
Proc. of 10th IEEE ICDCS, Paris, May 1990.

A Constructive Approach
to the Design of Distributed Systems

Jeff Kramer Jeff Magee Anthony Finkelstein

Department of Computing,
Imperial College of Science, Technology and Medicine,

180 Queen's Gate, London SW7 2BZ, UK.

ABSTRACT

The underlying model of distributed systems is that of loosely coupled components

r

running in parallel and communicating by message passing. Description,
construction and evolution of these systems is facilitated by separating the system
structure, as a set of components and their interconnections, from the functional
description of individual component behaviour. Furthermore, component reuse and
structuring flexibility is enhanced if components are context independent ie. self-
contained with a well defined interface for component interaction.

The Conic environment for distributed programming supports this model. In
particular, Conic provides a separate configuration language for the description,
construction and evolution of distributed systems. The Conic environment has
demonstrated a working environment which supports system distribution,

r

reconfiguration and extension. We had initially supposed that Conic might pose
difficult challenges for us as software designers. For example, what design
techniques should we employ to develop a system that exploits the Conic facilities?
In fact we have experienced quite the opposite. The principles of explicit system
structure and context independent components that underlie Conic have lead us
naturally to a design approach which differs from that of both current industrial
practice and current research. Our approach is termed "constructive" since it
emphasises the satisfaction of system requirements by composition of components.

In this paper we describe the approach and illustrate its use by application to an
example, a model airport shuttle system which has been implemented in Conic.

1. INTRODUCTION

Much of the current research on software development techniques and tools has
emphasised automated software construction, specifically identifying the important role of formal
specifications as the key to validation of user requirements and generation of the system itself
[Balzer 85]. It is suggested that maintenance is not conducted directly on the system itself, but

r

rather on the specification, with new versions of the system "automatically" re-generated from
that new specification. We term this the "specification-driven" approach

Although this view of the software process is extremely appealing, it is unfortunately
proving rather elusive. For instance, both automated verification and generation of software has
proved to be far more difficult in practice than it seemed in those early promising days [Hoare
69, Burstall 77]. Formal specifications are still proving to be extremely difficult to develop, with
subsequent interpretation being equally challenging. Automated deduction has made impressive
strides forward, but we are still a long way from practical use. Declarative programming
languages (such as logic and functional languages) certainly provide a sound base for research on
transformation techniques to provide more efficient implementations, but leave much to be
desired as specifications. They are, after all, programming languages. Part of the reason for our
lack of impact on the 'real' world seems to be that, for any non-trivial system, no single

Design of Distributed Systems page 1 August 19, 1991

specification technique seems to be adequate.

Although it may appear otherwise, the intention of this paper is not to criticise the motives
or details of the research mentioned above. However, it is rather difficult to see how
practitioners of software engineering for large and complex systems can take advantage of any of
the advances made in system design without a complete revolution in the world of specifications.
How then should we proceed?

In practice, parallel and distributed software systems are conveniently described,
constructed and managed in terms of their software structure. Descriptions of the constituent
software components and their interconnection patterns provide a clear and concise level at which
to specify and design systems, and can be used directly by construction tools to generate the
system itself. In many cases - particularly embedded applications - it is the structure of the
application itself which should be used to dictate the structure of the resultant system. Evolution
of the system can be achieved by making extensions or changes to the system configuration by
the addition or replacement of components. Since it seems that many 'new' systems are created
by modifying or evolving previous versions rather than by design and construction ab initio,
there is a need to recognise system evolution as a major portion of the development process.

For a number of years, the Conic environment [Kramer 85, Magee 89] has supported the
use of configuration languages in such an approach. Our experience is that those systems
developed to accommodate physical distribution exhibit much more flexibility due to the enforced
modularity, component independence, well-defined interfaces and explicit structure than those
systems designed for centralised hardware. Since decisions on structure entail decisions on
composition/decomposition, they are fundamental to the development process. The premise is
that a structural (configuration) description is essential at each of the phases in the software
development process, from system specification as a configuration of component specifications
(eg. as in Inscape [Perry 89] or PAISLEY [Zave 82]), to evolution as changes to a system
configuration. Hence, system structure should be recognised as the unifying framework upon
which to hang specification, design, construction and evolution of systems. While some tools
such as STATEMATE [Harel 88] have recognised the power of the structural view for system
specification and modelling it is generally the case that system structure is pushed to either end of
the system development process: at the top end, the architectural description of requirements and
system context; at the bottom end, system management.

Our overall model for software development emphasises structural decisions and
descriptions for all of the phases in the model. In contrast to the "specification driven" approach,
our model is "constructive". The "specification driven" approach attempts to formalise the
decomposition process based only on the system specification. We believe that this process of
component identification remains informal as it requires design information not usually included
in the system specification. Decomposition is best dealt with through design heuristics. Emphasis
should rather be placed on the validation process viewed as "construction" of the system from
components. The formal view of this constructive approach is that of system verification by
showing satisfaction of the system specification as a composition of component specifications.

In this paper we describe the constructive design approach. The paper illustrates the
approach using an example, a model airport shuttle system, which has been implemented in
Conic.

2. THE CONSTRUCTIVE DESIGN APPROACH

The main principle on which the approach is based is that structure is fundamental to
system design, construction and evolution. Structure should be explicitly described and
preserved during the software development process ie. given an appropriate software
architecture, system structure is stable and can be used to describe the system design, to
construct the actual system and as the basis for system modification and evolution. Thus the
main structural design is retained in the constructed system itself. We believe that an appropriate
software architecture is provided by the Conic environment, based on the use of context
independent component types with well-defined interfaces, and configurations of interconnected
instances of components to form complex types.

Design of Distributed Systems page 2 August 19, 1991

Real World
Application

Software Structure

Component Types

System

Interface specification

+
Elaboration

component
program

composite
structure

begin
.
e n d

Figure 1. A diagrammatic representation of the Constructive Design Approach

The basic approach is recursive, and consists of the informal steps shown diagrammatically
in figure 1 and outlined below:

1. Structure and Component Identification: Initial design aims to identify the main processing
components and produce a structural description indicating the main data flows. The result
is a configuration of processes, with interfaces giving the types of data flows, and outline
descriptions of functions performed or entities modelled by the processes.

This step provides an initial identification of component types. Furthermore, hierarchical
decomposition of any of the component types into a configuration of subcomponents may
be performed at this stage, or left for later refinement.

2.

I

Interface Specification: Introduce control (synchronisation) between components and refine
the configuration, component interface specifications (intercommunication) and component
descriptions accordingly. The formulation of precise interface specifications permits the
detailed design, implementation and testing of a component type to proceed independently
from the rest of the system design.

3. Component Elaboration consists of elaboration of the component types, either by hierarchical
decomposition of composite component types into a configuration of subcomponents (as in
steps 1 and 2), or by detailed functional description of behaviour for primitive process
components. As before, the identification of common process and composite component
types is emphasised.

4. Construction: Node configuration by instantiation and interconnection of components to form
distributable logical nodes, and system configuration by allocation and interconnection of
node instances

Design of Distributed Systems page 3 August 19, 1991

5.

M

Modification and evolution of the system is performed by the replacement or addition of
nodes. Changes are specified as configuration changes applied to the operational system
[Kramer 85, 88].

As in all realistic development processes, the steps tend not to be followed purely
sequentially, and include both iteration and the opportunity to advance in the process on one part
of the system while lagging behind on another. Modification and evolution are captured as
changes to the software structure, as illustrated in figure 2.

Real World
Application

Software Structure

System

Modified
Application

Modified Structure

Modified
System

Figure 2. Evolution of a System by Structure Modification

The rest of this section discusses each of the development steps in more detail, and
illustrates the approach using a model airport shuttle system described below. This example has
been implemented and tested in the Conic environment, both as a simulation and on an actual
model railway system.

Example: A Model Airport Shuttle System

Figure 1 depicts the track layout of a shuttle system intended to convey passengers between
four terminals labelled NorthWest,NorthEast, SouthEast and SouthWest. Passengers signal their
desired destination using a panel of buttons. Each button corresponds to a destination terminal.
The system can support one to three passenger shuttle vehicles. Further details of this system and
an alternative design may be found in [Atkinson 88].

West Sector East Sector

north

south
south

north

middle middle

North West NorthEast

SouthWest SouthEast

points points

platform

platform

platform

platform

button panel

train
proximity
sensor

Design of Distributed Systems page 4 August 19, 1991

Figure 1 - Model Airport Shuttle System

Hardware

The hardware model of this system is constructed using "model railway" components. The
track consists of six electrically isolated segments, three to each sector labelled north,middle and
south. In each sector a set of points connects the north and south track segments to the middle
track segment. Each sector has a serial interface which can be used by a computer system for
control and monitoring. The functions which can be controlled are as follows:

Track Segments
Power on / off
Power polarity

Points
up (connect north to middle) / down (connect south to middle)

The status which can be monitored is:

Track Sensors
Train present/absent

Buttons
pressed/not pressed

Trains can be moved by applying power with the appropriate polarity to track segments.
The position of a train can only be directly sensed when it is over a proximity detector.

2.1 Structure and Component Identification: Initial design as Communicating
Processes

There are two main approaches to this decomposition, functional and object-oriented.
Functional decomposition is the approach popularised as SASD [Yourdon 78, de Marco 79]. The
basis is the decomposition of the system functions into Data Flow Diagrams (DFD), which
describe the system as a configuration of functional processes performing data transformations
and communicating by flows of data. A Data Dictionary is used to build up definitions of the data
types consumed and produced by the processes. Complex processes can be functionally
decomposed into their constituent processes and data flows, thereby providing a description as a
hierarchical configuration of processes. This approach is widely used, particularly for data
processing applications.

The object-oriented approaches (such as [Booch 86]) are based on the identification of real
world entities as objects, with state and defined interactions with other objects. Some approaches
support the definition of objects in some hierarchy according to their properties, with
identification of classes of objects to describe general properties, and subclasses to describe
specialised properties. However, this inheritance hierarchy is not the same as the hierarchical
decomposition described in DFDs, being more akin to a type definition hierarchy rather than an
instance composition hierarchy. An example of a systematic design approach which follows the
object-oriented philosophy, but not the inheritance hierarchy, is JSD [Jackson 83].

The approach we advocate tends to combine the data flow style of DFDs, with the entity
modelling of object-oriented approaches. Object identification tends to be appropriate for
embedded applications where the system components and structure mirrors the application, with
functional decomposition being useful as the means for decomposing complex components. Both
decomposition criteria can be used as appropriate; it is not crucial to our approach. What is
important is that the identified components are context independent with no reference to external
components other than as potential sources or destinations of messages. In order to reduce the
coupling between components, state information is localised (cf. Information hiding [Parnas 72]

r

rather than distributed across components. In addition, we emphasise the identification of

r

reusable component types. The result is a description of the system design as a configuration of
communicating process components modelling real-world entities, with identification of process
types and the data types used in the information flows (cf. data dictionaries). Hierarchical

Design of Distributed Systems page 5 August 19, 1991

(de)composition utilises the instance hierarchy of DFDs.

Initial Design of the Shuttle System

The following factors influence the first design step:

1) Functional decomposition: We wish to separate the scheduling strategy for trains from the
mechanisms by which trains are moved from station to station. The design must have sufficient
flexibility to allow the train scheduler to be easily replaced. From the specification, we can
deduce that scheduling decisions depend on passenger requests and the location of trains. The
scheduler also needs to know the set of destinations, but does not require detailed information on
track layout, signalling arrangements etc.

2)

E

Entity modelling / component type identification: We observe that the two sectors are
essentially mirror reflections of each other. Consequently, it should be possible to consider the
design of only one sector. The other sector will be essentially a parameterised second
instantiation of this design. This early identification of component types considerably reduces the
design and implementation effort.

Scheduler

sector(west)

sector(east)

passenger_requests

train_location

train_move

passenger_requests

train_location

train_move

Figure 2 - Initial Design Structure of the Shuttle System

The above considerations lead to the initial design structure for the shuttle system depicted
in figure 2. This is essentially a dataflow diagram showing the information flows between
components. At this point in the design, control flows are ignored. We do not explicitly depict
H/W interfaces. In the above system, these interfaces are encapsulated by the sector
components. Arcs are labelled with the information type. An initial definition of these types is
given below.

station = (NorthWest | SouthWest | NorthEast | SouthEast)

passenger_requests = list of (source,destination:station)

train_move = source,destination : station

train_location = set of station

It should be noted that the scheduler only needs to know the location of trains when they
are in a station. The scheduler is not interested in transient location information such as train in a
middle track segment. The passenger request list maintains the order in which requests were
made since the scheduler requires this information to make fair scheduling decisions.

The result from this first step is thus a data-flow configuration of communicating
processes, with identification of process and data types (cf. a data dictionary in Structured
Analysis). For the sake of brevity, we do not provide the conventional outline description of

Design of Distributed Systems page 6 August 19, 1991

components, but concentrate rather on the main issues in this paper: configuration structure,
component types and interfaces. We now consider a possible component decomposition.

Decomposition : Sector Design

We now turn to the design of the sector component depicted in figure 2. The sector is
concerned with the control of tracks and points in response to move commands from the
scheduler. In addition it provides status information on the location of trains and the list of
passenger requests. As in the initial design, the approach is to associate a software component
with each physical component (including the computer interface) and identify the dataflows
between these components. Where it seems obvious that the interface dataflows of the
component being decomposed are not directly supported by these internal components, a
controller or co-ordinator module is introduced. The sector component design is depicted in
figure 3.

track[north]

track[south]

track[middle]controller

point

button

optomux

button

train_move

train_location

passenger_requests

a

b
c

d

e

f

g

Sector

key a = train_detect b = track_control
 c = track_command d = train_position
 e = point_command f = point_contro
 g = button_detect

Figure 3. - Sector Design

The controller component translates scheduler move commands into operations on points and
tracks. To reduce the level of detail exposed at this level of design, we have chosen to combine
the management of track segment and track sensors into one component type - track. If
necessary, the track component can be further decomposed. The optomux component provides
the interface to the hardware controller (industrial "OPTOMUX" controllers). Again, component
types have been identified to reduce the design effort. Sector is composed from the component
types - controller , track , point , button and optomux .

The level of design at which decomposition stops is obviously problem dependent. For the
shuttle system, the level depicted in Figure 3. is appropriate for moving to the next stage in
system design - introducing control flow, leading to a precise specification of each component
interface.

2.2 Interface Specification

Interfaces are specified with the assumption that components are concurrently executed and

Design of Distributed Systems page 7 August 19, 1991

that dataflows are implemented by message passing. At this stage, issues of control flow are
considered in the sense that we impose a communication transaction structure on the dataflows
that have been identified, for example, whether some dataflows occur as the responses to other
dataflows - a request-response transaction. We will first consider the specification of the interface
to the optomux component which drives the hardware controller interface to the shuttle system.

detect[north]

detect[middle]
detect[south]

power[north]
power[middle]
power[south]

direction[north]
direction[middle]
direction[south]

stationN
stationS

optomux

module optomux;
use
 directions:north,south,middle;
exitport
 detect[north..south]:signaltype; {train_detect}
 stationN,stationS:integer; {button_detect - 1..4}
entryport
 power[north..south]:boolean; {track_control}
 direction[north..south]:boolean; {track_control}
 pointdir:boolean; {point_control}
end.

Figure 4. - Optomux Module interface

Interfaces are described in the Conic language. Messages are sent out of modules via exitports
and received into modules via entryports. Definitions which must be shared by a number of
modules are imported from definition units. For example, in figure 4, the definitions of the
constants north, middle and south are imported from the definitions unit directions. Comments in
figure 4 relate the interface to the dataflow depicted in figure 3. Note that in the case of this
interface the communication control flow is exactly that of the dataflow - the providers of data
initiate the communication transactions to transfer that data as messages.

Interface Specification of the Track Component

We now consider the interface specification of the track component. Note that while we
have been illustrating use of a top-down decomposition for design, some components can be
designed bottom-up. In practice, lower level design is often a combination of both top-down and
bottom up. Once interfaces have been specified component implementation can proceed in
parallel with the design of other parts of the system.

In the previous section, we saw that shared definitions are declared in definition units. In
that case, the shared definitions were concerned with the system wide representation of compass
points and directions. Before specifying the interface to the track module, we must define the
types of the dataflows between track modules and the controller since these definitions are
shared. We avoided this step in the previous section by using only the standard primitive types
signaltype , boolean and integer .

define tracks: trackT,trackopT;
type

trackopT = (on_com,query_com,capture_com);
trackT= record {track_command}

command: trackopT;
direction:integer; {either east or west - directions are of type integer}

end ;
end .

The interface to the track module can now be specified in terms of types defined by
tracks and primitive types (figure 5)

Design of Distributed Systems page 8 August 19, 1991

detect[north].
module track;
use
 directions:east,west,middle;
 tracks:trackT,trackopT;
entryport
 control:trackT reply boolean; {track_command & train_position}
 detect[west..east]:signaltype; {train_detect}
exitport
 power, direction:boolean; {train_control}
end.

detect[middle]
detect[south]

power

direction

track

control

Figure 5. - Track Module interface

Note that we have chosen to make the dataflow train_position a response to track_commands.
This is because train position as represented by a boolean (true when a train is present in the track
segment) can only be reliably reported after a track command has been executed.

2.3 Component Elaboration

In this step, the outline description of each of the low-level processes is elaborated to give a
precise description of its behaviour. In many design techniques, pseudo-code is used at this
stage. Since the Conic Programming language is a superset of Pascal, including the required
communication primitives, we have found it convenient to program these processes directly. As
always, refinement of the more complex actions of the process can be encapsulated into
procedures.

off_state

on_state

train_state

capture_statedetect[middle]

on_com detect[direction]

capture_com

States
off_state: power off, no train in segment
on_state: power on, train leaving segment
capture_state: power on , train entering segment
train_state: power off, train in segment

detect[middle]

Design of Distributed Systems page 9 August 19, 1991

task module track;
use

directions:east,west,middle;
tracks:trackT,trackopT;

entryport
control:trackT reply boolean;
detect[west..east]:signaltype;

exitport
power, direction:boolean;

var
state:(on_state,off_state,train_state,capture_state);
T:trackT; i:integer;

begin
send false to power; state:=off_state;
loop

select
for i:=west to east do receive signal from detect[i]=>

case state of
off_state: if (i=middle) then state:=train_state;
on_state: if (i=T.direction) then begin

state:=off_state; send false to power; reply false to control;
end ;

capture_state: if (i=middle) then begin
state:=train_state; send false to power; reply true to control;
end ;

train_state:;
end ;

or
receive T from control=>

case T.command of
query_com: reply (state=train_state) to control;
on_com: begin

send (T.direction=east) to direction; state:=on_state; send true to power;
end ;

capture_com: if (state=train_state) then reply true to control
else begin

send (T.direction=east) to direction; state:=capture_state; send true to power;
end ;

end ;
end ;

end ;
end .

Figure 6. Track Module implementation

The complete Conic source of the track module and a diagram of the state transitions it
implements are shown in Figure 6. The track module is implemented as a single sequential
program. In Conic, this is a task module. It should be noted that a track module requires signals
not only from its own track sensor detect[middle] but also signals from the track sensors to the
east and west of it. These signals are required so that a track knows when a train has left it. This

r

requirement introduces a new interface dataflow in figure 3 since we require train detect signals
from the middle track segments to be passed between sectors.

2.4 Construction

When all interfaces of components types within a higher level component have been
specified as modules (these need not necessarily be implemented) we can describe the higher
level component as a composition of instances of these module types using the Conic
configuration language. The Configuration language description of the sector module type is
outlined in figure 7.

Design of Distributed Systems page 10 August 19, 1991

group module sector (longtitude:integer); {parameterised with either east or west}
use

directions:east,west,north,south,middle,trains,destinations,movet;
entryport

move:movet reply trains; {train_move & train_location}
getrequestN,getrequestS:signaltype reply destinations; {passenger_requests}
detectin:signaltype; {train_detect_in}

exitport
detectout:signaltype; {train_detect_out}

use
point; track; button; controller; optomux;

create
point;
stationN:button;
stationS:button;
controller(longtitude);
optomux;

create forall i:[north..south]
track[i];

link {interface}
move to controller.move;
getrequestN to stationN.getrequest;
getrequestS to stationS.getrequest;
detectin to track[middle].detect[-longtitude]; {- reverses direction}
optomux.detect[middle] to detectout;

{internal}
controller.point to point.control;
point.direction to optomux.pointdir;
optomux.stationN to stationN.input;
optomux.stationS to stationS.input;

link forall i:[north..south]
controller.track[i] to track[i].control;
track[i].power to optomux.power[i];
track[i].direction to optomux.direction[i];
optomux.detect[i] to track[i].detect[middle];

link
optomux.detect[north] to track[middle].detect[longtitude];
optomux.detect[south] to track[middle].detect[longtitude];
optomux.detect[middle] to track[north].detect[-longtitude];
optomux.detect[middle] to track[south].detect[-longtitude];

end .

Figure 7. - Sector Module configuration

The use construct specifies the set of message types necessary to declare a group module
interface and the set of task and/or group module types necessary to construct the group.
Instances of task (or group) types are specified by the create construct. The link construct
declares the interconnections between instance exitports and entryports. The replicator
forall declares arrays of instances and links.

2.4 System Construction - Overall system description and allocation

The hardware configuration for the model airport shuttle system consisits of a Sun
workstation connected by Ethernet to two Motorola 68020 target systems. These target systems
are connected by serial links to the OPTOMUX controllers which power on/off tracks, switch
points etc. The mapping of the software components of the control system to this hardware is
dictated by the location of hardware interfaces (as is often the case in this class of system). Each
target runs a sector component and the scheduler is executed on the Sun workstation. We could of
course choose to run the scheduler on one of the targets. However, its implementation (not
discussed here) includes a display of current requests and moves; consequently it requires the
display interface provided by the Sun. This mapping is expressed in the system configuration
description of Figure 9 by at clauses. The current configuration of the operational system can be
displayed (figure 10) using the Conic graphical configuration manager, ConicDraw [Kramer

Design of Distributed Systems page 11 August 19, 1991

89a].

Sun1

Targ1 Targ2

Ethernet

Optomux Optomux

Serial line Serial line

Figure 8. - Control Hardware Configuration

system shuttle;
use

sector;
scheduler;

create
EastSec:sector(east) at targ1;
WestSec:sector(west) at targ2;
scheduler at Sun1;

link
EastSec.detectout to WestSec.detectin;
WestSec.dectectout to EastSec.detectin;
scheduler.west to WestSec.move;
scheduler.east to EastSec.move;
scheduler.getNW to WestSec.getrequestN;
scheduler.getSW to WestSec.getrequestS;
scheduler.getNE to EastSec.getrequestN;
scheduler.getSE to EastSec.getrequestS;

end .

Figure 9. - Overall System Configuration

Figure 10. - ConicDraw Display of the System Configuration

2.5 Modification and Evolution

The changes which which can be applied to this system are limited by the inflexibility of the
physical track layout. However, it is likely that we will want to experiment with the scheduling
stratgey by which shuttles are moved in response to passenger requests. The following expresses

Design of Distributed Systems page 12 August 19, 1991

the replacement of the scheduler component.

change shuttle;
use

newscheduler;
remove

scheduler;
create

scheduler:newscheduler at Sun1;
link

scheduler.west to WestSec.move;
scheduler.east to EastSec.move;
scheduler.getNW to WestSec.getrequestN;
scheduler.getSW to WestSec.getrequestS;
scheduler.getNE to EastSec.getrequestN;
scheduler.getSE to EastSec.getrequestS;

end .

Note that we can apply this change dynamically to the running system without losing
passenger requests and with minimum disturbance to the shuttle service by using the change
management protocol described in [Kramer 89b].

3. DISCUSSION AND CONCLUSIONS

The main principles on which our constructive approach is based is that of explicit system
structure and context independent components. Structure is explicitly described and preserved
during the software development process, from initial design to actual system construction and
evolution. Thus the main structural design information is retained in the constructed system
itself. The second principle, that of context independence of components, reduces the design and
implementation effort by facilitating early identification of component types and component
interface specifications. Once its interface has been specified, the detailed design, implementation
and testing of a component type can proceed independently from the rest of the system design.
Component types can be multiply instantiated in the final system and hierarchically composed to
form composite component types. Furthermore, the use of precise interface specifications can
provide the basis for formal specification of required/provided component behaviour, and system
specification as a configuration (composition) of component specifications.

As mentioned, the approach evolved from our experience in the development of distributed
systems using the Conic environment. This suggested that those systems developed to
accommodate physical distribution exhibit much more flexibility than centralised designs by

r

requiring modularity, component independence, well-defined interfaces and explicit structure.
Flexible distribution relies on the use of independent components in which information is
localised. If this is not achieved, it leads to problems of maintaining consistency across
distributed components. Hence we emphasise the partitioning and localisation of state
information.

Our approach is similar in many respects to that of [Schneidewind 89], which also
emphasises the use of independent components which communicate using messages. He too
asserts that the discipline of designing to this model aids reuse by the enforced independence of
the components, thereby gaining reusability, modularity, maintainability and understandability.
The object oriented paradigm described in [Lee 88] uses a similar approach. DARTS/DA [Gomaa
89] offers a pragmatic method based on developing a data-flow model. The method provides
some sound structuring criteria for forming distributable subsystems (components). However,
we add an emphasis on explicit configuration structure, using component types to define
composite types and the system itself in a uniform and constructive fashion. In addition, we
provide the underlying support environment to directly translate this design into an operational
system, and subsequently to evolve it as required. The mapping to software environments other
than Conic would involve the sort of additional transformation as performed by Lee in
transforming objects to Ada packages.

As in Luqi's approach to software evolution through prototyping [Luqi 89], our systems
can be constructed as cut down versions of the final system and evolved to meet the full

r

requirements. Again, we make use of structural extension and modification to perform the

Design of Distributed Systems page 13 August 19, 1991

evolution.

Although our design approach has been extensively used, including the design of the Conic
support environment itself, this paper is the first attempt to document it. Further work is
necessary to make the method more systematic and to refine the method description by
documenting many of the design decisions which we seem to make implicitly. Experience in
teaching the method to other users of the Conic environment will also contribute to the method

r

refinement. The intention is then to provide CASE tool support based on ConicDraw [Kramer89]
and integrated into the Conic environment.

Acknowledgements

The authors would like to acknowledge discussions with our colleagues Morris Sloman,
Naranker Dulay, Kevin Twidle and Keng Ng during the formulation of these ideas. We gratefully
acknowledge the SERC ACME Directorate under grant GE/E/62394, and the CEC in the REX
Project (2080) for their financial support.

REFERENCES

[Atkinson 88] "Ada for Distributed Systems", The Ada Companion Series, Cambridge
University Press, Edited by Colin Atkinson, Trevor Moreton and Antonio Natali.

[Balzer 85] R. Balzer, "A 15 Year Perspective on Automatic Programming", IEEE
Transactions on Software Engineering, SE-11 (11), Nov. 1985

[Barbacci 88] M.R.Barbacci, C.B.Weinstock, and J.M.Wing, "Programming at the Processor
- Memory - Switch Level", Proc. of 10th IEEE Int. Conf. on Software Engineering, Singapore,
April 1988.

[Booch 86] G. Booch, "Object-Oriented Development", IEEE Transactions on Software
Engineering, SE-12 (2), February 1986, pp. 211-221.

[Burstall 77] R.M.Burstall, J. Darlington, 'A Transformation System for Developing
Recursive Programs', JACN, 24, Jan.1977.

[De Marco 79] T. De Marco, "Structured Analysis and Structured Specifications", Prentice Hall
1979.

[de Remer 76] F.DeRemer, H.H.Kron. "Programming-in-the-large Versus Programming-in-
the-small, IEEE Trans. Software Engineering", Vol. SE-2, 2, June 1976.

[Gomaa 89] H.Gomaa. "A Software Design Method fro Distributed Real Time
Applications", Journal of Software Systems, Feb. 1989.

[Harel 88] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtul-
Trauring, "STATEMATE: A Working Environment for the Development of Complex Reactive
Systems", Proc. 10th. Int. Conf. on Software Eng., Singapore April 1988, pp. 396-406.

[Hoare 69] C.A.R.Hoare, " The Axiomatic Basis of Computer Programming",
Communications of the ACM 12, October 1969, pp. 576-583.

[Jackson 83] M.A.Jackson, "System Development", Prentice Hall 1983.

[Kramer 85] J.Kramer, J.Magee, "Dynamic Configuration for Distributed Systems", IEEE
Transactions on Software Engineering, SE-11 (4), April 1985, pp. 424-436.

[Kramer 88] J.Kramer, J.Magee, "A Model for Change Management", Proc.of IEEE
Workshop on Trends of Distributed Computing Systems in the 1990s, Hong Kong, pp.286-295,
Sept. 1988.

Design of Distributed Systems page 14 August 19, 1991

[Kramer 89a] J.Kramer, J.Magee, and K.Ng, "Graphical Support for Configuration
Programming", Proc. 22nd HICSS, Vol.II , Hawaii, pp. 860-870, January 1989.

[Kramer 89b] J.Kramer, J. Magee, and A. Young, "A Refined Model for Change
Management in Distributed Systems", 3rd Workshop on Large Grain Parallelism, SEI/CMU
Pittsburgh, October 1989.

[Lee 88] K.J.Lee et al, "An OOD Paradigm for Flight Simulators, 2nd ed.", Technical
Report, CMU/SEI-88-TR-30, September 1988.

[Luqi 89] Luqi, "Software Evolution through Rapid Prototyping", IEEE Computer, 22 (5),
May 1989, pp. 13-25.

[Magee 89] J.Magee, J.Kramer, and M.Sloman, "Constructing Distributed Systems in
Conic" IEEE Transactions on Software Engineering, SE-15 (6), June 1989.

[Parnas 72] D.Parnas, "On the criteria to be used in decomposing systems into modules",
Comm. ACM, Vol. 15 (2), pp. 1053-1058.

[Perry 89] D.E.Perry, "The Inscape Environment", Proc. of 11th IEEE Int. Conf. on Software
Engineering, Pittsburgh, May 1989.

[Schneidewind 89] N.FSchneidewind, "Distributed System Software Design Paradigm with
Application to Computer Networks", IEEE Transactions on Software Engineering, SE-15 (4),
April 19859, pp. 402-412.

[Yourdon 78] E.Yourdon, L.Constantine, "Structured Design", Yourdon Press, 1978.

[Zave 82] P.Zave, "An Operational Approach to Requirements Specification for Embedded
Systems", IEEE Trans. on Software Engineering, SE-8 (3), 1982.

Design of Distributed Systems page 15 August 19, 1991

