
Proc. 5th International Workshop on Software Specification & Design

(1989, IEEE CS Press)

Multi-party Specification

Anthony Finkelstein & Hugo Fuks

Imperial College of Science and Technology (University of London)

0 Abstract

This paper examines a formal model of how specifications can be constructed
from multiple viewpoints and presents some tools to support this approach.
The development of specifications is presented as a dialogue in which the
viewpoints negotiate, establish responsibilities and cooperatively construct a
specification. The model is illustrated by means of some small examples.

Keywords: formal specification, distributed artificial intelligence, dialogue,
logic, tool support

1 Introduction

"Specification-in-the-large", that is the development of requirements specifications

for systems of substantial complexity and scale, mirrors "programming-in-the-

large" in raising a variety of difficulties that lie beyond the clerical problems of

handling large amounts of information (Cunningham, Finkelstein et al 1985,

Finkelstein & Potts 1987). One such difficulty is that of specification from multiple

viewpoints (Niskier 1987). Specification-in-the-large is an activity in which there

are many participants - clients, systems analysts, engineers, domain experts and so

on. Each has differing perspectives on, and knowledge about, the object system, as

well as a variety of skills, roles and so on. In some cases the perspectives may be

based on underlying contradictions. To construct a specification the participants

must cooperate; that is, contribute to the achievement of a joint understanding.

This contrasts with the approach taken by existing specification schemes, methods

and tools which are generally based on specification from a single viewpoint and

refined using examples that consolidate this weakness.

Our research objective is to develop a formal understanding of specification from

multiple viewpoints so that we can both support the construction of formal

specifications and reason about the process of specification itself. We aim to

encapsulate cooperative specification development strategies, "replay" these

strategies (Wile 1983) and develop appropriate support and coordination tools. To do

so we have taken what might be broadly termed an AI approach - we have sought to

model the mechanisms which underlie the way people carry out the complex task of

specification.

Multi-party Specification - 1

2 Dialogue

Our model of specification from multiple viewpoints treats the development of a

specification as a dialogue in which the viewpoints negotiate, establish

responsibilities and cooperatively construct an overall specification. The term

dialogue, as generally used, refers to a conversation or spoken interaction between

two or more partners. This definition is suitable as a starting point. Our approach is

related to the more restricted (and informal) metaphor of the contract model of

specification, exploited in the ISTAR environment (Lehman 1985), in which tasks

are shared through the negotiation and award of "contracts" among developers.

Before introducing our model in detail it may be useful to examine the intuitions that

suggested this approach.

The most straightforward of these is that it directly mirrors the conventional setting

of requirements specification in which clients and systems analysts sit around a

table - the clients explaining the requirements, waving documents in the air and

occasionally arguing among themselves while the developers ask guiding questions,

seek clarification, point out inconsistencies and raise unanticipated consequences.

Examining the way in which complex specifications are built and documented - in

natural language - is a well understood way of developing specification techniques

with higher expressiveness (Balzer, Goldman & Wile 1978). The approach is

exemplified by Gist (Balzer 1985) and Pure Tell (Horai, Saeki & Enomoto 1987). It is

not such a great leap of the imagination to extrapolate from this to using the

structure of dialogue as an overall setting.

Less directly we regard formal software development as making interpretations

between theories (Maibaum, Veloso & Sadler 1985). This process of interpretation is,

we suggest, dialogic in form. A formal account of interpretation based on dialogue is

developed in Niskier, Fuks & Sadler (1988).

Finally it is hoped that by having a model which is based on dialogue we might have a

convenient framework to understand empirical studies of specification, generally in

the form of protocols, which are notoriously difficult to analyse (Soloway 1986).

3 Model

The model we present has two parts: an underlying viewpoint architecture and a

dialogue scheme animated by that architecture. Our model also comes in two basic

flavours. Two party dialogues (or multi-party dialogues consisting of many two party

Multi-party Specification - 2

dialogues) and true N party (N>2) dialogues. Currently we have a detailed

understanding of two party dialogues, which we will illustrate in this paper, and have

established the formal underpinning for N party dialogue which will be briefly

reviewed.

The underlying vehicle for defining our model is a formal account of dialogue. Such

accounts have their roots in a number of different traditions:

the game theoretic semantics tradition in which dialogue "games" are used to

define the meanings of components of a formal language, for example Lorenz

(1982);

the foundations of logic tradition in which an understanding of the

communicative context of argument is examined to understand the

development of different logical traditions, notably Hamblin (1987);

the computer human interaction tradition in which representations of

dialogues are developed for design and evaluation of user interfaces, for

example Schneiderman (1982) and Green (1983);

the rhetorical or argumentative tradition in which a model of dialogue

provides the normative base for deciding what constitutes rhetorical

"competence", for example Allwood (1986);

the natural language processing tradition in which computationally

tractable models are sought to provide a basis for automatically interpreting

and generating dialogues, for example Carbonell (1982);

the distributed artificial intelligence tradition in which computational

models of multi-agent "negotiation" are constructed to integrate diverse

knowledge sources, notably Erman & Lesser (1975), Smith (1980), Smith &

Davis (1981), Kornfeld & Hewitt (1981) and Lenat (1975).

We have sought to combine the formal apparatus - dialogue logics - of the foundations

of logic tradition with the approach - cooperation and negotiation - of the distributed

artificial intelligence tradition. We have explicitly rejected the competitive approach

typical of the game theoretic semantics tradition and are not directly concerned with

the discourse level issues that dominate both the natural language processing and the

rhetorical tradition. The descriptive tools provided by the computer human

interaction tradition lack the required expressiveness for the less highly

constrained dialogues on which we have focussed.

Multi-party Specification - 3

3.1 Viewpoint Architecture

Figure 1 shows a block diagram of the viewpoint architecture. We have shown two

main participants (Viewpoints A & B) in the diagram. Each additional participant in

a dialogue (such as Viewpoint N) has a similar structure.

Commitment
store
 (B)

Working area (B)

Dialogue
kernel

Event
record

Dialogue
kernel

Event
record

Commitment
store
 (A)

Commitment
store
 (N)

Working area (N)

Dialogue
kernel

Event
record

Working area (A)

Viewpoint A Viewpoint B

Viewpoint N

Figure 1 Block diagram of viewpoint architecture

Multi-party Specification - 4

The main building blocks of the viewpoint architecture are as follows:

Viewpoint

A viewpoint is a "logical" participant in the dialogue. We can loosely define a

viewpoint as an agent responsible for maintaining a particular perspective. A

physical participant in a dialogue may "act the part of" or "present" many

logical viewpoints. For example, a librarian might be responsible for both

acquisitions policy and disposals. Our model does not as yet include structured

groups of viewpoints.

Commitment store

Each viewpoint has a commitment store which holds it's commitments within

the dialogue. A commitment is the public engagement to a statement that

restricts freedom of action. A commitment to a statement is, in effect, holding

yourself out as liable for the consequences of that statement (just as clients in

"real-life" software specification "commit" themselves by signing off a

requirements statement). As a concept commitment needs to be carefully

distinguished from epistemic notions such as belief, which are essentially

private and which we exclude from our model both on philosophical and

technical grounds. The general status and role of commitments is discussed by

Winograd & Flores (1986). In the context of design Thimbleby (1988) suggests

that "... abstraction and commitment are inverse processes - an abstraction is

an outcome of relaxing commitments and a representation is the outcome of

making commitments".

The contents of the commitment store of each participant changes as the

dialogue progresses. A viewpoint can read from any store. The only way it can

alter the commitments of any viewpoint, including it's own, is through

participation in the dialogue. A specification is the pool of commitments that

result from such a dialogue, an approach closely akin to that of the

requirements analysis method CORE (Mullery (1985).

Working area

The private "sketch-pad" or database of the viewpoint. It contains the internal

or working statements which do not have the full status of public engagement.

No other viewpoint can directly access the working area nor is there any

obligation for the viewpoint to maintain it's consistency. The working area is

an essential element of the architecture but is not treated explicitly in the

dialogue scheme outlined below.

Multi-party Specification - 5

Event store

The event store keeps a record of the "dialogue events". It is used by the dialogue

kernel to maintain the legality of the dialogue. Dialogues are flexible and

dynamic, participants make moves to realise their aims based on the revealed

"record of play".

Dialogue kernel

The dialogue kernel is the independent controller of a viewpoint. The role of

the dialogue kernel is to implement the common dialogue scheme for each

(loosely coupled) viewpoint.

In the two party version of the model responsibility for issues such as control of the

domain of discourse, initiation and completion of dialogues are implicitly assigned

to the individual viewpoints. An alternative approach is to provide each dialogue

with an “agenda” which explicitly handles these issues by establishing a larger set of

commitments at the level of the dialogue itself (this can be thought of as analogous to

the organising role played by a specification method). We are investigating this

approach further in the context of N-party dialogues.

3.2 Dialogue Scheme

Formal schemes that fit with the architecture outlined above and with our overall

approach to modelling dialogue have been proposed by Hamblin (1971) and more

fully worked by Mackenzie (1981, 1985). We have adopted Mackenzie's dialogue

system - DC - and, with some changes and substantial reinterpretation, are using it

as the basis for validating our intuitions. Below we present a brief overview of the

main elements of DC, using our own notation.

The scheme is presented in terms of three important constructs:

(i) Acts

Equivalent to "locutions", "utterances" or "speech acts". Consist of a statement and a

modifier, represented modifier(Statement). Statements are constructed in a

propositional language which includes negation, conditional and conjunction of

statements.

Act modifiers are as follows:

Assertions, to be read as "It is the case that Statement", notationally

asserts(Statement).

Multi-party Specification - 6

Denials, to be read as "I deny that it is the case that Statement", notationally

denies(Statement).

Questions, to be read as "Is it the case that Statement?", notationally

questions(Statement).

Withdrawals, to be read as "No commitment to Statement", notationally

withdraws(Statement).

Challenges, to be read as "Why is it to be supposed that Statement", notationally

why(Statement).

Resolution demands, to be read as "Resolve your commitments", notationally

resolve(CS(Viewpoint)).

(ii) Events

Represented by a triple of the form <Stage, Viewpoint, Act>. Stage marks the progress

of the dialogue, stage, stage+1 and so on. Viewpoint indicates the current speaker. A

dialogue is a sequence of such events.

(iii) Commitments

Represented committed(Stage,Viewpoint).

These constructs are used in the rules of the scheme which are divided into three

subsets:

(i) Dialogue rules

Establish the "etiquette" or rules governing the legitimate shape of the interaction,

they provide a way of maintaining a "legal" dialogue.

For example:

Dialogue rule Quest (Questions):

After the questioning of a statement (questions(Statement)), the next event

must be either the assertion (confirmation) of that statement, it's withdrawal

or it's denial (asserts(Statement), withdraws(Statement) or denies(Statement)).

Multi-party Specification - 7

No legal dialogue of length stage+1 contains an event

<stage-1,hearer,questions(Statement)> unless it also contains an event

<stage,speaker,asserts(Statement)> ∨ <stage,speaker,withdraws(Statement)>

∨ <stage,speaker,denies(Statement)>.

(ii) Commitment rules

Set out how acts affect the commitment store of each viewpoint (we see these changes

to the commitments as more or less equivalent to the "high level edits" described by

Feather (1987)).

For example:

Commitment rule W:

After a withdrawal the statement is removed from the speaker's commitment

store, the hearer's store remains unchanged.

After <stage,speaker,withdraws(Statement)>

committed(stage+1,speaker)=

committed(stage,speaker) - {Statement}

committed(stage+1,hearer)=

committed(stage,hearer)

(iii) Argument forms

Define, syntactically, the form of reasoning permissible within the dialogue and

common to it's participants. Our presentation of DC primarily involves "modus

ponens", though addition of other schemas to fit various logical tastes is a relatively

simple matter. The argument form mechanism for modus ponens is embedded in the

rule below:

Commitment rule G:

After an assertion (AnotherStatement) which occurs as a reply to a challenge

(why(Statement)) both views are committed to the reply (AnotherStatement)

and to the conditional (AnotherStatement -> Statement).

After <stage,speaker,asserts(AnotherStatement)>

where the preceding dialogue event was

<stage-1,speaker,why(Statement)>

committed(stage+1,speaker)=committed(stage,speaker) ∪
{AnotherStatement, AnotherStatement -> Statement}

committed(stage+1,hearer)= committed(stage,hearer) ∪
{AnotherStatement, AnotherStatement -> Statement}

Multi-party Specification - 8

As can be seen, not only was {AnotherStatement} added to both stores, as would be

expected, but also {AnotherStatement -> Statement}. If we take {AnotherStatement,

AnotherStatement -> Statement} and apply the modus ponens rule to it, we deduce

{Statement} - exactly what was originally challenged.

4 Examples

Our overall approach may be clarified by looking at some examples. We shall use a

small case study concerning description of an automated travel ticketing system. In

this case study various statements about travel and travel discounts are distributed

between the working area of two viewpoints.

Figures 2, 3 & 4 below, differ slightly from Figure 1 for ease and economy of

presentation. The figures show two viewpoints called respectively A and B each

represented by a shaded box. Each viewpoint has a working area with different

contents (WA (A) and WA (B)). Commitments are represented in separate stores (CS (A')

and CS (B')). The current dialogue event is given in a box at the top of the diagram

alongside an arrow that points from the originator of the event (speaker) to the

recipient (hearer). The commitments stores resulting from that dialogue event (CS (A)

and CS (B)) are shown at the bottom of the diagram. Other figures just show the

commitment stores with the original commitments in a box above a bar showing the

dialogue event and the resulting commitments below. These commitments may in

turn be altered by a subsequent event.

Figure 2 illustrates the addition of information to a description (Example A). Let us

follow what happens in the process of making this addition.

Initially the commitment store is empty. The speaker (B) asserts the statement, in

this case ticket ["can obtain a ticket"] (an immediate consequence of the content of

its working area (discount_fare, discount_fare -> ticket) ["paid a discount fare" and

"paying a discount fare implies that you can obtain a ticket]), and so by:

Commitment rule S:

If a statement has been made which is not the reply to a challenge then the

speaker and the hearer are obliged to place it in their commitment store.

Multi-party Specification - 9

After <stage,speaker,asserts(Statement)>where the preceding dialogue event

was not <stage-1, hearer,why(AnotherStatement)>

committed(stage+1,speaker)=

committed(stage,speaker) ∪ {Statement}

committed(stage+1,hearer)=

committed(stage,hearer) ∪ {Statement}

The rule S defines an important feature of this dialogue scheme. A viewpoint is

committed to anything stated by another viewpoint. This commitment can only be

removed by a subsequent withdrawal or challenge.

WA(B)WA(A)

Viewpoint A Viewpoint B

CS(A')

CS(A)

CS(B')

CS(B)

 child -> member_of_public

 oap -> member_of_public

 commuter -> member_of_public

~member_of_public ->
 member_of_staff

~member_of_staff ->
 member_of_public

~oap and ~child -> commuter

~commuter and ~oap -> child

~child and ~commuter -> oap

 ticket -> can_travel

~commuter and
~entitled_discount ->
~can_travel

 full_fare -> ticket

 discount_fare -> ticket

 discount_fare

<stage,B,asserts (ticket)>

 ticket t icket

Figure 2 Example A (1 of 1)

The resulting commitment stores are CS (A) and CS (B). Both A and B are committed

Multi-party Specification - 10

to ticket and must answer for any consequences of this commitment and other

commitments added in a similar manner. This process of straightforwardly adding

commitments, which we can clearly continue, can be termed "simple elaboration".

An enhanced description or specification is built up in the commitment stores and

shared between the participating viewpoints.

Let us now consider a slightly more complicated example (Example B) illustrating

refinement of a description. We start at a point some way into a set of dialogues

(Figure 3) with CS (A') containing a commitment to child -> ticket ["a child can

obtain a ticket"]. Viewpoint A, the speaker and initiator of this part of the dialogue,

asks something along the lines of "why is it to be supposed that a child can obtain a

ticket?".

It should be noted that in this setting asking why is a demand for evidence, not for an

explanation. So by:

Commitment rule Y:

After a challenge the hearer adds the challenged statement to it's own

commitment store and the speaker removes the statement from it's

commitment store, replacing it by the challenge itself. This is necessary to

avoid the problem of circularity ("Why is the book on loan?","Because it is out

of the library!","Why is it out of the library?","Because it is on loan!!" and so on).

After <stage,speaker,why(Statement)>

committed(stage+1,speaker)=

committed(stage,speaker) - {Statement}∪{why(Statement)}

committed(stage+1,hearer)=

committed(stage,hearer) ∪ {Statement}

Observe that the placing of {Statement} in the hearer's commitment store forces a

reaction - either a challenge to "give a good reason" for the statement or a withdrawal

in order not to be committed to it. As a last resort the hearer may demand a

resolution over the speaker's commitment store, we will illustrate this in a

subsequent example.

Multi-party Specification - 11

WA(B)WA(A)

Viewpoint A Viewpoint B

CS(A')

CS(A)

CS(B')

CS(B)

 child -> member_of_public

 oap -> member_of_public

 commuter -> member_of_public

~member_of_public ->
 member_of_staff

~member_of_staff ->
 member_of_public

~oap and ~child -> commuter

~commuter and ~oap -> child

~child and ~commuter -> oap

 ticket -> can_travel

~commuter and
~entitled_discount ->
~can_travel

 discount_fare -> ticket

 full_fare -> ticket

 entitled _discount ->
 discount_fare

~entitled_discount -> full_fare

 member_of_staff ->
 entitled_discount

 oap -> id_card

 child -> id_card

 id_card -> entitled_discount

child

<stage,A,why (child -> ticket)>

child -> ticket

why(child -> ticket) child -> ticket

Figure 3 Example B (1 of 5)

CS (A) and CS (B) now form the commitments for the next stage of the dialogue and

reappear as the new CS (A') and CS (B') shown in Figure 4. Viewpoint B replies to

maintain dialogue legality as indicated by:

Multi-party Specification - 12

Dialogue rule Form:

Each viewpoint contributes an act at a time, in turn each act must be well

formed that is a statement, question etc.

No legal dialogue contains an event <stage,given_viewpoint,Act> if it also

contains an event <stage-1,given_viewpoint,AnotherAct> or if Act is not

properly constructed.

The act that follows is the assertion of discount_fare which is taken from the

statement contained in the working area that discount_fare -> ticket. The resulting

commitment stores CS (A) and CS (B) are derived according to the rule below:

Commitment rule G (for the challenge of an implication):

After an assertion (AnotherStatement) which occurs as a reply to a challenge

(why(Statement1 -> Statement2)) both views are committed to the reply

(AnotherStatement) and to the conditional (AnotherStatement -> Statement2).

After <stage,speaker,asserts(AnotherStatement)>

where the preceding dialogue event was

<stage-1,speaker,why(Statement1 -> Statement2)>

committed(stage+1,speaker)=committed(stage,speaker) ∪
{AnotherStatement, AnotherStatement -> Statement2}

committed(stage+1,hearer)= committed(stage,hearer) ∪
{AnotherStatement, AnotherStatement -> Statement2}

Multi-party Specification - 13

WA(B)WA(A)

Viewpoint A Viewpoint B

CS(A')

CS(A)

CS(B')

CS(B)

 child -> member_of_public

 oap -> member_of_public

 commuter -> member_of_public

~member_of_public ->
 member_of_staff

~member_of_staff ->
 member_of_public

~oap and ~child -> commuter

~commuter and ~oap -> child

~child and ~commuter -> oap

 ticket -> can_travel

~commuter and
~entitled_discount ->
~can_travel

 discount_fare -> ticket

 full_fare -> ticket

 entitled _discount ->
 discount_fare

~entitled_discount -> full_fare

 member_of_staff ->
 entitled_discount

 oap -> id_card

 child -> id_card

 id_card -> entitled_discount

child

<stage+1,B, asserts (discount_fare)>

why (child -> ticket)

discount_fare

discount_fare -> ticket

child -> ticket

discount_fare

discount_fare -> ticket

why(child -> ticket) child -> ticket

Figure 4 Example B (2 of 5)

Multi-party Specification - 14

Figures 5, 6 & 7 show the continuation of this dialogue in which the refinement (all

the steps required to show why a child can obtain a ticket) is completed in a

constructive manner by a process of "dialogue led" backward chaining.

Note that in Figure 5 Viewpoint A can challenge either discount_fare -> ticket or

discount_fare. It chooses to challenge discount_fare because this was the actual

reply of B, while discount_fare -> ticket is a construct of the commitment rule G.

why (child -> ticket)

discount_fare

discount_fare -> ticket

child -> ticket

discount_fare

discount_fare -> ticket

why (discount_fare)

Figure 5 Example B (3 of 5)

Multi-party Specification - 15

why (child -> ticket)

discount_fare -> ticket

why (discount_fare)

child -> ticket

discount_fare

discount_fare -> ticket

why (child -> ticket)

discount_fare -> ticket

why (discount_fare)

entitled _discount

entitled _discount -> discount_fare

child -> ticket

discount_fare

discount_fare -> ticket

entitled _discount

entitled _discount -> discount_fare

why (child -> ticket)

discount_fare -> ticket

why (discount_fare)

entitled _discount -> discount_fare

why (entitled _discount)

why (child -> ticket)

discount_fare -> ticket

why (discount_fare)

entitled _discount -> discount_fare

why (entitled _discount)

id_card

id_card -> entitled_discount

child -> ticket

discount_fare

discount_fare -> ticket

entitled _discount

entitled _discount -> discount_fare

child -> ticket

discount_fare

discount_fare -> ticket

entitled _discount

entitled _discount -> discount_fare

id_card

id_card -> entitled_discount

why (entitled _discount)

asserts (id_card)

asserts (entitled _discount)

why (id_card)

Figure 6 Example B (4 of 5)

Multi-party Specification - 16

why (child -> ticket)

discount_fare -> ticket

why (discount_fare)

why (entitled _discount)

entitled _discount -> discount_fare

id_card -> entitled_discount

why (id_card)

child -> ticket

discount_fare

discount_fare -> ticket

entitled _discount

entitled _discount ->
discount_fare

id_card

id_card -> entitled_discount

asserts (child)

why (child -> ticket)

discount_fare -> ticket

why (discount_fare)

why (entitled _discount)

entitled _discount -> discount_fare

id_card -> entitled_discount

why (id_card)

child

child -> id_card

child -> ticket

discount_fare

discount_fare -> ticket

entitled _discount

entitled _discount ->
discount_fare

id_card

id_card -> entitled_discount

child

child -> id_card

Figure 7 Example B (5 of 5)

The final example (Example C) we will consider is again more complex, illustrating a

number of features including progressive verification of one viewpoint with respect

to another. By looking at WA(A) in Figure 8 it should be easy to spot the inconsistency

which has been introduced (~id_card) [" it is not the case that there is an id_card "],

as a result of which notice the inconsistency that may possibly arise between

Viewpoint B (which is working on the basis of oap -> entitled_discount ["oap's are

entitled to a discount"] and Viewpoint A.

In Figure 8 Viewpoint B challenges oap -> entitled_discount. The resulting

commitment stores, CS (A) and CS (B) are derived similarly to the previous examples.

Multi-party Specification - 17

WA(B)WA(A)

Viewpoint A Viewpoint B

CS(A')

CS(A)

CS(B')

CS(B)

 child -> member_of_public

 oap -> member_of_public

 commuter -> member_of_public

~member_of_public ->
 member_of_staff

~member_of_staff ->
 member_of_public

~oap and ~child -> commuter

~commuter and ~oap -> child

~child and ~commuter -> oap

 ticket -> can_travel

~commuter and
~entitled_discount ->
~can_travel

 id_card -> entitled_discount

~id_card

 oap -> id_card

 oap

 discount_fare -> ticket

 full_fare -> ticket

 entitled _discount ->
 discount_fare

~entitled_discount -> full_fare

 member_of_staff ->
 entitled_discount

oap -> entitled_discount

why (oap -> entitled_discount)

why (oap -> entitled_discount)oap -> entitled_discount

Figure 8 Example C (1 of 5)

Multi-party Specification - 18

B replies (Figure 9) by asserting id_card obtained by matching with the implication

id_card -> entitled_discount and the commitments are established according to

Commitment rule G (for the challenge of an implication) which we have also seen

before. B now challenges id_card and A withdraws it being unable to deny it due to

Dialogue rule Chall which, substantially abbreviated, states:

Dialogue rule Chall (Challenges):

The reply to a challenged statement must be the withdrawal of the statement or

it must be the resolution demand of an immediate consequence conditional of

the statement whose consequent is the statement and whose antecedant is a

conjunction of statements to which the challenger is committed or it must be a

statement to which the challenger is not committed.

why(oap -> entitled_discount)

id_card

id_card -> entitled_discount

oap -> entitled_discount

id_card

id_card -> entitled_discount

asserts (id_card)

why(oap -> entitled_discount)

id_card -> entitled_discount

why(id_card)

oap -> entitled_discount

id_card

id_card -> entitled_discount

why (id_card)

why(oap -> entitled_discount)

id_card -> entitled_discount

why(id_card)

oap -> entitled_discount

id_card -> entitled_discount

withdraws (id_card)

Figure 9 Example C (2 of 5)

Some straightforward question and answer follows with the results determined by

Commitment rule S above and:

Multi-party Specification - 19

Commitment rule Q:

Questions do not affect commitment stores.

After <stage,speaker,questions(Statement)>

committed(stage+1,speaker)=committed(stage,speaker)

committed(stage+1,hearer)= committed(stage,hearer)

questions (oap -> id_card)

asserts(oap -> id_card)

questions (oap)

why(oap -> entitled_discount)

id_card -> entitled_discount

why(id_card)

oap -> entitled_discount

id_card -> entitled_discount

why(oap -> entitled_discount)

id_card -> entitled_discount

why(id_card)

oap -> id_card

oap -> entitled_discount

id_card -> entitled_discount

oap -> id_card

Figure 10 Example (3 of 5)

By Figure 11 Viewpoint B questions id_card, which it is free to question because it is

not on A's commitment store, and A, as a result of an inconsistency deep in it's

working area, denies it with the resulting commitments derived by Commitment rule

D:

Commitment rule D:

If a denial of a statement has been made then the speaker and the hearer are

obliged to place the negation of the statement in their commitment store.

Multi-party Specification - 20

After <stage,speaker,denies(Statement)>

committed(stage+1,speaker)=

committed(stage,speaker) ∪ {~Statement}

committed(stage+1,hearer)=

committed(stage,hearer) ∪ {~Statement}

B immediately demands that A, having denied an immediate consequence of it's

commitments resolve it's commitment store, which is now inconsistent (using

modus ponens we have {oap,oap ->id_card} —> id_card which is of course

inconsistent with ~id_card):

Commitment rule R:

Resolution demands do not affect commitment.

After <stage,speaker,resolve(CS(hearer))>

committed(stage+1,speaker)=committed(stage,speaker)

committed(stage+1,hearer)=committed(stage,hearer)

Multi-party Specification - 21

asserts (oap)

questions (id_card)

denies (id_card)

resolve (CS(A))

why(oap -> entitled_discount)

id_card -> entitled_discount

why(id_card)

oap -> id_card

oap -> entitled_discount

id_card -> entitled_discount

oap -> id_card

why(oap -> entitled_discount)

id_card -> entitled_discount

why(id_card)

oap -> id_card

oap

oap -> entitled_discount

id_card -> entitled_discount

oap -> id_card

oap

why(oap -> entitled_discount)

id_card -> entitled_discount

why(id_card)

oap -> id_card

oap

oap -> entitled_discount

id_card -> entitled_discount

oap -> id_card

oap

oap -> entitled_discount

id_card -> entitled_discount

oap -> id_card

oap

~id_card

why(oap -> entitled_discount)

id_card -> entitled_discount

why(id_card)

oap -> id_card

oap

~id_card

Figure 11 Example C (4 of 5)

Multi-party Specification - 22

In Figure 12 Viewpoint A withdraws it's previous denial (it is constrained to do so by

the dialogue rules) restoring consistency by adjusting the commitments according to

Commitment rule W given in our overview of the dialogue scheme.

B follows suit by also withdrawing the inconsistency, which if not removed would

now leave it liable to a resolution demand from A, and so the dialogue concludes with

a shared description and discovery of the "misunderstanding" hidden in A's working

area.

withdraws (~id_card)

withdraws (~id_card)

oap -> entitled_discount

id_card -> entitled_discount

oap -> id_card

oap

~id_card

why(oap -> entitled_discount)

id_card -> entitled_discount

why(id_card)

oap -> id_card

oap

~id_card

oap -> entitled_discount

id_card -> entitled_discount

oap -> id_card

oap

why(oap -> entitled_discount)

id_card -> entitled_discount

why(id_card)

oap -> id_card

oap

~id_card

oap -> entitled_discount

id_card -> entitled_discount

oap -> id_card

oap

why(oap -> entitled_discount)

id_card -> entitled_discount

why(id_card)

oap -> id_card

oap

Figure 12 Example C (5 of 5)

Multi-party Specification - 23

5 N-party

An outline of the features necessary to extend the DC dialogue scheme to N-party

(N>2) has been developed. The primary element of this extension is the addition of a

typed interface to viewpoints that filters commitents. This addition introduces the

idea of an audience and substantially changes the way in which the progress of the

dialogue is marked, a change which in turn necessitates changes in the basic

constructs of our scheme. Dialogue acts are grouped into those which are directed,

that is intended to elicit a response from a specified viewpoint, and those which are

general, to which any viewpoint can respond. Changes in the form of the two party

DC rules are required to accommodate the enhancements notably additional

commitment rules to prevent circularity in argument. A number of small examples

have been developed and investigated using the outline scheme however there still

remain difficulties that relate to the coordination of viewpoints and conventional

distributed processing problems such as fairness. The agenda, briefly discussed

earlier, provides a structure within which these issues might be resolved, this is the

subject of further work.

6 Automated support

Our approach to specification development clearly requires automated support. Such

support serves two purposes: to act as a workbench while developing an improved

understanding of the model and enhancing dialogue schemes (without support even

relatively simple examples are awkward to handle); to be used as the core of a

specification support environment based on the principles we have outlined. In such

an environment replaying a "development history" would be equivalent to running

through a record of dialogue events (this can be compared to the approach of Conklin

1989). In principle it would also be possible to record and replay generalised dialogue

"strategies" (an elaboration strategy, verification strategy and so on).

We have developed two dialogue support systems (IC~DC One & IC~DC Two) which

animate, albeit in a simple minded way, the dialogue scheme. These tools allow the

user to develop simple dialogues like the examples above and then replay them in

whole or in part. IC~DC One is written in Prolog and has been used to help us to

understand and enhance the dialogue rules. IC~DC Two is written in Smalltalk-80

and has been used to investigate an appropriate architecture for a specification

support environment and N-party extensions to the model.

In both tools the dialogues are monitored for legality and illegal dialogues can be

explained and rolled back to a legal state. Users may view the commitment stores of

the participating views and may change the course of the dialogue by editing the

commitment stores directly. Figure 13 shows a snapshot of IC~DC One.

Multi-party Specification - 24

Figure 13 Snapshot of IC~DC One

IC~DC Two, a snapshot of which is shown in Figure 14, is the main vehicle for our

further work in this area.

Figure 14 Snapshot of IC~DC Two

Multi-party Specification - 25

7 Conclusions

We have presented dialogue as a basis for constructing specifications from multiple

viewpoints. This approach combines an intuitively appealing model with a non-

classical formal framework. We have developed a detailed understanding of, and

automated support for, cooperation and negotiation of two viewpoints and laid the

ground work for N-party cooperation. The model has been validated by experience on

a large number of small examples. Our approach links work on specification with

advances in the foundations of logic, linguistic philosophy, distributed artificial

intelligence (in which area we believe our model makes some contribution) and the

use of social metaphors in computing.

Having made a radical departure from existing models it should stressed that there

remains a substantial amount of foundational work to be done to make extended

dialogue models which are both computationally tractable and formally sound. To

this end we are currently engaged in the construction of a dialogic framework for

theorem proving (Fuks, Pequeno & Sadler 1988). In this work we are developing an

idea posed by Hintikka (1973), that the act of proving a theorem can be seen as a

dialogue between "nature" and the logician.

It is important to emphasise that our model is very sparse. By basing our work on a

formal model of argumentation there are practical limitations in both the

underlying language and the dialogic strategies we can capture. Observational studies

of specification construction (Fickas, Collins & Olivier 1987) show clearly the

sophisticated strategies, such as example generation, which are employed during this

activity. We aim, within our overall framework, to be able to capture such strategies

but in doing so we must of necessity make the delicate balance between this concern

and the formal properties of our model. Our argument is not that the strategies we

have succeeded in capturing are sufficient in themselves for understanding

specification but rather that our approach provides a foundation on which such an

understanding may be built.

Our immediate aim is to continue work revising and extending the dialogue schemes,

including generalising dialogue strategies, with the long term objective of developing

a full specification support environment based on the approach we have outlined.

Our vision of the future sees dialogue as providing the logical equivalent of Unix-

style pipes and filters to support the communication of complex formal objects

between distributed and cooperating communities of tools and users.

Acknowledgements

The authors would like to thank their colleagues and students most notably Wayne

Butcher who has been responsible for implementing IC~DC Two, also Martin Sadler

and Celso Niskier for the lively critical discussion which has contributed

Multi-party Specification - 26

significantly to the work this paper reports. Hugo Fuks is supported by the Brazilian

National Research Council CNPq, grant 202471/86-cc.

References

Allwood, J. (1986); Logic and Spoken Interaction; In: Myers,Brown & McGonigle

(Eds), Reasoning and Discourse Processes, Academic Press Cognitive Science Series,

pp 67-94.

Balzer, R. (1985); A 15 Year Perspective on Automatic Programming; IEEE Trans.

Software Engineering; SE-11,11,pp 1257-1267.

Balzer, R. Goldman, N. & Wile, D. (1978); Informality in Program Specifications;

IEEE Trans. Software Engineering; SE-4,2, pp 94-103.

Carbonell, J.G. (1982); Meta-Language Utterances in Purposive Discourse; Carnegie-

Mellon University Tech. Report, CMU-CS-82-125.

Conklin, J. (1989); Design Rationale and Maintainability; Proc. 22nd Hawaii

International Conference on Systems Sciences, V2, pp 533-539, IEEE CS Press.

Cunningham, J. Finkelstein, A. Goldsack, S. Maibaum, T. & Potts, C. (1985); Formal

Requirements Specification - The Forest Project; Proc. 3rd IWSSD; pp 186-191, IEEE

CS Press.

Erman, L. & Lesser, V. (1975); A Multi-Level Organization for Problem Solving Using

Many, Diverse, Cooperating Sources of Knowledge; Proc. IJCAI-75, pp 483-489.

Feather, M. (1987); Constructing Specifications by Combining Parallel Elaborations;

To appear IEEE Trans. Software Engineering.

Fickas, S. Collins, S. & Olivier, S. (1987); Problem Acquisition in Software Analysis:

a preliminary study; University of Oregon Tech. Report, CIS-TR-87-15.

Finkelstein, A. & Potts, C. (1987); Building Formal Specifications Using “Structured

Common Sense”; Proc. 4th IWSSD; IEEE CS Press.

Fuks, H. Pequeno, M. & Sadler, M.(1988); A Dialogic Framework for Theorem

Proving, Imperial College, Department of Computing Tech. Report, DoC 88/4.

Green, M. (1983); Report on Dialogue Specification tools; In: Pfaff (Ed) Proc. Wrkshp.

User Interface Management Systems 1983; Springer-Verlag.

Hamblin, C. (1971); Mathematical Models of Dialogue; Theoria, V2, pp130-155.

Multi-party Specification - 27

Hamblin, C (1987); Imperatives; Basil Blackwell, Oxford.

Hintikka, J (1973); Logic, Language-Games and Information; Clarendon Press,

Oxford.

Horai,H. Saeki, M. & Enomoto, H. (1987); Specification Based Software Development

System Pure Tell, IIAS Research Report No. 73.

Kornfeld, W. & Hewitt, C. (1981); The Scientific Community Metaphor; IEEE Trans

Systems, Man & Cybernetics, SMC-11,1, pp 24-32.

Lehman, M. (1985); Approach to a Disciplined Development Process - The ISTAR

Integrated Project Support Environment; Imperial College Dept. of Computing Tech

Report 85/19.

Lenat, D. (1975); Beings: Knowledge as Interacting experts; Proc. IJCAI-75, pp126-133.

Lorenz, K. (1982); On the Criteria for the choice of Rules of Dialogic Logic; In Barth &

Martens (Eds), Argumentation: approaches to theory formation, SLCS V8, John

Benjamins, Amsterdam.

Mackenzie, J. (1981); The Dialectics of Logic; Logique et Analyse, V24, pp 159-177.

Mackenzie, J. (1985); No Logic before Friday; Synthese, V63, pp 329-341.

Maibaum,T., Veloso, P. & Sadler, M. (1985); A Theory of Abstract Data Types for

Formal Development: bridging the gap?; Proc. Colloq. Software Engineering Berlin

1985; LNCS 186, Springer Verlag.

Mullery, G. (1985); Acquisition — Environment; In Paul, M. & Siegert, H. (Eds),

Distributed Systems: methods and tools for specification, LNCS 190, Springer Verlag.

Niskier, C. (1987); Using Multiple Views in Software Specification; Proc. 5th

Workshop on Formal Specification of Abstract Data Types, Gullane, Scotland.

Niskier, C., Fuks, H. & Sadler, M. (1988); Changing Views in Software Specification:

interpretation between theories using dialogue; (In preparation).

Schneiderman, B. (1982); Multiparty Grammars and Related Features for Defining

Interactive Systems; IEEE Trans Systems, Man & Cybernetics, SMC-12,1, pp 148-154.

Smith, R. (1980); The Contract Net Protocol: High-Level Communication and Control

in a Distributed Problem Solver; IEEE Trans. Computers, C-29,12, pp1104-1113.

Smith, R. & Davis, R. (1981); Frameworks for Cooperation in Distributed Problem

Multi-party Specification - 28

Solving; IEEE Trans Systems, Man & Cybernetics, SMC-11,1, pp 61-69.

Soloway, E. (1986); Meeting the Challenge of Programming-in-the-Large, 1st

Workshop on Empirical Studies of Programmers 1986, pp 263-268; Ablex Publishing

Corp.

Thimbleby, H. (1988); Delaying Commitment; IEEE Software; V5 N3, pp 78-86.

Wile D. (1983); Program Developments: Formal Explanations of Implementations;

CACM 26(11), pp 902-911.

Winograd, T. & Flores, F. (1986); Understanding Computers and Cognition: A New

Foundation For Design; Ablex Publishing Corp.

Multi-party Specification - 29

