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Abstract. Research in web services has allowed reusable, distributed,
loosely coupled components which can easily be composed to build sys-
tems or to produce more complex services. Composition of these compo-
nents is generally done in an ad-hoc manner. As compositions of services
become more widely used and, inevitably, more complex, there is a need
to ensure that compositions of services obey constraints. In this paper,
we consider the need to provide policy constraints on service composi-
tions, that define how services can be composed in a particular business
setting. We describe compositions using WS-CDL and we use xlinkit
to express policy constraints as consistency rules over XML documents.
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1 Introduction

Policy constraints are constraints on a system which originate from the business
needs of an organisation. Some examples might be that it is necessary to perform
a credit check before certain other interactions can be performed or that certain
parties in an interaction should not communicate with each other. Web services
are extremely valuable in providing distribution and loose coupling and allowing
application integration within an organisation but there is a need to ensure that
compositions of these services are consistent with policy constraints.

WS-CDL[1] is an XML language for describing complex interactions and
compositions of services. It is intended for modelling these interactions from a
global perspective, independent of underlying implementations, rather than as
an executable composition language such as BPEL. WS-CDL is currently a W3C
candidate recommendation.

The problem which we tackle is the need to ensure that complex compositions
of web services, described in WS-CDL, conform to service policy constraints.
We are able to tackle this problem by using xlinkit, which checks consistency
rules over XML documents, by expressing policy constraints in the xlinkit rule
language.



We envision our work being used in the following way. Organisations will have
a number of existing services which they regularly use and which they want to
be able to integrate in various complex ways. They will be able to describe
policy constraints, using our approach, which constrain how these services can
be composed. Later, service composers will design compositions using WS-CDL
and will be able to check, using xlinkit, that their service compositions obey
the policy constraints on the services which they use.

The contribution of this work is a simple, lightweight approach, using existing
technology, to check that descriptions of web service compositions, described in
WS-CDL, conform to policy constraints. The approach has been successfully
implemented using xlinkit.

In section 2 of this paper, we briefly introduce xlinkit and the rule lan-
guage which it uses. In section 3 we describe our approach to checking policy
constraints. In section 4 we describe how we check policy constraints relating to
the types of interactions allowed between the roles in a choreography and in sec-
tion 5 we describe our approach to constraints on the ordering of interactions.
We review related work in section 6 and our conclusions and ideas for future
work are presented in section 7.

2 Overview of xlinkit

To test consistency, we make use of xlinkit[2–4], a tool for checking consis-
tency within and between XML documents. The CLiX[5] language is an XML
language used to specify consistency rules for use with xlinkit. This language
is based on first order logic and makes use of XPaths[6] to select sets of nodes
within documents. The xlinkit tool includes a development environment to
allow easier editing and development of rules. This tool allows graphical editing
of rule structures and generates the CLiX rules.

An example of the CLiX language is shown in figure 1. This example is
intended to apply to an XHTML document and requires that all links within the
document link to the www.example.org domain. The forall element selects the
set of all link elements (a elements which have an href attribute) in the document
and uses the variable link to refer to these elements. The link elements are
selected using the XPath in the in attribute’. The equal element requires that
for each element referred to by the link variable, the two operands are equal.
These two operands are also XPaths. The first operand selects the portion href
attribute which should refer to the www.example.org domain. A reference to
the link variable is made in this XPath by preceding the name of the variable
by the sign. The rest of the XPath is then relative to the element referenced
by this variable. The second operand is a literal string value. These two values
should be equal so that the start of the href attribute is equal to the second
operand (i.e it should point to the www.example.org domain).

CLiX rules can make use of the universal quantifier (forall) and existential
quantifier (exists). These quantifiers have an XPath, which is used to select a
set of nodes, and a variable name. When the rule is evaluated against a set of



<forall var="link" in="//a[@href]">
<equal op1="substring($link/@href, 1, 22)"

op2=" http://www.example.org "/>
</forall>

Fig. 1. A CLiX rule which requires that all links point to the ’www.example.org’ do-
main name.

documents, the path is evaluated, resulting in a set of XML nodes which satisfy
the XPath. The node set is then iterated over and the quantifier variable is
bound to each node in the node set in turn and the rule within the quantifier
element is evaluated for each value of the variable.

The CLiX language also makes use of seven standard operators (equal, not
equal, greater, less, greater or equal, less or equal and same). All of these are
standard mathematical operators, except for the ‘same’ operator, which evalu-
ates to true if two XPaths refer to the same document node (all other operators
work on the value of the nodes). The CLiX language supports the inclusion of
custom operators in addition to the standard operators. In xlinkit, the oper-
ators are defined using ECMAScript[7]. Operators are combined to build more
complex rules using and, or, not, implies and “if and only if” operators.

The xlinkit rule checking engine checks constraints for single documents or
sets of documents. If a set of documents is provided as input then XPaths are
evaluated for every document. This allows consistency rules between documents
to be checked. If violations are detected, a report is generated which identifies
which elements in the documents violated the constraints.

3 Checking Policy Constraints

The behaviour of web service compositions is implemented using orchestration
languages, such as BPEL, and general purpose languages, such as Java and C#.
A web service composition may be composed of heterogeneous services which
are able to interoperate through web service standards. It is difficult to check
consistency between policy constraints and these languages as many different
languages can be used. Some implementations are also likely to be too low level
to easily allow consistency checking to take place, particularly where general pur-
pose languages are used. Furthermore, it is only possible to obtain a local view
by examining web service orchestrations, whether implemented in an orchestra-
tion language or a general purpose language. By looking at an orchestration it
can be seen how a web service interacts with the partners it provides services to
and those it consumes services from. It is not possible to examine more complex
interactions involving multiple levels of composition.

Using WS-CDL, it is possible to model a web service composition from a
global perspective. In [1], WS-CDL is described as follows:

The Web Services Choreography Description Language (WS-CDL) is
an XML based language that describes peer-to-peer collaborations of



Fig. 2. Overview of policy constraint checking.

participants by defining, from a global viewpoint, their common and
complementary observable behavior; where ordered message exchanges
result in accomplishing a common business goal.

Policy constraints can be more easily checked for consistency against this model
as it is more abstract than the behavioural implementations and uses a con-
sistent language to describe the entire composition. It provides a global view
of the complete composition rather than local views, allowing multiple levels of
composition to be checked against the constraints.

The diagram in figure 2 shows the process in which our approach is used. Ser-
vice descriptions of existing services are used to create a WS-CDL composition.
Policy constraints are written as CLiX rules. Both the policy constraints and
the WS-CDL composition are input into the xlinkit rule checker. This results
in a list of violations which describe how the WS-CDL composition violates the
constraints. The violations are used as input to the service composition process
so that the constraint violations can be corrected. This continues iteratively until
the WS-CDL composition no longer violates any constraints and the implemen-
tation generation process can begin. This process can involve generating and
manually writing code and results in the creation of an implementation of the
service composition.

4 Communication Constraints

Using the CLiX language, we can describe constraints which limit the types of
communication allowed between the roles in the choreography. We illustrate our
approach using the example from the WS-CDL Primer[8]. This example involves
four roles; a buyer, seller, credit agency and shipper. In this example, the buyer
and seller negotiate until they agree on a price for an order. The buyer can then
place the order. The seller performs a credit check, using the service provided by



the credit agency, before placing a request with the shipper for the order to be
dispatched. We have extended this example by completing some of the missing
WS-CDL description which is not present in the primer.

Using the above example, a possible communication constraint is that a credit
check should not be performed as part of the choreography, perhaps because a
certain group of clients do not want these checks to be performed. Obviously, the
example choreography described previously will violate this policy. The WS-CDL
fragment which describes the credit check is shown in figure 3. This interaction
involves the operation which performs the credit check, ‘creditCheck’, being
performed on the ‘CreditRole’.

<interaction channelVariable="tns:CreditAgencyC"
name="CheckCredit" operation="creditCheck">

<participate fromRoleTypeRef="tns:SellerRole"
relationshipType="tns:Seller2Credit"
toRoleTypeRef="tns:CreditRole"/>

<exchange action="request"
informationType="tns:CreditRequestType"
name="CreditRequest">

...
</exchange>
<exchange action="respond"

informationType="tns:CreditResponseType"
name="CreditResponse">

...
</exchange>
<exchange action="respond" faultName="CreditCheckFault"

informationType="tns:CreditFailureType"
name="CreditFailure">

...
</exchange>
...

</interaction>

Fig. 3. WS-CDL document fragment which performs a credit check.

The CLiX rule which ensures that the policy constraint is satisfied is shown
in figure 4. This rule requires that for any interaction where the target role of
the interaction is the credit agency role, the creditCheck operation is not the
operation which is being called. The outer forall element selects the set of all
interaction elements in the WS-CDL document and for each one evaluates
the enclosed rule. The enclosed rule must be satisfied for every interaction if the
rule as a whole is to be satisfied. The implies element requires that if the first
sub-rule is true then the second must be true . The first sub-rule is true when
the toRoleTypeRef attribute of the participate element of an interaction



element is the CreditRole. If this is the case then the second sub-rule requires
that the operation attribute of the interaction element should not have the
value creditCheck. One complication occurs due to the use of XML namespaces
in the first sub-rule. As xlinkit uses XPath 1.0, it is necessary to select only the
local part of the role reference by using the substring-after XPath function
to select only the portion which occurs after the colon.

<forall var="$interaction" in="//cdl:interaction">
<implies>

<equal op1="substring-after
($interaction/cdl:participate/@toRoleTypeRef, : )"

op2=" CreditRole "/>

<notequal op1="$interaction/@operation"
op2=" creditCheck "/>

</implies>
</forall>

Fig. 4. CLiX rule which forbids a choreographies from performing ‘creditCheck’ inter-
actions.

When this rule is applied to the WS-CDL document fragment in figure 3 it
results in a constraint violation. Figure 5 shows the HTML output from xlinkit.
This document includes a reference to the element which caused the constraint
violation which specifies the file where the violation occurred and, using XPath,
identifies the individual interaction element. This HTML document could be
used as input to other tools which help resolve the violation.

5 Constraints on Interaction Ordering

The communication constraints described in the previous section can be ex-
pressed in xlinkit in a fairly straightforward manner. Another type of con-
straint which we would like to check are constraints on the order of interactions.
For example, a credit check interaction must occur before shipping is requested.

Fig. 5. Output showing constraint violations.



Such a constraint is not easy to express using the standard xlinkit operators.
To make this easier, we have created a custom operator for determining whether
an interaction in a WS-CDL document occurs before another.

In WS-CDL, three main structures affect ordering. The ‘sequence’ structure
requires that the enclosed activities must be performed in the specified order. The
‘parallel’ structure requires that all the enclosed activities must be performed but
places no restrictions on ordering and allows simultaneous execution. The ‘choice’
structure requires that exactly one of the enclosed activities is performed. The
other important construct which affects ordering is the ‘workunit’ construct.
This allows recursion as well as preventing the enclosed condition from being
executed until a guard condition is satisfied.

Our operator determines ordering using basic information available by static
analysis of the WS-CDL document. Importantly, it does not consider the value of
variables, even if it is possible to determine the value of those variables statically.
The operator is pessimistic, returning a false result unless it is able to determine
with certainty that the ordering constraint is satisfied. In general this should
be sufficient as static ordering constraints should be imposed using constructs
which do not depend on variables. While it is possible to create ordering which
depends on the values of variables but can actually be determined statically, we
do not detect these cases, and we consider this something to be avoided when
creating WS-CDL documents.

The ordering structures in WS-CDL allow the following rules to be applied.
After a ‘sequence’ or a ‘parallel’ construct has completed execution, all the ac-
tions contained in these constructs have completed. After a ‘choice’ construct is
complete, it is not possible to know which of the possible actions will have been
completed. A construct is executing if it is an ancestor of the current interaction.
During execution of a ‘sequence’ structure, earlier actions in the sequence have
completed while later one have not. It is not possible to know which actions have
completed during execution of a ‘parallel’ or ‘choice’ construct.

Using these rules, a recursive algorithm was written which traverses the tree
structure of ordering elements. The algorithm ascends the tree looking for pre-
vious interactions which match the required interaction name. When it reaches
a sequence element, the algorithm is able to descend the tree and search pre-
vious interactions, also descending down parallel elements and further sequence
elements. The recursion terminates when the enclosing choreography element
is reached. The algorithm is also able to understand ‘perform’ elements which
cause sub-choreographies in the same document to be performed. The algorithm
follows the references to these sub-choreographies.

Figure 6 shows an example rule which enforces the constraint that a ‘Cred-
itCheck’ interaction should occur before a ‘RequestShipping’ interaction, using
the ‘before’ operator. It requires that for all ‘RequestShipping’ interactions there
exists a ‘CheckCredit’ interaction which occurs before it in the WS-CDL chore-
ography.

Figure 7 shows how the ‘before’ operator is applied to a WS-CDL document.
This diagram represents the structure of fragment of a WS-CDL document,



<forall var="shippingInteraction"
in="//cdl:choreography//cdl:interaction[@name= RequestShipping ]">

<exists var="creditCheckInteraction"
in="//cdl:choreography//cdl:interaction[@name= CheckCredit ]">

<operator name="order:before">
<param name="a" value="$creditCheckInteraction"/>
<param name="b" value="$shippingInteraction"/>

</operator>
</exists>

</forall>

Fig. 6. Rule which requires that a ‘CheckCredit’ interaction should occur before a
‘RequestShipping’ interaction.

showing a choreography element with a number of ordering elements and inter-
action elements. Arrows show how the algorithm traverses the document tree to
search for an interaction which matches the ordering constraint. Starting from
the ‘RequestShipping’ element, the algorithm ascends the tree and encounters a
sequence element. This action is not yet completed as the algorithm ascended the
tree to reach it, so it is only necessary to search earlier actions in the sequence.
The algorithm is able to descend to the ‘parallel’ element but not to the interac-
tion ‘E’ which occurs later in the sequence. The ‘parallel’ element is a completed
action, as the algorithm reached it by descending the tree, so all child elements
of this element can be searched (this would also be the case if the element was
a sequence element). Descending to the ‘choice’ element, the algorithm cannot
descend further as it is not possible to tell which of the child actions will be per-
formed. The algorithm then descends to the interaction element ‘B’ and checks
to see if this interaction has the name ‘CheckCredit’. As it does not, the algo-
rithm continues by ascending the document tree. From the sequence element, the
algorithm ascends to another parallel element. As this action has not completed,
it is not necessary to descend to interaction A. The algorithm ascends again to
the choreography element at which point the algorithm completes. In this case,
a matching interaction was not found so the operator returns the result false.

6 Related Work

The work described in this paper builds on[9] in which xlinkit was also used
to check consistency with policy constraints. The principle difference is that the
previous work checked WSDL documents against constraints. WSDL documents
describe an interface but give little information about how the interface is used
or how different services are composed. Furthermore, WSDL descriptions are
supplied by service providers but policy constraints need to be obeyed by ser-
vice consumers who are responsible for the composition. In contrast, WS-CDL
documents describe interactions between different services and the ordering of
those interactions, allowing more complex policy constraints to be checked.



Fig. 7. An example showing how the algorithm used by the ‘before’ operator is applied
to a WS-CDL document.

7 Conclusions and Future Work

In this paper we have described an approach for checking policy constraints for
compositions of web services described in WS-CDL. Policy constraints are ex-
pressed as CLiX rules on the WS-CDL choreography. These constraints can be
evaluated using xlinkit which identifies constraint violations in the choreogra-
phy. Our contribution is a lightweight approach to the problem of checking that
policy constraints are obeyed by web service compositions, using existing tech-
nology. The approach is implemented using the existing xlinkit rule checking
engine.

We have been able to specify constraints relating to how different roles in a
web service composition can communicate with each other and in the ordering
of interactions. Future work may include identifying further types of constraints
which can be checked using this approach and whether further CLiX operators
need to be defined to support them. Other constraints which might be of in-
terest include constraints related to issues such as reliability and performance.
Unfortunately, WS-CDL does not describe such properties making it impossible
to check constraints related to these issues. This problem could be solved by
extending the WS-CDL description with these properties, allowing constraints
which use these extensions to be described.

A potential problem with our consistency rules is that they rely on the the
names used in the WS-CDL files being consistent with those used in the CLiX
rules. If the ‘CreditAgency’ role is referred to as ‘CreditReferenceAgancy’ in a
particular WS-CDL file then rule which refers to the ‘CreditAgency’ role will



fail. To write meaningful rules, WS-CDL documents and CLiX rule documents
must share a common taxonomy. This need not necessarily be formally specified,
as long as all documents use the same names to refer to the same entities. This
requirements could also be enforced to some extent using CLiX rules which con-
strain WS-CDL documents to use only names which are present in a particular
taxonomy.

Our approach checks policy constraints are consistent with WS-CDL mod-
els rather than with the actual implementation of web service compositions. To
show that the actual web service composition is consistent with the constraints,
it is necessary to ensure that the implementation of the composition is consistent
with the WS-CDL model. There are two approaches to this problem. The first is
to generate implementation from the model, including WSDL interfaces, BPEL
orchestrations and general purpose language code. This ensures that generated
implementation code is consistent with the model at the time of generation.
Another approach might be to check consistency between the model and imple-
mentation. This has the advantage that existing implementations can be checked
and that inconsistencies which are introduced subsequent to code generation can
be detected. For example, it may be useful to identify consistency rules between
WS-CDL and WSDL interfaces.
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