
A Viewpoint-based Framework for Software Development Environments1

Anthony Finkelstein, Jeff Kramer & Bashar Nuseibeh2

Abstract

This paper outlines a framework for “CASE tool” development and integration which supports distribution.

Motivation

The development of most large and complex systems necessarily involves many people - each with their
own perspective on the system defined by their skills, responsibilities, knowledge and expertise. This is
particularly true where the system is a composite system, that is one which deploys a variety of different
technologies (software, hardware, mechanical and so on). Inevitably, the different perspectives of those
involved in the process intersect and overlap, giving rise to a requirement for coordination. The
intersections are, however, far from obvious because the knowledge within each perspective is represented
in different ways. Further because development may be carried out concurrently by those involved,
different perspectives may be at different stages of elaboration and may each be subject to different
development strategies.

The problem of how to guide and organise development in this setting - many actors, sundry
representation schemes, diverse domain knowledge, differing development strategies - we term “the
multiple perspectives problem”.

Tool integration, the central problem in software development environments, can be viewed as a special
case of the general multiple perspectives problem. Support for managing, ensuring consistency and
transferring information between many tools with different roles, maintaining different models and
which are used to support concurrent and distributed work depends on support for structuring and
organising multiple perspectives.

Viewpoint Framework

We have developed a framework which supports the use of multiple perspectives in software development.
The primary building blocks of this framework are “viewpoints”.

A viewpoint can be thought of as a combination of the idea of a “actor”, “knowledge source”, “role” or
“agent” in the development process and the idea of a “view” or “perspective” which an actor maintains. In
software terms it is a loosely coupled, locally managed object which encapsulates partial knowledge about
the system and domain, specified in a particular, suitable representation scheme, and partial knowledge of
the process of development.

Each viewpoint is composed of the following components, which we call slots:

a representation style, the scheme and notation by which the viewpoint expresses what it can see;

a domain, which defines that part of the “world” delineated in the style;

a specification, the statements expressed in the viewpoint's style describing particular domains;

a work plan, describing the process by which the specification can be built;

a work record, an account of the history and current state of the development.

- 1 -

1 Presented at IEE Colloquium on “Architectures for Distributed Development Support Environments”, 4th November 1991, Savoy
Place, London, Digest Number: 1991/162.
2 Department of Computing, Imperial College, 180 Queen’s Gate, London, SW7 2BZ, Email: {acwf, jk, ban}@doc.ic.ac.uk.

A number of viewpoints may employ the same style and the same work plan to produce different
specifications for different domains. We therefore define a reusable viewpoint template in which only the
style and work plan slots are elaborated. A single viewpoint template may be instantiated to yield several
different viewpoints, and by extension several specifications. A method in this context is a configuration
of viewpoint templates.

Integration is achieved by checks maintained locally within each viewpoint and enforced, where it is
required, by the work plan. These checks define partial consistency relations between the different
representation styles. Consistency is checked incrementally between viewpoints at particular stages rather
than being enforced as a matter of course. The checks may be used to determine whether viewpoints are
consistent with each other and as transformations to move information between viewpoints. A full account
of the framework is given in Finkelstein, Kramer & Goedicke 1990.

Implications

Unlike existing frameworks for tool integration based on repositories, in which all tools access a common
object base, and selective broadcast mechanisms, in which updates are selectively broadcast to tools
registered with the message server, the viewpoint framework is loosely coupled and fully distributable.
Experience suggests that centralised environment architectures based on existing frameworks are
difficult to change and are not readily scaleable. Further, such centralised architectures suffer from
inherent performance bottlenecks.

Conventionally representation schemes, specifications and process models are artificially separated. The
viewpoint framework packages them together in a way which more accurately reflects the organisation of
software development.

Status

The framework offers two areas for automated support. On one hand, tools are required to facilitate method
development, description and integration. On the other hand, tools are also required to support method use
within the viewpoint framework. This includes tool support for individual viewpoint development and the
construction of specifications, obtaining method guidance and dynamically creating viewpoints as
development proceeds. Further support is required for management and navigation across viewpoints.

The √iewer is a prototype environment supporting the framework. Implemented in Objectworks/Smalltalk
V4.0, it supports method development and integration, facilitates the construction of individual viewpoint
tool support, and allows the smooth transition to, and manipulation and management of, viewpoints
during method use.

The √iewer has been used to provide support for substantial fragments of some existing software
development methods. These include CORE (Mullery 1985) and the Constructive Design Approach
(Kramer, Magee & Finkelstein 1990). Further work on methods based on complex formal representation
schemes is continuing. We are currently investigating notations which can be used to define viewpoint
templates and are investigating distribution of the √iewer within the REX environment (Kramer 1990).

References

Finkelstein A. Kramer J. & Goedicke M. (1990); “ViewPoint Oriented Software Development”; Proc. of 3rd
International Workshop Software Engineering & its Applications; Cigref EC2 V1, pp337-351.

Kramer, J. (1990); “Configuration Programming - A Framework for the Development of Distributable
Systems”; Proc. of IEEE Int. Conf. on Computer Systems and Software Engineering (CompEuro 90), Tel-
Aviv, Israel, May 1990, pp374-384.

Kramer, J. Magee, J. & Finkelstein, A. (1990); “A Constructive Approach to the Design of Distributed
Systems”, Proc. 10th IEEE Int. Conf on Distributed Computing Systems, Paris, June 1990.

Mullery, G. (1985); “Acquisition - Environment”; (In) Paul, M. & Siegert, H. “Distributed Systems:
Methods and Tools for Specification”; Springer Verlag LNCS 190.

- 2 -

