions can be satisfied.
The translation is implemented in the UML model checking
tool HUGO/RT that is supported with SPIN [30].
In [31], UML models are represented in Z. Using the

Z/Eves theorem prover [32], these models can be analysed
for consistency of class properties by way of proving their
initialisation and their states by calculating pre/post
conditions of their operations. The Java modelling language
(JML) is another widely used technology that enables this
approach. Hamie [33] presents a mapping of OCL types,
operations and collections to an implementation of JML
library. This allows the translation of OCL constraints to
JML constraints. This JML specification can be directly
annotated in a Java program in the form of invariants and

Fig. 25 Code snippet from the buildGeneralisation method

Fig. 26 Another part of code snippet from buildGeneralisation

Fig. 27 Deviation of the GeneralisableElement well-formedness
rule
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pre/post conditions. These annotations are then translated for
checking the behaviour of the program at runtime that is,
runtime assertion [34]. A number of tools that support JML
assertions are listed in [35].
There are also other approaches for validating UML

models that do not depend on existing verification tools.
Hölscher et al. [36] present an approach for translating a
given UML/OCL model into a graph transformation system
to allow the UML models to be executed by applying graph
transformation rules on the derived graph. With this
approach, it is possible to validate the models by simulating
the execution step-by-step.

8.3 Formal semantics of UML and OCL

The progress in automated testing based on the UML
standards specification was hindered, to some extent, by the
fact that the UML standards specification was not very
precise and the OCL specification is incorrect at places.
Much work has been done on the formalisation of UML
such as [37, 38]. In UML 2.0, package merge is defined as
a relationship between two packages by which the contents
of the merged package is subsumed into the contents of the
merging package. In [39], package merge was formalised
using Alloy and analysed with the Alloy Analyser. This
reveals falsity in the semantics of package merging. In
particular, it was shown that the commutativity between the
merged and merging package, in other word merge(x,
y) ¼ merge(y, x) for all x and y does not hold.
In term of dynamic models, [40] points out the differences

among the three variations of state chart diagrams that is,
UML, classical and rhapsody state charts. The key syntactic
and semantic differences were clarified to demonstrate that
a well-formed model in one variation may be considered ill
formed in another. Thus, well-formed models may also be
interpreted differently in different formalisms.

9 Lesson learned, conclusion and future
works

It is shown in this work that black-box, bounded exhaustive-
testing using both demonstrations and counterexamples is

a sound approach for compliance assessment of software
modelling tools. Some non-compliance issues can be
detected by demonstrations and some by counterexamples.
It can be said that this approach builds up the proof of
compliance, within a boundary, using the proof-by-cases
technique [41] where a proof is constructed on a case-by-
case basis until all required cases are proved.
While increasing the bounds on the input size to reach

higher measure of coverage, the size of a test suite can
grow unmanageably. Our technique generates only non-
isomorphic test suites that provide the same coverage but
are significantly reduced in size. Complexity analysis of our
technique is being performed to demonstrate the effect of
test suite reduction.
In this paper, we also set out to test the feasibility of using

our technique to a realistic software tool. The basis of this
evaluation was an experiment on applying a test suite
generated from JULE to the ArgoUML modelling tool. The
results reveal three previously unknown faults in
ArgoUML. The first issue was corrected by the ArgoUML
team and removed from the source code revision 16 250.
The remaining issues were corrected in revision 16 693.
As a general observation, we note that the approach of

translating these well-formedness rules to Java code
manually seems prone to error. It is possible that developers
may misunderstand the well-formedness rules and
implement them in Java incorrectly. Also, semantic variation
points in the UML specification allow different model
interpretations to support a variety of application domains. A
more effective approach might be to implement a model
validator that directly operates from OCL, as we have a
formal semantics of this language. One implementation
based on this approach is UCLUML [42, 43].
Our immediate future work is to experiment this framework

with four UML 2.x tools including the tools Eclipse Galileo
UML2 [44], Enterprise Architect 7.5 [45], Poseidon for
UML 8.0 [46] and MagicDraw 16.6 [47]. We report our
initial findings here as shown in Tables 2 and 3 to highlight
some of the practical issues of standards compliance
assessment – most current UML modelling tools do not
sufficiently support the UML specifications and lack the
required features to be tested for compliance.

Table 3 Comparison of four UML modelling tools: well-formedness rules

Well-formedness rules Eclipse Galileo

UML2

Enterprise

Architect 7.5

Poseidon for

UML CE 8.0

MagicDraw 16.6

SP2

[1] an association specialising another association has the same

number of ends as the other association

not applicable not support not applicable not applicable

[2] when an association specialises another association,

every end of the specific association corresponds to an end of

the general association, and the specific end reaches the same

type or a subtype of the more general end

not support not support not support not support

[3] endType is derived from the types of the member ends not support not support not support not support

[4] only binary associations can be aggregations not applicable not support not applicable not applicable

[5] association ends of associations with more than two ends

must be owned by the association

not applicable not support not applicable not applicable

Table 2 Comparison of four UML modelling tools: abstract syntax

Abstract syntax Eclipse Galileo UML2 Enterprise Architect 7.5 Poseidon for UML CE 8.0 MagicDraw 16.6 SP2

multidirection of association not support support not support not support

generalisation of associations support support not support support
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In Table 2, we assess two important features that are
prerequisite for the well-formedness rules of Association. The
first feature, the number of memberEnds allowed, is the ability
to support multidirectional associations. Surprisingly, most
tools, except Enterprise Architect, allow only bidirectional
associations. In the second feature – generalisation of
associations – lets an association to be generalised or
specialised by another association. All tools except for
Poseidon for UML allow generalisation of associations.
We then evaluate each tool for its modelling analysis

features. Consider Table 3, the first column shows the five
well-formedness rules of association. For each rule, there
are three possible feature statuses – support, not support
and not applicable – for example, rule 1 in the first row
cannot be fully tested for compliance if the tool allows only
bidirectional associations, thus marked as ‘not applicable’.
Enterprise Architect, the only tool that permits
multidirectional association, does not support this rule.
None of the tools support rule 2 and rule 3. Because
Eclipse Galileo UML2, Poseidon for UML and MagicDraw
only support bidirectional association, rule 4 and rule 5 do
not apply to them. Neither of the rules is supported by
Enterprise Architect.
Despite these initial findings, we intend to perform a

thorough assessment of the four tools. We believe industry
will continue to develop more advanced UML modelling
tools and slowly integrate model analysis features into
them. This also opens several lines of research such as the
design of architectures for integrating model analysis
components into existing software tools.
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