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ABSTRACT  

The underlying model of distributed systems is that of loosely coupled components

r

running in parallel and communicating by message passing. Description,
construction and evolution of these systems is facilitated by separating the system
structure, as a set of components and their interconnections, from the functional
description of individual component behaviour. Furthermore, component reuse and
structuring flexibility is enhanced if components are context independent  ie. self-
contained with a well defined interface for component interaction. 

The Conic environment for distributed programming supports this model. In
particular, Conic provides a separate configuration language for the description,
construction and evolution of distributed systems. The Conic environment has
demonstrated a working environment which supports system distribution,

r

reconfiguration and extension. We had initially supposed that Conic might pose
difficult challenges for us as software designers. For example, what design
techniques should we employ to develop a system that exploits the Conic facilities?
In fact we have experienced quite the opposite. The principles of explicit system
structure and context independent components that underlie Conic have lead us
naturally to a design approach which differs from that of both current industrial
practice and current research. Our approach is termed "constructive" since it
emphasises the satisfaction of system requirements by composition of components. 

In this paper we describe the approach and illustrate its use by application to an
example, a model airport shuttle system which has been implemented in Conic. 

1. INTRODUCTION 

Much of the current research on software development techniques and tools has
emphasised automated software construction, specifically identifying the important role of formal
specifications as the key to validation of user requirements and generation of the system itself
[Balzer 85]. It is suggested that maintenance is not conducted directly on the system itself, but

r

rather on the specification, with new versions of the system "automatically"  re-generated from
that new specification. We term this the "specification-driven" approach 

Although this view of the software process is extremely appealing, it is unfortunately
proving rather elusive. For instance, both automated verification and generation of software has
proved to be far more difficult in practice than it seemed in those early promising days [Hoare
69, Burstall 77]. Formal specifications are still proving to be extremely difficult to develop, with
subsequent interpretation being equally challenging. Automated deduction has made impressive
strides forward, but we are still a long way from practical use. Declarative programming
languages (such as logic and functional languages) certainly provide a sound base for research on 
transformation techniques to provide more efficient implementations, but leave much to be
desired as specifications. They are, after all, programming languages. Part of the reason for our
lack of impact on the 'real' world seems to be that, for any non-trivial system, no single
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specification technique seems to be adequate.  

Although it may appear otherwise, the intention of this paper is not to criticise the motives
or details of the research mentioned above.  However, it is rather difficult to see how
practitioners of software engineering for large and complex systems can take advantage of any of
the advances made in system design without a complete revolution in the world of specifications.
How then should we proceed?  

In practice, parallel and distributed software systems are conveniently described,
constructed and managed in terms of their software structure. Descriptions of the constituent
software components and their interconnection patterns provide a clear and concise level at which
to specify and design systems, and can be used directly by construction tools to generate the
system itself. In many cases - particularly embedded applications - it is the structure of the
application itself which should be used to dictate the structure of the resultant system.  Evolution
of the system can be achieved by making extensions or changes to the system configuration by
the addition or replacement of components. Since it seems that many 'new' systems are created
by modifying or evolving previous versions rather than by design and construction ab initio,
there is a need to recognise system evolution as a major portion of the development process. 

For a number of years, the Conic environment [Kramer 85, Magee 89] has supported the
use of configuration languages in such an approach. Our experience is that those systems
developed to accommodate physical distribution exhibit much more flexibility due to the enforced
modularity, component independence, well-defined interfaces and explicit structure than those
systems designed for centralised hardware. Since decisions on structure entail decisions on
composition/decomposition, they are fundamental to the development process. The premise is
that a structural (configuration) description is essential at each of the phases in the software
development process, from system specification as a configuration of component specifications
(eg. as in Inscape [Perry 89] or PAISLEY [Zave 82]), to evolution as changes to a system
configuration.  Hence, system structure should be recognised as the unifying framework upon
which to hang specification, design, construction and evolution of systems. While some tools
such as STATEMATE [Harel 88] have recognised the power of the structural view for system
specification and modelling it is generally the case that system structure is pushed to either end of
the system development process: at the top end, the architectural description of requirements and
system context; at the bottom end,  system management. 

Our overall model for software development emphasises structural decisions and
descriptions for all of the phases in the model. In contrast to the "specification driven" approach,
our model is "constructive". The "specification driven" approach  attempts to formalise the
decomposition process based only on the system specification. We believe that this process of
component identification remains informal as it requires design  information not usually included
in the system specification. Decomposition is best dealt with through design heuristics. Emphasis 
should rather be placed on the validation process viewed as "construction" of the system from
components. The formal view of this constructive approach is that of system verification by
showing satisfaction of the system specification as a composition of component specifications.  

In this paper we describe the constructive design approach.  The paper illustrates the
approach using an example, a model airport shuttle system, which has been implemented in
Conic. 

2.  THE CONSTRUCTIVE DESIGN APPROACH 

The main principle on which the approach is based is that structure is fundamental to
system design, construction and evolution. Structure should be explicitly described and
preserved during the software development process ie. given an appropriate software
architecture, system structure is stable and can be used to describe the system design, to
construct the actual system and as the basis for system modification and evolution.  Thus the
main structural design is retained in the constructed system itself. We believe that  an appropriate
software architecture is provided by the Conic environment, based on the use of context
independent component types with well-defined interfaces, and configurations of interconnected
instances of components to form complex types.  
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Figure 1.  A diagrammatic representation of the Constructive Design Approach 

The basic approach is recursive, and consists of the informal steps shown diagrammatically
in figure 1 and outlined below: 

1. Structure and Component Identification:  Initial design aims to identify the main processing
components and produce a structural description indicating the main data flows. The result
is a configuration of processes, with interfaces giving the types of data flows, and outline
descriptions of functions performed or entities modelled by the processes. 

This step provides an initial identification of component types. Furthermore, hierarchical
decomposition of any of the component types into a configuration of subcomponents may
be performed at this stage, or left for later refinement. 

2. 

I

Interface Specification:  Introduce control (synchronisation) between components and refine
the configuration, component interface specifications (intercommunication) and component
descriptions accordingly. The formulation of precise interface specifications permits the
detailed design, implementation and testing of a component type to proceed independently
from the rest of the system design. 

3. Component Elaboration consists of elaboration of the component types, either by  hierarchical
decomposition of composite component types into a configuration of subcomponents (as in
steps 1 and 2), or by detailed functional description of behaviour for primitive process
components. As before, the identification of common process and composite component
types is emphasised. 

4.  Construction:   Node configuration by instantiation and interconnection of components to form 
distributable logical nodes, and system configuration by allocation and interconnection of
node instances  
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5. 

M

Modification and evolution of the system is performed by the replacement or addition of
nodes. Changes are specified as configuration changes applied to the operational system
[Kramer 85, 88]. 

As in all realistic development processes, the steps tend not to be followed purely
sequentially, and include both iteration and the opportunity to advance in the process on one part
of the system while lagging behind on another. Modification and evolution are captured as
changes to the software structure, as illustrated in figure 2. 

Real World 
Application

Software Structure

System

Modified
Application

Modified Structure

Modified
System

Figure 2.  Evolution of a System by Structure Modification 

The rest of this section discusses each of the development steps in more detail, and
illustrates the approach using a model airport shuttle system described below. This example has
been implemented and tested in the Conic environment, both as a simulation and on an actual
model railway system. 

Example:  A Model Airport Shuttle System 

Figure 1 depicts the track layout of a shuttle system intended to convey passengers between
four terminals labelled NorthWest,NorthEast, SouthEast and SouthWest. Passengers signal their
desired destination using a panel of buttons. Each button corresponds to a destination terminal.
The system can support one to three passenger shuttle vehicles. Further details of this system and 
an alternative design may be found in [Atkinson 88]. 
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Figure 1 - Model Airport Shuttle System 

Hardware 

The hardware model of this system is constructed using "model railway" components. The
track consists of six electrically isolated segments, three to each sector labelled north,middle and
south. In each sector a set of points connects the north and south track segments to the middle
track segment. Each sector has a serial interface which can be used by a computer system for
control and monitoring. The functions which can be controlled are as follows: 

Track Segments 
Power on / off 
Power polarity 

Points 
up (connect  north to middle) / down (connect south to middle) 

The status which can be monitored is: 

Track Sensors 
Train present/absent 

Buttons 
pressed/not pressed 

Trains can be moved by applying power with the appropriate polarity to track segments.
The position of a train can only be directly sensed when it is over a proximity detector. 

2.1 Structure and Component Identification:  Initial design as Communicating
Processes 

There are two main approaches to this decomposition, functional and object-oriented.
Functional decomposition is the approach popularised as SASD [Yourdon 78, de Marco 79]. The
basis is the decomposition of the system functions into Data Flow Diagrams (DFD), which
describe the system as a configuration of functional processes performing data transformations
and communicating by flows of data. A Data Dictionary is used to build up definitions of the data
types consumed and produced by the processes. Complex processes can be functionally
decomposed into their constituent processes and data flows, thereby providing a description as a
hierarchical configuration of processes. This approach is widely used, particularly for data
processing applications. 

The object-oriented approaches (such as [Booch 86]) are based on the identification of real
world entities as objects, with state and defined interactions with other objects. Some approaches
support the definition of objects in some hierarchy according to their properties, with
identification of classes of objects to describe general properties, and subclasses to describe
specialised properties. However, this inheritance hierarchy is not the same as the hierarchical
decomposition described in DFDs, being more akin to a type definition hierarchy rather than an
instance composition hierarchy. An example of a systematic design approach which follows the
object-oriented philosophy, but not the inheritance hierarchy, is JSD [Jackson 83].  

The approach we advocate tends to combine the data flow style of DFDs, with the entity
modelling of object-oriented approaches. Object identification tends to be appropriate for
embedded applications where the system components and structure mirrors the application, with
functional decomposition being useful as the means for decomposing complex components. Both 
decomposition criteria can be used as appropriate; it is not crucial to our approach. What is
important is that the identified components  are context independent with no reference to external
components other than as potential sources or destinations of messages. In order to reduce the
coupling between components, state information is localised (cf. Information hiding [Parnas 72]

r

rather than distributed across components. In addition, we emphasise the identification of

r

reusable component types. The result is a description of the system design as a configuration of
communicating process components modelling real-world entities, with identification of process
types and the data types used in the information flows (cf. data dictionaries). Hierarchical
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(de)composition utilises the instance hierarchy of DFDs.  

Initial Design of the Shuttle System 

The following factors influence the first design step: 

1) Functional decomposition: We wish to separate the scheduling strategy for trains from the
mechanisms by which trains are moved from station to station. The design must have sufficient
flexibility to allow the train scheduler to be easily replaced. From the specification, we can
deduce that scheduling decisions depend on passenger requests and the location of trains. The
scheduler also needs to know the set of destinations, but does not require detailed information on
track layout, signalling arrangements etc.  

2) 

E

Entity modelling / component type identification: We observe that the two sectors are
essentially mirror reflections of each other. Consequently, it should be possible to consider the
design of only one sector. The other sector will be essentially a parameterised second
instantiation of this design. This early identification of component types considerably reduces the
design and implementation effort. 

Scheduler

sector(west)

sector(east)

passenger_requests

train_location

train_move

passenger_requests

train_location

train_move

Figure 2 - Initial Design Structure of the Shuttle System 

The above considerations lead to the initial design structure for the shuttle system depicted
in figure 2. This is essentially a dataflow diagram showing the information flows between
components. At this  point in the design, control flows are ignored. We do not explicitly depict
H/W interfaces. In the  above system, these interfaces are encapsulated by the sector
components. Arcs are labelled with the information type. An initial definition of these types is
given below. 

station = (NorthWest | SouthWest | NorthEast | SouthEast)  

passenger_requests  =  list of (source,destination:station) 

train_move = source,destination : station 

train_location =  set of station 

It should be noted that the scheduler only needs to know the location of trains when they
are in a station. The scheduler is not interested in transient location information such as train in a
middle track segment. The passenger request list maintains the order in which requests were
made since the scheduler requires this information to make fair scheduling decisions.  

The result from this first step is thus a data-flow configuration of communicating
processes, with identification of process and data types (cf. a data dictionary in Structured
Analysis). For the sake of brevity, we do not provide the conventional outline description of
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components, but concentrate rather on the main issues in this paper: configuration structure,
component types and interfaces. We now consider a possible component decomposition. 

Decomposition :  Sector Design 

We now turn to the design of the sector component depicted in figure 2. The sector is
concerned with the control of tracks and points in response to move commands from the
scheduler. In addition it provides status information on the location of trains and the list of
passenger requests.  As in the initial design, the approach is to associate a software component
with each physical component (including the computer interface) and identify the dataflows
between these components. Where it seems obvious that the interface dataflows of the
component being decomposed are not directly supported by these internal components, a
controller or co-ordinator module is introduced. The sector component design is depicted in
figure 3. 

track[north]

track[south]

track[middle]controller

point

button

optomux

button

train_move

train_location

passenger_requests

a

b
c

d

e

f

g

Sector

key     a = train_detect         b  =  track_control
          c = track_command   d  =  train_position
          e  = point_command   f  = point_contro
         g = button_detect 

Figure 3. - Sector Design 

The controller component translates scheduler move commands into operations on points and
tracks.  To reduce the level of detail exposed at this level of design, we have chosen to combine
the management of track segment and track sensors into one component type - track. If
necessary, the track component can be further decomposed. The optomux component provides
the interface to the hardware controller (industrial "OPTOMUX" controllers). Again, component
types have been identified to reduce the design effort. Sector is composed from the component
types -  controller ,  track ,  point ,  button and  optomux . 

The level of design at which decomposition stops is obviously problem dependent. For the
shuttle system, the level depicted in Figure 3. is appropriate for moving to the next stage in
system design  - introducing control flow, leading to a precise specification of each component
interface. 

2.2  Interface Specification 

Interfaces are specified with the assumption that components are concurrently executed and
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that dataflows are implemented by message passing. At this stage, issues of control flow are
considered in the sense that we impose a communication transaction structure on the dataflows
that have been identified, for example, whether some dataflows occur as the responses to other
dataflows - a request-response transaction. We will first consider the specification of the interface
to the  optomux component which drives the hardware controller interface to the shuttle system.  

detect[north]

detect[middle]
detect[south]

power[north]
power[middle]
power[south]

direction[north]
direction[middle]
direction[south]

stationN
stationS

optomux

module optomux;
use
   directions:north,south,middle;
exitport
   detect[north..south]:signaltype;      {train_detect}
   stationN,stationS:integer;   {button_detect  - 1..4}
entryport
    power[north..south]:boolean;        {track_control}
    direction[north..south]:boolean;   {track_control}
     pointdir:boolean;                          {point_control}
end.

Figure 4. - Optomux Module interface 

Interfaces are described in the Conic language. Messages are sent out of modules via exitports
and received into modules via entryports. Definitions which must be shared by a number of
modules are imported from definition units. For example, in figure 4, the definitions of the
constants north, middle and south are imported from the definitions unit directions. Comments in
figure 4 relate the interface to the dataflow depicted in figure 3. Note that in the case of this
interface the communication control flow is exactly that of the dataflow - the providers of data
initiate the communication transactions to transfer that data as messages. 

Interface Specification of the Track Component 

We now consider the interface specification of the track component. Note that while we
have been illustrating use of a top-down decomposition for design, some components can be
designed bottom-up. In practice, lower level design is often a combination of both top-down and
bottom up. Once interfaces have been specified component implementation can proceed in
parallel with the design of other parts of the system.  

In the previous section, we saw that shared definitions are declared in definition units. In
that case, the shared definitions were concerned with the system wide representation of compass
points and directions. Before specifying the interface to the track module, we must define the
types of the dataflows between track modules and the controller since these definitions are
shared. We avoided this step in the previous section by using only the  standard primitive types
signaltype ,  boolean and  integer . 

define tracks: trackT,trackopT; 
type 

trackopT = (on_com,query_com,capture_com); 
trackT=  record {track_command} 

command: trackopT; 
direction:integer; {either east or west - directions are of type  integer} 

end ; 
end . 

The interface to the track module can now be specified  in terms of  types defined by
tracks and primitive types (figure 5) 
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detect[north].
module track;
use
   directions:east,west,middle;
   tracks:trackT,trackopT;
entryport
   control:trackT reply boolean;  {track_command & train_position}
   detect[west..east]:signaltype;                                  {train_detect}
exitport
   power, direction:boolean;                                       {train_control}
end.

detect[middle]
detect[south]

power

direction

track

control

Figure 5. -  Track Module interface 

Note that we have chosen to make the dataflow train_position a response to track_commands.
This is because train position as represented by a boolean (true when a train is present in the track 
segment) can only be reliably reported after a track command has been executed.  

2.3 Component Elaboration 

In this step, the outline description of each of the low-level processes is elaborated to give a
precise description of its behaviour. In many design techniques, pseudo-code is used at this
stage. Since the Conic Programming language is a superset of Pascal, including the required
communication primitives, we have found it convenient to program these processes directly. As
always, refinement of the more complex actions of the process can be encapsulated into
procedures. 

off_state

on_state

train_state

capture_statedetect[middle]

on_com detect[direction]

capture_com

States
off_state:  power off, no train in segment
on_state:   power on, train leaving segment
capture_state: power on , train entering segment
train_state: power off, train in segment

detect[middle]
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task module track; 
use 

directions:east,west,middle; 
tracks:trackT,trackopT; 

entryport 
control:trackT  reply boolean; 
detect[west..east]:signaltype; 

exitport 
power, direction:boolean; 

var 
state:(on_state,off_state,train_state,capture_state); 
T:trackT; i:integer; 

begin 
send false  to power; state:=off_state; 
loop 

select 
for i:=west  to east  do  receive signal  from detect[i]=> 

case state  of 
off_state:  if (i=middle)  then state:=train_state; 
on_state:  if (i=T.direction)  then begin 

state:=off_state;     send false  to power;     reply false  to control; 
end ; 

capture_state: if (i=middle)   then begin 
state:=train_state;   send false  to power;     reply true  to control; 
end ; 

train_state:; 
end ; 

or 
receive T  from control=> 

case T.command  of 
query_com: reply (state=train_state)  to control; 
on_com:  begin 

send (T.direction=east)  to direction; state:=on_state;    send true  to power; 
end ; 

capture_com:  if (state=train_state)  then  reply true  to control 
else begin 

send (T.direction=east)  to direction;   state:=capture_state;    send true  to power; 
end ; 

end ; 
end ; 

end ; 
end . 

Figure 6. Track Module implementation 

The complete Conic source of the track module and a diagram of the state transitions it
implements are shown in Figure 6. The track module is implemented as a single sequential
program. In Conic, this is a task module.  It should be noted that a track module requires signals
not only from its own track sensor detect[middle] but also signals from the track sensors to the
east and west of it. These signals are required so that a track knows when a train has left it. This

r

requirement introduces a new interface dataflow in figure 3 since we require train detect signals
from the middle track segments to be passed between sectors. 

2.4 Construction 

When all interfaces of components types within a higher level component have been
specified as modules (these need not necessarily be implemented) we can describe the higher
level component as a composition of instances of these module types using the Conic
configuration language. The Configuration language description of the sector module type is
outlined in figure 7. 
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group module  sector (longtitude:integer); {parameterised with either east or west} 
use 

directions:east,west,north,south,middle,trains,destinations,movet; 
entryport 

move:movet  reply trains; {train_move & train_location} 
getrequestN,getrequestS:signaltype  reply destinations; {passenger_requests} 
detectin:signaltype; {train_detect_in} 

exitport 
detectout:signaltype; {train_detect_out} 

use 
point;  track; button; controller; optomux; 

create 
point; 
stationN:button; 
stationS:button; 
controller(longtitude); 
optomux; 

create forall i:[north..south] 
track[i]; 

link {interface} 
move  to controller.move; 
getrequestN  to stationN.getrequest; 
getrequestS  to stationS.getrequest; 
detectin  to track[middle].detect[-longtitude];   {- reverses direction} 
optomux.detect[middle]  to detectout; 

{internal} 
controller.point  to point.control; 
point.direction  to optomux.pointdir; 
optomux.stationN  to stationN.input; 
optomux.stationS  to stationS.input; 

link forall i:[north..south] 
controller.track[i]  to track[i].control; 
track[i].power  to optomux.power[i]; 
track[i].direction  to optomux.direction[i]; 
optomux.detect[i]  to track[i].detect[middle]; 

link 
optomux.detect[north]  to track[middle].detect[longtitude]; 
optomux.detect[south]  to track[middle].detect[longtitude]; 
optomux.detect[middle]  to track[north].detect[-longtitude]; 
optomux.detect[middle]  to track[south].detect[-longtitude]; 

end . 

Figure 7. - Sector Module configuration 

The use construct specifies the set of message types necessary to declare a group module
interface and the set of task and/or group module types necessary to construct the group.
Instances of task (or group) types are specified by the create construct. The link construct
declares the interconnections between instance exitports and entryports. The replicator
forall declares arrays of instances and links. 

2.4  System Construction  - Overall system description and allocation 

The hardware configuration for the model airport shuttle system consisits of a Sun
workstation connected by Ethernet to two Motorola 68020 target systems. These target systems
are connected by serial links to the OPTOMUX controllers which power on/off tracks, switch
points etc. The mapping of the software components of the control system to this hardware is
dictated by the location of  hardware interfaces ( as is often the case in this class of system). Each
target runs a sector component and the scheduler is executed on the Sun workstation. We could of
course choose to run the scheduler on one of the targets. However, its implementation (not
discussed here) includes a display of current requests and moves; consequently it requires the
display interface provided by the Sun. This mapping is expressed in the system configuration
description of Figure 9 by at clauses. The current configuration of the operational system can be
displayed (figure 10) using the Conic graphical configuration manager, ConicDraw [Kramer
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89a]. 

Sun1

Targ1 Targ2

Ethernet

Optomux Optomux

Serial line Serial line

Figure 8. - Control Hardware Configuration 

system shuttle; 
use 

sector; 
scheduler; 

create 
EastSec:sector(east)  at targ1; 
WestSec:sector(west)  at targ2; 
scheduler  at Sun1; 

link 
EastSec.detectout  to WestSec.detectin; 
WestSec.dectectout  to EastSec.detectin; 
scheduler.west  to WestSec.move; 
scheduler.east  to EastSec.move; 
scheduler.getNW  to WestSec.getrequestN; 
scheduler.getSW  to WestSec.getrequestS; 
scheduler.getNE  to EastSec.getrequestN; 
scheduler.getSE  to EastSec.getrequestS; 

end . 

Figure 9. - Overall  System Configuration 

Figure 10. - ConicDraw Display of the System Configuration 

2.5  Modification and Evolution 

The changes which which can be applied to this system are limited by the inflexibility of the
physical track layout. However, it is likely that we will want to experiment with the scheduling
stratgey by which shuttles are moved in response to passenger requests. The following expresses
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the replacement of the scheduler component. 

change shuttle; 
use 

newscheduler; 
remove 

scheduler; 
create 

scheduler:newscheduler  at Sun1; 
link 

scheduler.west  to WestSec.move; 
scheduler.east  to EastSec.move; 
scheduler.getNW  to WestSec.getrequestN; 
scheduler.getSW  to WestSec.getrequestS; 
scheduler.getNE  to EastSec.getrequestN; 
scheduler.getSE  to EastSec.getrequestS; 

end . 

Note that we can apply this change dynamically to the running system without losing
passenger requests and with minimum disturbance to the shuttle service by using the change
management protocol described in [ Kramer 89b]. 

3. DISCUSSION AND CONCLUSIONS 

The main principles on which our constructive approach is based is that of explicit system
structure and context independent components. Structure is explicitly described and preserved
during the software development process, from initial design to actual system construction and
evolution.  Thus the main structural design information is retained in the constructed system
itself. The second principle, that of context independence of components, reduces the design and
implementation effort by facilitating early identification of component types and component
interface specifications. Once its interface has been specified, the detailed design, implementation
and testing of a component type can proceed independently from the rest of the system design.
Component types can be multiply instantiated in the final system and hierarchically composed to
form composite component types. Furthermore, the use of precise interface specifications can
provide the basis for formal specification of required/provided component behaviour,  and system
specification as a configuration (composition) of component specifications. 

As mentioned, the approach evolved from our experience in the development of distributed
systems using the Conic environment. This suggested that those systems developed to
accommodate physical distribution exhibit much more flexibility than centralised designs by

r

requiring modularity, component independence, well-defined interfaces and explicit structure.
Flexible distribution relies on the use of independent components in which information is
localised. If this is not achieved, it leads to problems of maintaining consistency across
distributed components. Hence we emphasise the partitioning and localisation of state
information. 

Our approach is similar in many respects to that of [Schneidewind 89], which also
emphasises the use of independent components which communicate using messages. He too
asserts that the discipline of designing to this model aids reuse by the enforced independence of
the components, thereby gaining reusability, modularity, maintainability and understandability.
The object oriented paradigm described in [Lee 88] uses a similar approach. DARTS/DA [Gomaa
89] offers a pragmatic method based on developing a data-flow model. The method provides
some sound structuring criteria for forming distributable subsystems (components). However,
we add an emphasis on explicit configuration structure, using component types to define
composite types and the system itself in a uniform and constructive fashion. In addition, we
provide the underlying support environment to directly translate this design into an operational
system, and subsequently to evolve it as required. The mapping to software environments other
than Conic would involve the sort of additional transformation as performed by Lee in
transforming objects to Ada packages. 

As in Luqi's approach to software evolution through prototyping [Luqi 89], our systems
can be constructed as cut down versions of the final system and evolved to meet the full

r

requirements. Again, we make use of structural extension and modification to perform the
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evolution. 

Although our design approach has been extensively used, including the design of the Conic
support environment itself, this paper is the first attempt to document it. Further work is
necessary to make the method more systematic and to refine the method description by
documenting many of the design decisions which we seem to make implicitly. Experience in
teaching the method to other users of the Conic environment will also contribute to the method

r

refinement. The intention is then to provide CASE tool support based on ConicDraw [Kramer89]
and integrated into the Conic environment. 
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