
A lightweight technique for assessing risks
in requirements analysis

K. Boness, A. Finkelstein and R. Harrison

Abstract: A simple and practical technique for assessing the risks, that is, the potential for error,
and consequent loss, in software system development, acquired during a requirements engineering
phase is described. The technique uses a goal-based requirements analysis as a framework to ident-
ify and rate a set of key issues in order to arrive at estimates of the feasibility and adequacy of the
requirements. The technique is illustrated and how it has been applied to a real systems develop-
ment project is shown. How problems in this project could have been identified earlier is shown,
thereby avoiding costly additional work and unhappy users.

1 Introduction

It is a common experience, regardless of what process is
adopted, that requirements gathering is stalled by a prema-
ture leap to design and coding. This leap is compelled by
project managers, and, strangely, customers who have a
poor understanding of the consequences of neglecting
requirements. Requirements processes sometimes look
like a handy place to save time on projects that must be
completed quickly.
Experienced developers usually attempt to prevent this

from happening, and to do this they advance the established
arguments that faults found late in the development process
are exponentially more costly to fix than those found earlier.
They are able to use published data [1] to support this argu-
ment. Such general and rather abstract arguments are
however difficult to sustain in an industrial setting, particu-
larly when some requirements work has already been under-
taken and the question boils down to the adequacy of that
work [2]. It must also be acknowledged that schedules do
matter. A less-than-adequate system delivered quickly
may, on some occasions, be better than a fault-free system
delivered late. If external factors have resulted in slippage,
the time does need to be made up somewhere.
What we describe below is a simple, and we believe prac-

tical, technique for assessing risks in requirements analysis.
It provides a framework within which developers and man-
agers can identify occurrences of those factors known to be
associated with subsequent development problems and by
this means reach a balanced and informed assessment of
risk.
The result of applying the approach is a risk profile that

combines project data and experts’ estimates. The approach
can be used very early in a project life cycle. If used cor-
rectly, the profile can indicate where effort in requirements

analysis should be directed to eliminate issues giving rise to
latent high-severity problems. The benefit of the approach is
that the risk assessment is based on the current state of the
requirements analysis and is directly related to the project
and its particular risks.
We begin by discussing the framework for our technique.

Section 3 presents the rationale and Section 4 gives details of
the technique, including the risk factors and an example
for illustration. Section 5 discusses how we tested the tech-
nique and Section 6 discusses future work. Finally, Section 7
presents related work on metrics for risk assessment.

2 Framework

Our technique uses, as an underlying framework, a require-
ments goal graph (Fig. 1). A goal graph represents stake-
holders’ hopes for a system-to-be, which will be operated
in an expected environment, in fulfilment of a contract.
The graph can represent the rationale and understanding
of the problem to be solved along with a set of domain
assumptions and the stated requirements for a system.
Goal graphs of this type are widely used in goal-based
requirements engineering and most notably in the keep all
objectives satisfied (KAOS) approach [3] which informs
our work. In this paper, we use the word ‘requirement’ to
refer to all goals in the goal graph, not just leaf goals.
A requirements goal graph is usually composed of a

number of root goals, the motivating goals, with a hierarchy
of sub-goals connected by refinement relations. Sub-goals
may satisfy the super-ordinate goal in conjunction (and)
or as alternative realisations (or). The hierarchy has the
potential to be cross-cutting although this is beyond the
scope of this paper, as is a detailed treatment of risks associ-
ated with requirements traceability. Leaf goals have no
refinements but can be expressed in operational terms and
can be assigned a method by which the goal may be satisfied
(i.e. implemented); this may be performed by a system com-
ponent (in which case the leaf is an operationalised require-
ment) or by the system environment (in which case the leaf
is an operationalised assumption).
We will not argue here as to why such an approach is, in

fact, a good basis for requirements engineering, although we
believe it to be so. It is not required that a project using our
technique adopts a goal-based approach as its sole or even
principal method of gathering and organising requirements.

The Institution of Engineering and Technology 2008

doi:10.1049/iet-sen:20070068

Paper first received 5th June and in revised form 13th September 2007

K. Boness is with the School of Systems Engineering, University of Reading,
Berks, UK

A. Finkelstein is with the Department of Computer Science, UCL, Gower street,
London WC1E 6BT, UK

R. Harrison is with Stratton Edge Consulting, Gloucestershire GL7 2LS, UK

E-mail: Rachel.Harrison@reading.ac.uk

IET Softw., 2008, 2, (1), pp. 46–5746

Authorized licensed use limited to: University College London. Downloaded on May 26, 2009 at 09:06 from IEEE Xplore. Restrictions apply.

The technique does however require a ‘best effort’ goal
graph to be constructed representing the decomposition
and refinement of the requirements at the point at which a
risk assessment is to be made. If an approach other than a
goal-based approach is used, for instance, a conventional
functionally driven natural language specification, such a
goal graph can be derived from it. The better the quality
of the requirements work, the easier this is to do. If, of
course, a goal-oriented approach has been used, the first
part of our approach comes for free.

3 Rationale

There are two primary concerns in requirements engineer-
ing: to ensure that what is set down is what is ‘actually’
wanted (the adequacy of the requirements) and to ensure
that this is achievable (the feasibility of the requirements).
If the requirements prove subsequently to not represent
the needs of users or prove impossible or too costly to
implement, then there is a good chance that this will
prove a serious problem.
The adequacy of the requirements can only be established

indirectly. First by assessing the extent to which the key sta-
keholders (customers, clients, analysts, designers, develo-
pers, managers, sales representatives and so on) have
mandated the root goals. Secondly by estimating confidence
in the refinement of the goals, that is, that the sub-goals pre-
serve the intentions expressed in the top-level goals (follow-
ing a method such as KAOS may help to ensure this). The
feasibility of the requirements as a working basis for sub-
sequent development can also only be established
indirectly, first by ensuring that all the leaf goals are in
fact operationalised, and secondly by ensuring that each
of these requirements or assumptions has been checked
against project or domain constraints to ensure that they
could reasonably be achieved within project resources or
that it is reasonable to expect the system environment to
satisfy them.

4 Technique

Our technique uses a goal graph as an armature to record
expert’s judgements which rate the goal graph against a
set of factors that are associated with risk. The cost and
value of the goals are also assessed in order to produce an
overall profile. The risks of goals which have not been
explicitly assessed by experts are calculated using the
metrics associated with their parents or children.
We assume here that the risk analysis is performed by a

requirements engineer for the benefit of a development
manager working closely with customers on bespoke fixed-
price contracts. Systems that have been delivered but
require re-development can also be accommodated by
re-analysing the evolving subsystem.
In summary, this technique identifies and rates a set of

key issues by providing a minimal set of independent sub-
jective metrics using information from stakeholders or
experts’ opinions. As such it represents a meta-level

assessment technique that assesses the information that is
known about the requirements rather than assessing the
requirements themselves by (say) using a formal language
representation of the requirements. As the metrics are sub-
jective, they can be obtained very early on in the project
life cycle and provide information that would not otherwise
be made explicit.

4.1 Risk factors

From our previous experience, we identified four indepen-
dent risk factors: (1) the environmental assumptions, (2)
the achievability of the implementation of the requirements,
(3) the integrity of the refinements and (4) the stakeholders’
mandate. These are described in more detail below.

RF1. Environment: leaf goals assigned to the environment
for satisfaction despite inadequate grounds for believing
this is a reliable assignment.
RF2. Achievability: leaf goals assigned to the software for
satisfaction despite inadequate grounds for believing an
acceptable implementation is achievable.
RF3. Refinement: refinements where the stated refinement
is open to question (due to semantic entailment), goals
with no justifiable parents or where there is an uncertainty
about the degree to which a goal contributes to a root
goal, possibly due to errors with the semantic entailment
or to ‘gold-plating’.
RF4. Stakeholders’s mandate: goals where stakeholder’s
endorsement is uncertain; in other words, where the stake-
holder’s agreement with the goal is in doubt.

Independent work has referred to these factors as cat-
egories in the context of project risk [4–6]. Table 1 lists
the risk factors together with the names and descriptions
of their raw data. We use the convention that names of
the raw data are capitalised. The metrics are subjective;
appropriate expert assessors (who are often project stake-
holders, but may also be managers and requirements engin-
eers who are independent of the project) are asked to
express their confidence that the risks have been addressed.
Guidelines are given to the assessors to help ensure uniform
interpretation of the risk factors. As the assessment is sub-
jective, relevant information can be obtained very early
on in the project life cycle. An in-depth analysis into the
reasons for the different values given by the assessors can
also be very revealing. Table 2 describes the calculation
of the metrics in more detail. These metrics are in fact

Table 1: Four risk factors and associated metrics

Risk factor Raw data Description

RF1: environment ENV probability that the

assumptions can be

satisfied by the

environment

RF2: achievability ACHIEVE probability that the

requirements are

achievable

RF3: refinement SOUND probability that the

refinements are sound

RF4: mandate MANDATE probability that the

requirements are

mandated

Fig. 1 Example of a goal graph

IET Softw., Vol. 2, No. 1, February 2008 47

Authorized licensed use limited to: University College London. Downloaded on May 26, 2009 at 09:06 from IEEE Xplore. Restrictions apply.

measures of the probability of success: if a risk has a prob-
ability p of occurring, our metrics measure (12 p).
The risk factors RF1 (ENV) and RF2 (ACHIEVE) are esti-

mated for the leaf goals and then calculated from these esti-
mates for the remaining goals under consideration. Table 2
shows how to do this and how to average over the assessors’
estimates (a more detailed data analysis would include con-
sideration of medians and outliers). Note that the probabil-
ities for RF1 and RF2 are multiplied to obtain the root
goals’ values as this is how probabilities accumulate. Any
design alternatives (indicated by an ‘Or’ in the goal graph)
are removed prior to calculation of the metrics. This may
be done by the production of additional alternative goal
graphs. Admittedly this could lead to a combinatorial
explosion of goal graphs. However, we assume that incre-
mental evaluation is being performed, leading to a reduction
in the number of ‘Ors’ as the project proceeds.
The risk factors RF3 (SOUND) and RF4 (MANDATE)

are estimated for each individual goal. The estimates for
RF4 for child goals are considered when estimating a
parent’s RF4. Conflicting scores for RF4 should stimulate
further analysis and negotiation. However, this is outside
the scope of the paper: this technique is intended for analys-
ing the stakeholders’ concerns, not for managing them.
Clearly it would be possible to decompose the four risk

factors into more fine-grained factors. However, we prefer
to proceed with the four factors shown above in order to
keep the technique as simple and practical as possible for

automation. For a top-level summary, it may also be necess-
ary to produce a total for the whole goal graph. Table 3
shows how this can be done by averaging over the project
goals.
We treat any obstacles in the goal graph as surrogate root

goals. This has the advantage of keeping the technique
simple and is intuitively obvious for stakeholders.
Note that our technique takes no account of the possible

relationships between different goals other than child to
parent, and assumes that the leaf goals are independent
(i.e. a child node should not be shared by two or more
higher-level goals). Nor does it attempt to rank the risk
factors in any way or to weight assessors’ judgements.
These matters are the subject of our ongoing research.
A manager will want to know whether the necessary

work is feasible and whether the project will deliver an ade-
quate result. The former (Feasibility, F) can be answered by
considering the metrics RF1 and RF2 together and the latter
(Adequacy, A) by considering RF3 and RF4 together. As
the four risk factors are all probabilities, we calculate
Feasibility and Adequacy for the leaf nodes by multiplying
the appropriate factors together (Table 4). The formula for
Adequacy uses the product of the RF3 metric for all goals
from the root goal to the leaf goal in question. This is in
order to estimate confidence about all the relevant
refinements.
A manager will also be interested in the Proportional

Value (PValue) and Proportional Cost (PCost) of the

Table 2: Calculations of the metrics for the risk factors

Risk factor Definition of metric for each leaf and goal

RF1 the RF1 metric for an operationalised assumption a is calculated as the average of the assessors scores:

RF1(a) ¼ 1

N

XN

n¼1

ENV(n)

where N ¼ total number of assessors, ENV is the probability that an assumption can be fulfilled within project

and domain constraints, estimated for leaves by assessors

a goal’s RF1 is calculated as the product of its children’s RF1 values; if there are no operationalised assumptions for

a goal, then RF1 ¼ 1

RF2 the RF2 metric for an operationalised requirement r is calculated as the average of the assessors scores:

RF2(r) ¼ 1

N

XN

n¼1

ACHIEVE(n)

where N ¼ total number of assessors, ACHIEVE(n) is the probability that a requirement can be achieved within

project and domain constraints, estimated for leaves by assessors

a goal’s RF2 is calculated as the product of its children’s RF2 values; if there are no operationalised requirements

for a goal, then RF2 ¼ 1

RF3 the RF3 metric for a goal g is calculated as the average of the assessors scores:

RF3(g) ¼ 1

N

XN

n¼1

SOUND(n)

where N ¼ total number of assessors, SOUND(n) is the probability that the refinement argument for a goal is

sound, estimated by assessors; for leaf goals, this equates to estimating whether further refinement is needed

the default RF3 metric for goals is 0.5

RF4 the RF4 metric for a goal g is calculated as the average of the assessors scores:

RF4(g) ¼ 1

N

XN

n¼1

MANDATE(n)

where N ¼ total number of assessors, MANDATE is the probability that the stakeholders’ mandate for a goal is

sound, estimated by assessors

the default RF4 metric for goals is 0.5

IET Softw., Vol. 2, No. 1, February 200848

Authorized licensed use limited to: University College London. Downloaded on May 26, 2009 at 09:06 from IEEE Xplore. Restrictions apply.

goals, where Value is the business value of a goal and Cost
is the development cost of an operationalised requirement
relative to the other operationalised requirements. This
paper assumes that we are concerned with projects that
are currently under development rather than
re-development. Value and Cost are converted into
PValue and PCost so that systems with different numbers
of goals can be compared easily. This is done by dividing
by the total Value or Cost (respectively) of the operationa-
lised requirements. Operationalised requirements are used
because it is these that are implemented. PValue and
PCost are expressed as percentages (Table 5). For this risk
profile, experts are asked to assign a relative Value to all
the root goals (i.e. the value is relative to the other root
goals’ values). The Values for goals that are not explicitly
given by experts are taken from the Values of the immediate
parent goals such that the sum of the child goals is equal to
the parents’ Values. Clearly, there are other ways to distri-
bute Value throughout the graph, but we chose this tech-
nique for simplicity. As noted earlier, design alternatives
are removed prior to calculation of the metrics so that the
computations can be performed in a straightforward and
inexpensive manner. Once Costs and Values have been

assigned to the leaf goals, they are then normalised such
that the total for each sums to 100%.
The costs of environmental assumptions are taken to be

zero as such costs are regarded here as outside project
constraints.
We could also calculate the priority of the requirements.

Two possible exemplar metrics are given in Table 5. The
first, Priority1, is defined as the value of a goal divided by
its proportional cost and the second, Priority2, as the
value of the goal multiplied by the complement of its pro-
portional cost. These are obviously simplifications of
metrics for prioritisation that allow valuable goals that are
cheap to be given the go-ahead in favour of valuable
expensive goals. This allows requirements to be ranked in
terms of priority for development. Also the values of the
risk factors for each goal could be weighted by the goal’s
priority in order to produce an overall risk profile. A
manager may have a number of different priority metrics
taking value for money, cost and other factors into
account [7–10]. We prefer not to prescribe a particular
prioritisation scheme here but rather to leave it to individual
choice, depending on the particular circumstances.

4.2 Example: calculating body mass index

By way of demonstration, we present a small but typical
problem involving the calculation of body mass index.
From the requirements definition in Fig. 2, the mandated

goals for the new software are as follows:

1) Normal operation of the walk-on scales must be
maintained.
2) The scales are for use in public places.
3) WeighCom’s good reputation must be maintained.
4) The scales are to be constructed from prescribed
components.

We will use the first goal to illustrate our technique. The
first step is to annotate the goal graph [11] with the esti-
mated values for the risk factors. This is shown in Fig. 3,
which extends the model from the tool Objectiver [12] to
indicate operationalised requirements or assumptions in
ovals and metric annotations in italics. For this example,
we produced the expert opinion by adopting the role of
the product manager for WeighCom. In different situations,
however, it may be more appropriate to approach other
assessors for opinions, such as developers when estimating
project costs and customers when estimating the stake-
holders’ mandate. Clearly the technique benefits from auto-
mation when a larger number of assessors is involved.
The four risk factors in Table 1 are used to measure the

probability that the project will succeed in each of the
four areas (environment, achievability, refinement and sta-
keholders’ mandate) for our risk profile. Fig. 3 also shows
an obstacle. An obstacle is something that may prevent a
goal from being achieved. Obstacles are not assessed in
our technique, but goals that overcome them are.
The risk factors were obtained using expert’s judgement

and the formulae in Tables 2 and 5. The scores for ENV and
ACHIEVE were collected for the leaves as appropriate.
They were then converted to RF1 and RF2 scores for the
leaves and then propagated through the graph to the roots
as indicated in Table 2. Scores for SOUND were taken
for all goals and then RF3 was calculated for each goal
from its SOUND score and those of all its descendent
goals using the formula in Table 2. RF4 scores were
obtained from the MANDATE scores for each goal (if

Table 3: Calculations of the aggregated metrics

Risk factor Metric aggregation: total for project

RF1 1

G

XG

g¼1

RF1(g)

RF2
1

G

XG

g¼1

RF2(g)

RF3
1

G

XG

g¼1

RF3(g)

RF4
1

G

XG

g¼1

RF4(g)

average value
1

G

XG

g¼1

Value(g)

total cost the estimated total cost of a project p is

the sum of the estimated costs of its

operationalised requirements:

TOTALCOST(p) ¼
XR

r¼1

Cost(r)

G ¼ total number of goals; R ¼ total number of operationalised
requirements; value and cost are defined in Table 5

Table 4: Calculations of the indirect metrics

Definition of metric for each leaf goal

Feasibility F(g) ¼ RF1(g) " RF2(g)

Adequacy A(g) ¼ RF4(g) "
Q

i¼1
L RF3(gi)

L ¼ number of levels from the root goal g1 to the leaf goal gL

(and where g ¼ gL)

IET Softw., Vol. 2, No. 1, February 2008 49

Authorized licensed use limited to: University College London. Downloaded on May 26, 2009 at 09:06 from IEEE Xplore. Restrictions apply.

provided) according to the formula in Table 2. There is no
propagation of MANDATE scores through the graph.
Next, COST was judged for all leaf requirements and then
propagated to the roots using the formulae in Table 5.
Finally the scores for VALUE were collected for the roots
(and the goals that overcome obstacles); these were propa-
gated to the leaf goals using the formulae in Table 5.
There are numerous ways to represent the risk profile.

Table 6 shows how to present the Profile on a per-goal
basis calculated using the formulae in Tables 2 and 5

together with the raw values of the risk factors taken from
the annotated goal graph. There may be a number of these
tables or spreadsheets for each project, depending on the
chosen representation and number of goals.
The metrics Feasibility (F) and Adequacy (A) were calcu-

lated using the formulae in Table 4 and are shown in Table 7
together with proportional costs and proportional values.
We calculate the metrics for all nodes in the graph
because we might want to slice through the graph at any
point to obtain an assessment of the goal graph at a

Table 5: Calculations of the Cost, Value and Priority metrics

Definition of metric for each goal

Value(g) ¼ 1

N

XN

n¼1

VALUE(n)

whereN ¼ total number of assessors, VALUE is the business value of a goal as rated by assessors (its contribution to the project) on an

ordinal scale greater than or equal to 0

for a goal not rated by assessors, Value is inherited from its immediate parent(s) such that the children’s Values sum to the parent’s Value;

a goal with two or more parents will inherit the sum of its parents’ Values

the TOTALVALUE of a project is the sum of the values of its operationalised requirements:

TOTALVALUE(p) ¼
XR

r¼1

Value(r)

and R ¼ total number of operationalised requirements

the proportional value of a leaf goal g, PValue(g), is the value of the goal divided by the total value of the project p expressed as a

percentage:

PValue(g) ¼ (Value(g)/TOTALVALUE(p)) " 100, TOTALVALUE(p) = 0

PValue(g) ¼ 0 otherwise

PValues for the leaf goals are normalised such that the total sums to 100%

the cost of an operationalised requirement r is

Cost(r) ¼ 1

N

XN

n¼1

COST(n)

whereN ¼ total number of assessors, COST is the cost of the operationalised requirement (either in FPs, staff days or LOC) as estimated

by assessors

the cost of a goal is the sum of the costs of all its operationalised requirements:

Cost(g) ¼
XR 0

r¼1

COST(r)

where R0 ¼ total number of operationalised requirements for a goal; the cost of an operationalised assumption is zero

the TOTALCOST of a project is the sum of the costs of its operationalised requirements:

TOTALCOST(p) ¼
XR

r¼1

Cost(r)

and R ¼ total number of operationalised requirements in the graph

the proportional cost of a leaf goal g, PCost(g), is the cost of the goal divided by the total cost of the project p expressed as a percentage:

PCost(g) ¼ (Cost(g)/TOTALCOST(p)) " 100, TOTALCOST(p) = 0

PCost (g) ¼ 0 otherwise

PCosts for the leaf goals are normalised such that the total sums to 100%

Priority1(g) ¼ PValue(g)

PCost(g)
" 100

if PCost(g) = 0

Priority1(g) ¼ 100% otherwise

where N ¼ total number of assessors

Priority2(g) ¼ PValue(g)"(12 PCost(g)) " 100

if PCost(g) = 100%, Priority2(g) ¼ 100% otherwise

where N ¼ total number of assessors

IET Softw., Vol. 2, No. 1, February 200850

Authorized licensed use limited to: University College London. Downloaded on May 26, 2009 at 09:06 from IEEE Xplore. Restrictions apply.

number of different levels, depending on the stage of the
analysis, the required level of detail, the criticality of the
assessment and so on. Only the risk factors, costs and
values are included in Fig. 3 to improve its readability.
Figs. 4 and 5 show the plots of Feasibility against

Adequacy for the leaf goal costs and values, respectively.
The charts show the percentages of the Cost or Value for
leaf goals with particular Feasibility and Adequacy scores.
The charts can also include the names of the goals, made
available automatically through a spreadsheet, for ease of
identification of problematic goals. The numbers in the
figures may include colour-coded advice depending on pre-
assigned risk thresholds set by a domain expert (such as red
for do not proceed, amber for proceed with caution, green
for proceed). The placement of the regions is subjective.
Indeed, a manager can vary the sizes of the regions, depend-
ing on the business case and the priorities for the project. If
the information about the requirements is not adequate (i.e.
the mandate is lacking, or the refinements are not sound),
but the requirements are feasible, then a manager would
know to get more information about the mandate and

re-examine the refinements. If the requirements are not feas-
ible, but the mandate exists and the refinements are sound
(i.e. the requirements are adequate), then again, the
project could be re-planned. The areas of concern depend
on the manager’s priorities for each particular system, and
so will differ from one system to the next.
Looking at Fig. 4 it can be seen, for example, that 50% of

the leaf goals costs fall into the Proceed with caution region,
as do 13% of the leaf goal values in Fig. 5. A high number
of leaf goals in the Do not proceed region would indicate
that further requirements work was warranted. For an
alternative representation, we can average over the goals
as shown in Table 3 and produce one table of aggregated
metrics for the entire project.

Fig. 3 WeighCom: annotated goal graph for root goal ‘Maintain walk-on scales normal operation’

Fig. 2 Requirements definition for the calculation of body mass
index

Table 6: Raw data for WeighCom, root goal ‘Maintain
walk-on scales normal operation’

Name RF1 RF2 RF3 RF4 Cost Value

G1 1 1 1 1 0 17

G2 1 0.64 0.9 1 100 100

G3 1 0.8 0.7 1 50 18

G4 1 1 1 1 0 17

G5 1 0.8 0.7 1 50 35

G6 1 0.8 1 0.9 30 18

G7 1 0.8 0.8 0.6 30 35

G8 0.8 1 1 1 0 40

G9 0.8 1 0.9 0.9 0 40

G10 1 1 0.9 1 20 30

Key: bold entries are expert judgements

IET Softw., Vol. 2, No. 1, February 2008 51

Authorized licensed use limited to: University College London. Downloaded on May 26, 2009 at 09:06 from IEEE Xplore. Restrictions apply.

Figs. 4 and 5 show that luckily none of the goals in this
example fell into the Do not proceed region, although
some did fall in the Proceed with caution region mainly
because of a problem with the project’s adequacy. Even
though this is a small example, it was useful to check that
our technique is viable in that it is not too time-consuming
for the experts. This example also showed that the technique
is straightforward to apply, that the calculations can be auto-
mated and that the results agree with intuitive assessments.

5 Applying the technique

In order to test the proposed technique, we began by retro-
spectively applying the metrics to a medium-sized project
provided by one of University College London’s
Administrative Divisions. We chose to study the
University Personal Identifier (UPI) project as it had the
necessary requirements data as well as accompanying his-
torical documentary evidence which we could use to
check the results. One of the authors, the project manager
and project supervisor acted as expert assessors and
reviewed the project approximately 18 months after
project initiation using the PRINCE2 project initialisation
document, business case and initial project plan to obtain
the risk factor metrics. At this point, the project was com-
plete, which suited us as we needed to be able to check
our findings against what actually happened. Also both
the project manager and supervisor were independent of
our research and had no vested interest in the results.
The College had been using the UPI system to control

access to services over the College intranet. This UPI

system links information held in a series of primary
person systems (PPS) and a series of secondary person
systems (SPS). The former include registration and human
resource systems. The latter include library systems, build-
ings access and so on, and were in a state of flux; some of
the systems were stable, some were unstable and new
ones were being developed. The existing UPI system was
deemed unsatisfactory because:

1. Its design was ad hoc and its maintainance depended
upon an understanding held by a small and decreasing
number of staff.
2. It had function and performance shortcomings.
3. Extending it to meet future needs was considered to be
unduly expensive.

The College wished to remedy these problems by intro-
ducing a new, replacement UPI system.
The goal graph, containing 52 goals, was reverse engin-

eered and then inspected by the project manager. After cor-
rection, it was adopted as the best effort goal graph. Every
leaf requirement was operationalised with an associated
responsibility. The project manager then answered a ques-
tionnaire requesting metrics for the risk factors (RF1,
RF2, RF3 and RF4) as well as Value and Cost as appropriate
for root goals, leaf goals and sub-goals. The data obtained
were then used as input for our metrics toolkit.
It took the project manager and supervisor under 2 hours

in total to judge the risk factors, costs and values for the
goals, and this was reported as easy and intuitive to do
after about 30 min of instruction. The assessments (which
were in agreement) were not judged as time-consuming
when compared with creating the best effort goal graph. It
took about an hour to add costs and values to the goal
graph as they were already partially documented. The
assessment of the refinement argument (RF3) was the
most difficult for the assessors to appreciate but with
some guidance became straightforward.
All the goal refinements except for two were confirmed

by the project manager and supervisor as correct and so
were given a score for RF3 of 1. The goal graph was
mainly shallow (with a maximum height of 6 and average
height of 4). Figs. 6 and 7 represent the results of the auto-
mated application of our technique to the whole goal graph.
Note that only the leaf goals are shown but from them we
can mine the metrics for every associated goal.
In Fig. 6 we found that 47% of the goals by value are in

the Do not proceed region, whereas only 26% of the goals

Table 7: Feasibility and adequacy metrics for
WeighCom leaf goals for the root goal ‘Maintain walk-on
scales normal operation’ together with proportional cost
and proportional values

Name Feasibility Adequacy PCost, % PValue, %

G1 1 0.63 0 12

G3 0.8 0.44 50 13

G4 1 0.72 0 12

G6 0.8 0.65 30 13

G8 0.8 0.9 0 29

G10 1 0.81 20 21

100 100

Fig. 4 Proportion of leaf goal costs (PCosts) for Feasibility
versus Adequacy

Fig. 5 Proportion of leaf goal values (PValues) for Feasibility
versus Adequacy

IET Softw., Vol. 2, No. 1, February 200852

Authorized licensed use limited to: University College London. Downloaded on May 26, 2009 at 09:06 from IEEE Xplore. Restrictions apply.

are in the Proceed region. Also, in Fig. 7 we found that 47%
of the expected cost is in the Do not proceed region,
whereas none of the cost is in the Proceed region. The
entries marked as 0% represent assumptions on the environ-
ment. They may have costs but they are not counted using
our technique.
Table 8 shows the leaf goals from the Do not proceed

region together with their proportional costs and pro-
portional values, and their Feasibility (F) and Adequacy
(A) metrics. Note that the goal numbers are simply used
as identifiers: they do not indicate the position of a goal
in the graph. Some of the goals in Table 8 violate simple
principles of good requirements statements, and it could
be argued that this should have raised concerns. However,
although detecting problems in this way is clearly com-
mendable, such a technique cannot be fully automated
and does not scale.
Table 9 shows the leaves from the Proceed region. None

of them are operationalised in the system as they are all
assumptions. The results show the high confidence in the
assumptions underpinning the project (Feasibility, F).
In the event all the goals in Table 9 were implemented

successfully but goal 61 became problematic following
implementation for various non-technical reasons.
Table 10 shows how our lightweight assessment tech-

nique for the root goals compares with their actual

outcomes. The ‘Threat’ ratio (n/m) indicates that out of
the m leaf goals that contribute to a higher-level goal, n
of them fall in the Do not proceed category. The ratio is
of interest because partial implementation of the goal
graph may be possible. The PValue is the proportional
value of these goals. The ‘Outcome’ column indicates
whether or not the goal was achieved at the end of the
project. The ‘Pain’ column indicates how difficult it was
to complete the goal (the need for extra investment, extra
management and so on indicates higher ‘pain’). The
colour coding shows whether our technique produced an
assessment that was correct, ‘Ok’ with a verbal explanation,
too pessimistic or open to question.
Goal 25 has goal 3 as its child. Our technique labelled

goal 3 as a proceed goal; in fact goal 25 was very effective
and saved a certain amount of staff effort when cleaning the
data. Goal 34 was highly threatened, mostly because of lack
of feasibility rather than its adequacy. Goal 38 was partially
compromised and partially sound. This was resolved but
required extra investment. Goal 84 was difficult to achieve
due to politics and was set aside pending a different solution.
This project had 52 goals; the development team was

small but served a large range of stakeholders. In this appli-
cation domain, we found that typically a project would have
between 30 and 100 goals. It is straightforward to provide
spreadsheet questionnaires for the assessment, and as the
calculations are automated and data entry can also easily
be automated, one way to approach the assessment would
be to provide automated steps through the refinement in
an inspection-like manner.
In conclusion, Figs. 6 and 7 show that the assessors had

low confidence in a dangerously high proportion of the
project (47% in both Figs. 6 and 7). This alone shows that
the project is at risk. Of course the analysis is subjective.
Nevertheless, the expert assessors agreed that the relative
positioning of the goals in the two graphs is reasonable.
Further, the assessors could change the subjective values
and perform what-if scenario testing to produce best,
worst and average case analyses. The project was initially
expected to last 6 months but was re-scheduled after 1
year, then sought re-budgeting and still required significant
re-planning on two further occasions. At the outset, the team
was optimistic about technical possibilities but feasibility
was always a concern. In fact the biggest risks arose from
the lack of realism concerning availability of staff and the
lack of support for some crucial assumptions in the mainten-
ance of the primary person and secondary person systems.
The goals ‘support for external persons’ (67) and ‘easing
workload’ (84) were uncertain from the start and were sub-
stantially jettisoned.
The nine goals in Table 10 represent 100% of the value

assigned to the project. From the table we can see that
80% of our assessment was good (shown by the regular
text, italic text and bold text) within which 43% (in
regular text) was very good. Unfortunately, the assessment
for goal 72 (the bold italic text) was questionable as the end
result was reported as being ‘painful’. On investigation of
the goal graph and expert judgement of feasibility, we con-
clude that the judgements were not themselves accurate.
They may have been affected by a lack of shared under-
standing of the system.
During our analysis, it became clear that a number of pro-

blems stemmed from a serious lack of shared understanding
between the stakeholders at the time of project sanction. If
our technique been used it is very likely that the project
would not have started until greater confidence in the
requirements had been achieved and that this would have
brought about better shared understanding.

Fig. 7 Proportion of leaf goal costs (PCosts) for Feasibility
versus Adequacy

Fig. 6 Proportion of leaf goal values (PValues) for Feasibility
versus Adequacy

IET Softw., Vol. 2, No. 1, February 2008 53

Authorized licensed use limited to: University College London. Downloaded on May 26, 2009 at 09:06 from IEEE Xplore. Restrictions apply.

6 Future work

Our technique depends on goal analysis. When a project is
founded on a goal analysis, our technique is straightforward
and natural to use. However, in the real world of software
development the situation is usually more complex.
Urgency may tempt developers to use only ad hoc
methods of requirements analysis and project planning. In
such cases, as mentioned earlier, a best effort graph, with
an approximate sketch of the currently known requirements,
needs to be created. As this will require extra resources, it is
crucial that this graph can be created economically and
quickly in order that the momentum of the project is not
lost.
This principle is being put to the test in a large venture

capital project which is under development using agile pro-
cesses. The Scrum process [13] was adopted in this project
following 2 years of traditional process modelling. As the
system was under development, it was uneconomical to
perform a retrospective goal analysis of the work done to
date. Instead, a goal graph was constructed in step with
each short development phase, or sprint. Thus over time a
comprehensive graph emerges and (more importantly) a
goal graph becomes available for each sprint. These rela-
tively small goal graphs are then used when evaluating con-
fidence about the risk of failure of the sprint. The goal

analysis creates requirements for the specific sprint,
whereas the work of previous sprints becomes a part of
the environment.
We are also applying the technique to a venture capital

supported project to develop a product that will solve pro-
blems of storing huge amounts of data. This had seen
circa 20 person years of development activity and was
based on IPR originally developed in government labora-
tories but had not led to a product. Early in 2006, a decision
was taken to develop the product using the Scrum method-
ology. This allowed a build up of concrete functionality by
evolving the required functionality through a series of
sprints. We are in the early stages of applying our technique
to this project, whereby the value, adequacy and feasibility
of each sprint are to be assessed as part of the gateway to the
sprint backlog prior to starting the sprint.
This application to real industrial Scrum cycles has bene-

fited not only the risk evaluation, but has also been of con-
siderable assistance to the test team in preparing sprint
acceptance tests as it facilitates development of test cases
for each requirement at requirements time. The goal analy-
sis technique is surprisingly agile when used in this manner.
A more mainstream development process which we believe
our work will match well is the spiral development method-
ology [14] as it hinges on identifying risks and dealing with
them early on.

Table 8: Leaves from the Do not proceed quadrant

Goal Name PValue, % PCost, % Feasibility Adequacy

63 visiting staff and contractors are not allocated a

UPI and are thus excluded

0.4 0.0 0.00 0.16

67 allow external persons access (details TBD) 10.8 8.9 0.00 0.40

77 access to each SS services is gated to identify the

appropriate UPI which is then maintained

throughout the ensuing session

2.1 4.4 0.20 0.40

81 for each non-connecting SS, the most recent

UPI-status pairs are persisted for reference

4.7 4.4 0.30 0.48

90 user initiated extraction of data from PPSs in

form suitable for use in producing College

directory service

1.7 4.4 0.30 0.36

92 a user initiated mechanism providing college

directory, ‘all staff’ and telephone directory

information from PPSs

1.7 2.2 0.50 0.36

94 office process improvements 3.5 0.0 0.50 0.28

101 real-time API returning status for any submitted

UPI

4.7 4.4 0.40 0.48

102 each connecting SS is supported to use real-time

status API

4.7 4.4 0.20 0.40

103 a scheduled batch-mode service provides

updates of all known UPI status to each

non-connecting SS

2.3 4.4 0.50 0.48

104 every non-connecting SS cooperates with the

batch-mode service

2.3 4.4 0.30 0.48

122 data extracted from SSs and PPSs for

person-centric reports are accurate

3.5 4.4 0.20 0.36

123 the PPs and SSs support the necessary querying

based on UPI to satisfy statutory obligations

on personal data access

3.1 0.0 0.50 0.50

128 each SS acts on the UPI-linked status to provide

the right degree of service to the individual

2.1 2.2 0.30 0.56

IET Softw., Vol. 2, No. 1, February 200854

Authorized licensed use limited to: University College London. Downloaded on May 26, 2009 at 09:06 from IEEE Xplore. Restrictions apply.

This partitioning of an existing system into environment
assumptions and new software with each sprint is akin to
developing in iterations and increments as often happens
when working with legacy systems. Our industrial experi-
ence shows that this situation is increasingly prevalent;
indeed, the Scrum method in general is becoming increas-
ingly popular with companies wishing to adopt an ‘agile’
approach. Thus, following our initial experiences of apply-
ing our technique to agile projects we are encouraged to
apply the technique to legacy systems as well as to new
developments.
As mentioned earlier, our approach assumes that the

requirements can be expressed in such a way that all leaf
goals are independent. It also assumes that the requirements
can be represented in a hierarchical decomposition. This

assumption is somewhat restrictive and it potentially inhi-
bits the treatment of some cross-cutting requirements such
as performance and security [15–17]. In order to address
such concerns and provide a generalised solution, we are
investigating the use of problem frames [18, 19] to structure
and encapsulate subsystems and so provide interfaces that
facilitate a formal decomposition and re-composition of
subsystems.
The use of commercial off-the-shelf (COTS) components

would clearly impact the project costings. In this case, the
metrics could be used to aid decision-making when compar-
ing different system’s architectures. We intend to validate
our technique through a number of case studies. Clearly
the technique may be most applicable to particular appli-
cation domains that are amenable to subjective analysis,

Table 9: Leaves from the proceed region

Goal Name PValue, % PCost, % Feasibility Adequacy

3 maintain comprehensive technical and user

documentation

9.4 0.0 0.80 0.70

4 re-engineering of the UPI will enable future

modification at low cost

9.4 0.0 0.60 0.70

61 the status and data about staff is correctly

maintained on the HR system

0.4 0.0 0.80 0.72

62 the status and data about students is correctly

maintained on the REG system

0.4 0.0 0.80 0.72

82 staff operating the primary systems maintain

current status for all UPI’s pertinent to each

primary system

1.6 0.0 0.70 0.80

86 only the PPSs hold personal data to be matched

to a UPI

2.0 0.0 0.60 0.80

124 the existence of the UPI allows adequate facility

to querying across PPSs and SSS

3.1 0.0 0.70 1.00

Table 10: Assessments against outcomes for root goals

Goal Description Threat PValue, % Outcome Pain

20 every UPI is maintained with a current status low (2/7) 6 full low

74 every eligible individual is assigned a UPI none (0/8) 6 full low

56 every individual’s access rights to any secondary

system is based on their UPI-linked status

high (7/7) 6 partial medium

25 to enhance maintainability compared to the

original UPI which depends upon vulnerable

knowledge

none (0/2) 19 full low

31 optimally determine external person’s eligibility

to use College facilities

high (1/1) 10 removed low

34 operate in a ‘real-time’ as opposed to ‘batch’

mode

high (5/5) 17 partial medium

38 to comply with statutory obligations on personal

data

medium (1/2) 6 partial low

72 to improve the efficiency of daily UPI matching

compared with the original UPI

none (0/2) 19 full high

84 to ease the workload of College staff high (4/4) 10 uncertain high

Key: (n/m): n leaves of m belonging to the goal are in the Do not proceed zone
Regular text: Assessment Correct
Italic text: Assessment Ok
Bold text: Assessment Pessimistic
Bold italic text: Assessment Questionable

IET Softw., Vol. 2, No. 1, February 2008 55

Authorized licensed use limited to: University College London. Downloaded on May 26, 2009 at 09:06 from IEEE Xplore. Restrictions apply.

and our future work will investigate the applicability of the
technique and the composition of subsystems with nonfunc-
tional requirements further.

7 Related work

A process and tool called DDP (defect detection and pre-
vention) have been developed at JPL to facilitate risk man-
agement over the entire project life cycle [20]. DDP is
intended for use in the aerospace industry. It uses a
large set of risk elements, weighted requirements, pre-set
formulae and information from experts. It is similar to
our technique, but the process uses trees of requirements
(rather than goal graphs), and trees showing why these
requirements may not be achieved. The user can then
select preventive measures, analyses, process controls
and tests in order to minimise the residual risk. The
process begins at the architecture stage, whereas our tech-
nique is intended for use during requirements analysis.
There is software tool support for the DDP process,
which weights risk elements by their impact on weighted
requirements. The weights are obtained from the mission
success criteria. The DDP process uses a large number
of metrics and pre-determined industry-specific knowl-
edge. This contrasts with our technique, which we have
deliberately tried to keep as simple and lightweight as
possible.
Karlsson et al. [10] evaluated six different methods to

prioritise software requirements experimentally. The six
methods ranged from the analytic hierarchy process
(AHP), through binary search trees to priority groups and
found AHP to be the most promising approach. An over-
view of requirements prioritisation [7] explains and cri-
tiques a range of methods (and their combination) for
prioritisation of factors such as importance, cost, risk, vola-
tility and so on. An example is given which uses stake-
holders’ opinions to rank the importance of a set of
requirements. This work on prioritisation does not
examine how the risk assessment is arrived at. In contrast,
our work defines requirements risk for individual require-
ments more precisely and provides a method that integrates
with KAOS.
The use of expert opinion in software development, in

general, is not a new idea: Freimut et al. [21] give a
thorough account to justify its use during evaluation of
the cost-effectiveness of inspections. They suggest that
expert opinion may be needed if information regarding a
phenomenon cannot be collected by any other affordable
means or if information is not being collected within the
timeframe that it is needed. They point out that expert
data is subject to bias, uncertainty and incompleteness but
say that these problems can be prevented and controlled
by means of carefully performed elicitation of expert
estimates.
Ruhe et al. [22] have presented an approach to decision

support in requirements negotiation called ‘Quantitative
WinWin’, which incorporates quantitative methods with
Boehm’s original WinWin approach. The approach uses
AHP for a stepwise determination of the stakeholders’ pre-
ferences in quantitative terms. These results are combined
with methods for early effort estimation to evaluate the
feasibility of alternative requirements subsets in terms of
their related implementation effort. This work is particularly
concerned with finding those subsets of requirements that
can be implemented without exceeding a given maximum
effort, whereas our work is concerned with assessing the
potential for error in systems development.

8 Conclusions

In this paper, we have presented an easy-to-use technique
for assessing risk in requirements analysis using goal
graphs and judgements supplied by either stakeholders or
experts. Using this technique, potentially risky projects
can be detected at an early stage so that decisions can be
taken about different courses of action.
This research is the first report of a risk assessment tech-

nique using high-level subjective metrics collected during
requirements analysis using goal graphs. Note that the tech-
nique can be used with assessments provided either by sta-
keholders or by experts. It will thus provide a meta-level
risk assessment that could be very valuable to project man-
agers and senior managers. We have shown how the infor-
mation can be combined with data concerning the value and
cost of goals. The technique has been empirically tested
using a number of projects, the results from one of which
has been described in detail. These tests have shown that
we can indeed discover the parts of a project that are
most likely to lead to problems using this technique. Our
experience suggests that the technique is entirely sympath-
etic with the real-world needs of industrial software devel-
opment. We have also partially automated this technique by
implementing a lightweight tool called KAOS Lite for goal
sketching and automated data collection.

9 Acknowledgments

We thank the collaborators for providing project data, par-
ticularly Kathryn Lewis of MSD, and the anonymous refer-
ees who reviewed this paper and provided very helpful
comments. We would also like to thank Claes Wohlin and
Barbara Kitchenham for their input to early versions of
this paper.

10 References

1 Boehm, B.W.: ‘Software risk management: principles and practices’,
IEEE Software, 1991, 8, (1), pp. 32–41

2 Pinheiro, F.A.C.: ‘Requirements honesty’. Int. Workshop on
Time-Constrained Requirements Engineering (TCRE002)’Germany,
September 2002

3 van Lamsweerde, A., Dardenne, A., Delcourt, B., and Dubisy, F.: ‘The
KAOS Project: knowledge acquisition in automated specification of
software’. Proc. AAAI Spring Symp. Series, March 1991, (Stanford
University, AAAI), pp. 59–62

4 Keil, M., Cule, P.E., Lyytinen, K., and Schmidt, R.C.: ‘A framework
for identifying software project risks’, Commun. ACM, 1998, 41, (11),
pp. 76–83

5 Wallace, L., and Keil, M.: ‘Software project risks and their effect on
outcomes’, Commun. ACM, 2004, 47, (4), pp. 68–73

6 Wallace, L., Keil, M., and Rai, A.: ‘How software project risk affects
project performance: an investigation of the dimensions of risk and an
exploratory model’, Decision Sci., 2004, 35, (2), pp. 289–321

7 Bernader, P., and Andrews, A.: ‘Requirements prioritization’ in
Aurum, A., and Wohlin, C. (Eds.): ‘Engineering and managing
software requirements’ (Springer, 2006), pp. 69–94

8 IEEE Std. 1233-1996, IEEE guide for developing system requirements
specifications’, IEEE, June 1996

9 Karlsson, J., and Ryan, K.: ‘A cost-value approach for prioritizing
requirements’, IEEE Software, 1997, 14, (5), pp. 67–74

10 Karlsson, J., Wohlin, C., and Regnell, B.: ‘An evaluation of methods
for prioritizing software requirements’, J. Information Software
Technol., 1998, 39, (14–15), pp. 939–947

11 Dardenne, A., Fickas, S., and van Lamsweerde, A.: ‘Goal-directed
concept acquisition in requirements elicitation’. Proc. 6th EEE
Workshop System Specification and Design, Como, Italy, 1991,
pp. 14–21

12 Darimont, R.: ‘Requirements engineering with objectiver: from goal
analysis to automatically derived requirements documents. RE’03
Exhibitors’ Track Int. Conf. Requirements Engineering (RE03),
IEEE Computer Society Press, Los Alamitos, CA, 2003

IET Softw., Vol. 2, No. 1, February 200856

Authorized licensed use limited to: University College London. Downloaded on May 26, 2009 at 09:06 from IEEE Xplore. Restrictions apply.

13 Rising, L., and Janoff, N.: ‘The scrum software development process
for small teams’, IEEE Software, 2000, 17, (4), pp. 26–32

14 Boehm, B.W.: ‘A spiral model of software development and
enhancement’, Computer, 1988, 21, (5), pp. 61–72

15 Baniassad, E., Clements, P.C., Araújo, J., Moreira, A., Rashid, A., and
Tekinerdogan, B.: ‘Discovering early aspects’, IEEE Software, 2006,
23, (1), pp. 61–70

16 Mylopoulos, J., Chung, L., and Nixon, B.: ‘Representing and using
nonfunctional requirements: a process oriented approach’, IEEE
Trans. Software Eng., 1992, 18, (6), pp. 483–497

17 Rashid, A., Sawyer, P., Moreira, A., and Araujo, J.: ‘Early aspects: a
model for aspect-oriented requirements engineering’. Requirements
Engineering 2002 (RE002), Germany, 2002, pp. 199–202

18 Hall, J.G., Jackson, M., Laney, R.C., Nuseibeh, B., and Rapanotti, L.:
‘Relating software requirements and architectures using problem

frames’. Tenth Int. IEEE Conf. Requirements Engineering, Los
Alamitos, CA, 2002, (IEEE Computer Society Press), pp. 137–144

19 Jackson, M.: ‘Problem frames: analysing and structuring software
development problems’ (Addison Wesley, 2000)

20 Cornford, S.L., Feather, M.S., and Hicks, K.A.: ‘DDP – a tool for
life-cycle risk management’. Proc. IEEE Aerospace Conf., Big Sky,
Montana, 2001, pp. 441–451

21 Freimut, B., Briand, L.C., and Vollei, F.: ‘Determining
inspection cost-effectiveness by combining project data and
expert opinion’, IEEE Trans. Software Eng., 2005, 31, (12), pp
1074–1092

22 Ruhe, G., Eberlein, A., and Pfahl, D.: ‘Quantitative WinWin: a new
method for decision support in requirements negotiation’. Proc. 14th
Int. Conf. Software Engineering and Knowledge Engineering
(SEKE002), Ischia, Italy, July 2002, pp. 159–166

IET Softw., Vol. 2, No. 1, February 2008 57

Authorized licensed use limited to: University College London. Downloaded on May 26, 2009 at 09:06 from IEEE Xplore. Restrictions apply.

