
Decentralised Process Enactment

in a Multi-Perspective Development Environment

Ulf Leonhardt Je� Kramer Bashar Nuseibeh

Dept. of Computing, Imperial College, 180 Queen's Gate, London SW7 2BZ, UK

ful, jk, bang@doc.ic.ac.uk

Anthony Finkelstein

Dept. of Computer Science, City University, Northampton Square, London EC1V 0HB, UK

acwf@cs.city.ac.uk

ABSTRACT

The ViewPoints framework for distributed and concur-

rent software engineering provides an alternative ap-

proach to traditional centralised software development

environments. We investigate the use of decentralised

process models to drive consistency checking and con-

ict resolution in this framework. Our process models

use pattern matching on local development histories to

determine the particular situation (state) of the devel-

opment process, and employ rules to trigger situation-

dependent assistance to the user. We describe how com-

munication between such process models facilitates the

decentralised management of explicitly de�ned consis-

tency constraints in the ViewPoints framework.

1 Introduction

Software engineering processes usually involve the par-

ticipation of a number of people. The more people are

involved, the more important becomes the collabora-

tion and communication between the individuals. The

di�erent participants will have di�erent views on and

assumptions about the problem domain. This necessi-

tates organised interaction including conict detection

and resolution.

In most systems, these centralised control mecha-

nisms are used to check and enforce consistency when-

ever possible. It has been recognised that such an eager

approach does not adequately reect the needs of con-

current and distributed software engineering processes

[3].

An alternative is the decentralisation of data storage

and consistency control. As a consequence, conict de-

tection and resolution have to be made based on inter-

0

action and local, and thus partial, knowledge about the

system. The `eager' approach to conict detection and

resolution discussed above is not viable as the complex-

ity introduced by the distribution of control makes it too

expensive. Tolerating inconsistencies is often desirable

in order to avoid unnecessary restrictions on the devel-

opment process [15]. Consequently, the focus is shifted

from avoidance to management of inconsistencies.

By addressing this issue explicitly (for example [22]),

we can devise and support more sophisticated models

of cooperation and communication among the members

of the development team (see also [8]). A `lazy' ap-

proach to consistency detection and enforcement can

be taken: synchronise whenever necessary. However,

inconsistency management is a complex task. Local

agents have to decide what checks to invoke, when to

invoke them, and how to keep track of the results. Pro-

cess support therefore becomes even more crucial.

In this paper we show how �ne-grained, decentralised

process models can be used to drive conict detection

and resolution. These models are used to guide the

developer rather than automate the development pro-

cess. We describe how the process models initiate and

monitor consistency checks in order to gain knowledge

about the system under development. These consis-

tency checks are the prime means of coordination for

the development of such a system. As a framework

for this work we use the ViewPoints approach which

has been described in earlier papers [10, 16, 20, 22, 23].

This paper details the process modelling aspects of the

framework which are not covered in our earlier publica-

tions.

We start our discussion with a brief account of the

ViewPoints framework (section 2), followed by a \moti-

vating example" (section 3). Then we describe our pro-

cess modelling approach (section 4) and its application

to decentralised inconsistency management (section 5).

In a scenario walk-through at the end of this paper (sec-

tion 6) we outline how our models of a concurrent soft-

ware engineering process can guide the human agents

involved in such a process.

Page 1

2 ViewPoints

ViewPoints are the building blocks of our framework

for supporting distributed software engineering. Each

ViewPoint contains an artefact of the development pro-

cess (for example, a partial speci�cation) together with

a thread of development activities concerning this arte-

fact. These are locally managed, and can be charac-

terised as a collection of loosely coupled objects that

encapsulate partial knowledge.

A ViewPoint contains knowledge about the notation,

tools and strategies it supports|`method knowledge';

and the results of the application of that knowledge|

`speci�cation knowledge'. A ViewPoint is structured

into the following `slots':

Style contains the representation scheme in which the

partial speci�cation contained in a ViewPoint is

represented.

Work Plan contains a process model specifying what

the ViewPoint user can do and how the user should

do it.

Domain speci�es the part of the modelled system de-

scribed by the ViewPoint.

Speci�cation contains the result of the method user's

activities, i.e. the partial speci�cation.

Work Record stores current status, history and ratio-

nale of the ViewPoint's development process. It

contains a trace of all the actions in the ViewPoint's

development history.

We use partially instantiated ViewPoints, ViewPoint

templates, to specify method knowledge in a reusable

way. Thus speci�c development methods can be imple-

mented as a collection of ViewPoint templates.

2.1 Implementation

We have developed a prototype implementation of au-

tomated support for the framework called The Viewer

[20], which has been extended following collaboration

with Hewlett-Packard and Siemens [2, 11, 12]. The

Viewer supports both method design and method use

and is therefore both CASE and MetaCASE tool. Tem-

plate sets supporting methods for requirements engi-

neering and distributed systems design have been im-

plemented [24, 17].

3 A Scenario

Our scenario is structured into �ve steps which, we be-

lieve, highlight some of the important issues in concur-

rent software engineering (see also [7]).

We use data ow diagrams as an example notation. In

such a diagram, a node in a graph may be decomposed

in a separate diagram. For such a diagram hierarchy we

wish to ensure that decomposition diagrams exist for

composite nodes (constraint 1), and that the contextual

data ows are the same for nodes and their respective

decomposition diagrams (constraint 2). Constraint 1

speci�es syntactic completeness, constraints 2 speci�es

a notion of agreement. These constraints on data ow

diagrams form the basis of the consistency checks (for

a formal speci�cation see [18]). Here, we will ignore

in-ViewPoint constraints and checks.

Composite nodes are shaded grey, primitive nodes are

white. We adopt the convention that the domain of each

ViewPoint denotes the node of the parent diagram of

which it is a decomposition. Only if the domain of the

ViewPoint is labelled top, a parent node does not exist.

In this case, the ViewPoint contains the root node of the

data ow diagram hierarchy. The Work Record of the

ViewPoint lists the last seven events in the development

history of the ViewPoint (the full history is stored).

A (owner=Anne; domain=top)

Work Record

d4

d1
d3

d2

X Y

Specification

01 <A> add-node

02 <A> add-node

04 <F> add-link

05 <F> add-link

06 <F> add-link

07 <D> make-node-composite

03 <F> add-link

Figure 1: A ViewPoint with a simple data ow dia-

gram in its Speci�cation slot, and a development his-

tory listed in its Work Record. ViewPoint A contains

the non-primitive node Y for which no corresponding

decomposition ViewPoint exists (step 1).

Step 1 The owner of ViewPoint A, Anne, has devel-

oped a top-level data ow model of the system. She has

agged node Y for further decomposition, thus violat-

ing global constraint 1 (Figure 1). Subsequently, Anne

assigns the responsibility to decompose Y to Bob.

Step 2 Bob creates a new ViewPoint B the domain of

which indicates that it is a decomposition of Y. As the

new ViewPoint initially contains an empty speci�cation.

Global constraint 2 is not satis�ed (Figure 4).

Step 3 Bob continues developing ViewPoint B by cre-

ating a data ow diagram that decomposes Y. When he

has �nished both ViewPoints satisfy all local and global

constraints (Figure 5).

Step 4 Now, Anne and Bob concurrently develop

their ViewPoints as their understanding of the target

Page 2

system increases. Anne adds an output to Y (d7). Bob

does the same but uses a di�erent label (d6). He also

adds another output (d9) and renames a third (d4-d8).

The result again violates global constraint 2.

Step 5 While decomposing X Anne realises that its

interaction with Y is muchmore complex than expected.

Anticipating the need to restructure ViewPoint A Anne

merges the decompositions of X and Y deleting both.

Consequently, constraint 1 no longer holds, because the

result of the merge is neither a decomposition of X nor

Y.

In each of the above steps constraints are temporar-

ily violated. Therefore, there is a need to tolerate such

constraint violations in a concurrent development pro-

cess. In this context, constraints can only be checked

and enforced at certain points. Hence consistency must

be established by organising the application of the dif-

ferent checks and monitoring their result. As steps 4

and 5 show, this consistency management may be di�-

cult, even in a such a simpli�ed example. Consequently,

guidance to users regarding the invocation of consis-

tency checks is necessary. Such guidance must also be

tailored to the development method used. In step 4,

for example, more frequent checking may be required in

order to avoid the accumulation of inconsistencies.

The results of previous consistency checks and all lo-

cal development activities are stored in individual Work

Record slots (see Figure 5, for example). Clearly, this

knowledge must be taken into account when deciding

when to invoke particular consistency checks.

In the following sections we describe a process mod-

elling approach that addresses these issues. In section 6

we then apply this framework to the scenario presented

above.

4 Decentralised Process Modelling

In line with the ViewPoints approach, the process mod-

elling framework must support multiple, loosely coupled

process models. At run-time there will be no explicit

representation of the global process. However, it may

be necessary for the method designer to \derive" the

local process models from a global model, or to verify

certain properties by integrating all local models into a

global one.

In this section, we introduce techniques for �ne-

grained, local process modelling [21] in order to address

some of the issues outlined above. We then discuss, how

cooperation between process models and other global

objectives may be achieved in this context.

4.1 Fine-grained local process models

We believe that enactable, �ne-grained process models

need to address the following issues:

� Identifying the current state of the process.

� Deciding what course of action is appropriate|

taking into account the state of the process.

� Enacting the decisions made in the process.

The following sections describe our approach to solving

these problems.

4.1.1 Process state

We use regular expressions as a concise and easy{

to{handle notation to represent �nite state machines.

Thus, we can make use of a variety of e�cient and pow-

erful tools for regular expression handling that are read-

ily available in many programming environments.

Regular grammars de�ne the notion of well-formed

input words over some language. For each regular gram-

mar a �nite state machine can be constructed that

decides whether a given sequence of input characters

(word) is well-formed. Thus a regular expression de-

�nes an acceptor automaton.

This principle can be applied to ViewPoints by using

the sequence of actions and events stored in the Work

Record as input words for such acceptor automata. Es-

sentially, this amounts to regular expression matching

over the development history of a ViewPoint. This pro-

cess can also be viewed as looking for known patterns

of activity in the past of a ViewPoint. The value of

an observer predicate associated with a grammar will

therefore indicate whether or not the pattern of activ-

ity de�ned by the grammar has been be recognised.

4.1.2 Making decisions

The observer predicates and functions1 de�ne a discrete

and �nite set of states for the process.

In this setting, we call the mapping of the current

state into a course of action a decision2. Typically, a

speci�c course of action will be appropriate not only for

one state but for a set of similar states. We call such a

set of states a situation. Situations can be de�ned by

logical propositions built from the observer predicates

and functions described above.

To express \decision knowledge" in our process mod-

elling framework, we use rules of the general form

<situation><response>

The situation forms the pre-condition of the rule. That

means, the rule �res whenever the current state matches

the situation described. Response speci�es what course

of action should be taken as result of the decision made.

1certain auxiliary functions, for example dfd count nodes()

2The terms decision and situation are a variation of the NA-

TURE process meta-model terminology [14], although de�ned in

a di�erent framework.

Page 3

An extension to these rules would be the addition of

post-conditions in the MARVEL-style [4] to support

planning activities.

4.1.3 Enaction

We distinguish three di�erent types of such responses

in decision rules:

� Informal Guidance. Here, we assist the user by dis-

playing help texts, video clips, etc. Typically, such

assistance would be given in complex and di�cult

situations.

� Precise Recommendations. Speci�c actions are rec-

ommended to the user. In this case, the user is

asked to select an action from a limited number

of choices. Usually, this applies to well-structured

decision problems.

� Automatic Execution of actions. This should only

occur if the correctness of the decision is reasonably

certain and acceptable to the user.

4.1.4 Local architecture

Figure 2 shows how local process models for ViewPoints

are structured, and how they interact with other compo-

nents of the ViewPoint. We use the event trace from the

work record (shown in abbreviated form as a sequence of

tokens) to feed the acceptor automata de�ned by regu-

lar expressions. These, together with the other observer

predicates, are matched against the preconditions of the

decision rules. If a rule �res, the reaction is enacted on

the process.

4.1.5 Notation

Our process models consist of tests (that is, acceptor au-

tomata de�ned by regular expressions), and rules (map-

ping situations into reactions).

Here, you see the de�nition of a simple test:

TA: .*D[^R]*$ not-successfully-

checked-since-D

A test has a short and a long name which enclose a

regular expression3. In this example, it matches if a

D-event but no subsequent R-event can be found in the

local Work Record of the ViewPoint. D and R are ab-

breviations for actions or communication events which

are de�ned in the Work Plan.

Rules map a situation into a response to the environ-

ment.

3We assume familiarity with the basic constructs of regular

expressions as used by Lex [5].

Rule: R1

Situation: TA ^ :TB ^ :TC
Response: recommend:

child-exist-check

The pre-condition, named situation, is a logical propo-

sition using tests de�ned in the process model. Addi-

tionally, method speci�c predicates may also be avail-

able in individual templates. The response part of the

rule describes what should be done when the rule �res.

The commands display, recommend, and execute are

available to describe such responses.

4.2 Communication between process models

We believe that an implementation of the ViewPoints

framework can be built on top of a communication

system that supports asynchronous message-passing.

Therefore we used message-passing between View-

Points as the basic communication mechanism in the

framework4.

From the perspective of the communicating process

models, a message passing transaction consists of two

phases:

1. The source ViewPoint executes an action that

sends a message to the destination ViewPoint. The

action is appended to the Work Record of the

source ViewPoint.

2. Upon receipt, an incoming message is automati-

cally appended to the Work Record of the destina-

tion ViewPoint.

We can also use this basic message-passing scheme

to build other, more sophisticated communication and

cooperation protocols (two-phase locking, for example).

In section 5.2 we describe a protocol for two-party con-

sistency checking using message-passing between View-

Points.

5 Managing Consistency

In this section we describe the application of our process

modelling framework to consistency management. Our

intention to \automate" consistency management neces-

sitates a formal speci�cation of the constraints we want

to impose on the system. Such constraints may apply

only locally|`in-ViewPoint' constraints| or globally|

`inter-ViewPoint' constraints. Inter-ViewPoint con-

straints form the basis of coordination between di�erent

ViewPoints.

In our framework, consistency checking is decen-

tralised, that is, each ViewPoint checks with the View-

Point it considers relevant.

4We assume some underlying reliable point-to-point commu-

nication medium.

Page 4

e | f

recommend: "X should be done"

execute: Y

Situation

C

B

A

queried
information

a & ~b

Reaction

Decision RulesObservers

numberOfNodes

numberOfArcs

h

i

j

GV[^A]*$

RV[^AB]$

ABC.*$a

b

c

getTime

"stateless" functions/predicates

Process ModelWork Record

event trace
regular expressions

Process Instance

modification of
process instance

actions and
events

Figure 2: Local architecture

We use local and global consistency constraint to de-

�ne a desirable state of the decentralised development

process. In this sense, we specify a goal for the guidance

and assistance that is provided by the process models.

In the remainder of this section, we discuss how local

and global consistency constraints can be managed.

5.1 Local consistency management

Achieving consistency of the local partial speci�cation

contained in some ViewPoint is a necessary subtask of

global consistency management. Here, the purpose of

the process model is to guide the invocation of local

actions and consistency checks.

The local process model sees consistency checks like

any other action performed by the ViewPoint. The re-

sult of a check is posted to the work record and therefore

visible to the process model.

The consistency checks available will vary consider-

ably from template to template. It is the method de-

signer's task to implement speci�c process models to-

gether with the consistency checks required for the dif-

ferent templates.

The consistency checks should be `�ne-grained' be-

cause only then the process model can give �ne-grained

guidance (see also [21]). It is desirable to decompose

more complex constraints into independent parts that

can be checked separately. Once the checks have been

identi�ed, they are integrated into the process model

together with the other Work Plan actions.

5.2 Global consistency management

In our framework, global consistency management initi-

ates and monitors two-party consistency checks between

ViewPoints. Therefore, we now present a process model

driven enaction of two-party consistency checking.

The protocol is based on message passing between

ViewPoints as introduced in section 4.2. It assumes that

the set of instantiated ViewPoints is constant, that is, a

�xed con�guration of ViewPoints. We then show how,

by self-modi�cation of process models, the general case

of varying con�gurations is addressed.

Execute
request action

S

check action

to work record
Append result

to work record
Append accept message

Execute

Append request message

Execute

Append result message

VP

to work record

to work record

acceptance+

representation data

VPD

accept action

request for cooperation

result of the check

Figure 3: Protocol for two-party checks

Fixed con�gurations of ViewPoints Given that

the set of ViewPoints is �xed and all ViewPoints know

this, cooperation can be hard-coded into the local �nite-

state machine process models. A two-party consistency

check is carried out by the protocol shown in Figure 3.

The actual computation of the check involving the par-

tial speci�cations contained in both ViewPoints is done

Page 5

by the source ViewPoint VPS .

Variable con�gurations of ViewPoints We ad-

dress this problem by reducing it to the �xed View-

Points case discussed above. We do so by dynamically

modifying the �nite state process models as new View-

Points are created and other ViewPoints are discarded.

The results of completeness checks that look for partic-

ular ViewPoints are used to update the process model

lazily. To cater for a varying set of ViewPoints , parts

of the process model must be generic in order to allow

for Work Record entries containing ViewPoint identi-

�ers to be processed. The following generalisations of

the process modelling architecture are necessary:

� Regular expression templates5 with a ViewPoint

identi�er as a parameter have to be used to handle

communication messages. Instances of such tem-

plates behave like the `ordinary' regular expression

discussed above. For example:

Tg(v): .*q(v)[^P]*$ child-located

Here q(v) is the generic event necessitating the ab-

straction of the regular grammar.

� To handle dynamically created regular expressions,

rule templates are introduced. We restrict our-

selves to one ViewPoint identi�er as argument. For

example:

Rule: R4(v)

Situation: Tg(v)

Response: recommend:
child-agrees-check-request-(v)

Such a rule would be instantiated and deleted to-

gether with the relevant regular grammars concern-

ing a speci�c ViewPoint. There is an instance of

this rule for each known ViewPoint with which

communication can take place.

� We also want to be able to express statements like:

If all checks have succeeded do X. Technically, this

requires the expression of a universal quanti�cation

at some point in our model. Here quanti�cation

over instances of the same regular expression tem-

plate plays this role. For example:

Rule: R7(v)

Situation: (8v):Ti(v)
Response: display:

\All children known have been

checked successfully"

5These must not be confused with ViewPoint templates.

The pre-condition of this rule is satis�ed if all in-

stances of the template Ti(v) match.

� Sometimes it is not necessary to know the identity

of the other party involved when responding to a

communication event. In this case, we ignore the

address part of a communication message. For ex-

ample:

Tf : .*U[^r(*)]*$ commissioned-vp-

not-sighted-yet

Here r(*) matches any instance of r(v). Such regu-

lar expressions have one instance only, and do not

require special treatment as far as the rules are con-

cerned.

On the basis of such generic tests and rules we believe

that communication of arbitrary and evolving con�gu-

rations of ViewPoints can be handled.

5.3 Coordinating the checks

The framework described for two-party consistency

checking necessitates cooperation among ViewPoints.

Therefore the method designer developing process mod-

els has to look at the system in its entirety rather than at

a speci�c ViewPoint template. This global perspective

plays an important role by guiding and verifying the de-

sign of the local process models. The task of composing

and decomposing process models, however, is non-trivial

and requires tool support.

It is di�cult to give general rules governing how con-

sistency checks should be coordinated. Again, a rec-

ommended sequence of checks could be described. The

notion of state shown has to be modi�ed because re-

mote actions inuencing the state of a constraint will,

in general, not be observable. Therefore, we have to re-

sort to more heuristic measurements of the state. For

example the age of a check (that is, the number of lo-

cal actions and events since the last successful check)

could be interpreted as reecting the probability that

the constraint still holds.

6 The Scenario Revisited

We now demonstrate our process modelling approach

by applying it to the scenario described in section 3.

6.1 DFD ViewPoints

The ViewPoints used in this scenario each contain a sim-

ple data ow diagram (DFD). Consequently, all View-

Points are instances of the same ViewPoint template

which de�nes a DFD technique. A simple example

showing the Speci�cation and Work Record slots of one

such ViewPoint is shown in �gure 1.

Page 6

Checks To detect violations of the constraints listed,

we use local and two-party consistency checks. They

are derived from the consistency constraints outlined in

section 3.

Two-party checks We now decompose the global

constraints into two-party constraints.

� parent-exists-check detects whether the View-

Point has a parent node. The check also succeeds

if the domain is labelled top.

� child-exist-check takes all the composite nodes

in the local diagram and tries to �nd the corre-

sponding decomposition ViewPoints. As a side-

e�ect of this check, the process model is modi�ed by

adding and/or removing generic actions, tests (that

is, acceptor automata de�ned by regular expres-

sions) and rules that control the interaction with

decomposition ViewPoints.

� parent-agrees-check-do-(v) is a generic action

performing a check for agreement between the local

DFD and the DFD provided by v. Agreement in

this case means the contextual data ows of the

child node must match those of the parent. These

must also be parametrised.

� child-agrees-check-do-(v) performs the same

operation as above, but in the opposite direction.

Process Model Part of the work plan is the pro-

cess model consisting of regular grammars Tx and rules

Ri. Actions, rules and tests can have one parameter,

then they are generic. Generic parts of the work plan

are instantiated and deleted as side-e�ects of existence

checks (for example, parent-exists-check).
The regular expressions Tx as presented here operate

on sequences of action tokens. The action tokens for
static events are �xed, and the tokens for generic events
are dynamically allocated. Here are all the tokens used
in the regular expression examples in the scenario:

A add-node

D make-node-composite

F add-link

G remove-link

H rename-link

O parent-exist-check

Q parent-exist-check-succeeded

R child-exist-check-succeeded

T child-exist-check-failed

U commission-viewpoint

a(v) parent-agrees-check-request-(v)

i(v) parent-agrees-check-requested-(v)

m(v) parent-agrees-check-succeeded-(v)

q(v) child-located-me-(v)

r(v) parent-located-me-(v)

Except for the parametrised tokens necessitated by

these dynamic allocations, the syntax and semantics of

the regular expressions follow the usage by the lexical

analyser generator Lex [5].

The rules Ri uses the regular expressions Tx as pred-

icates in their pre-conditions. There are three alterna-

tives that can be used in the action part of such rules:

do:<action> automatically executes the given ac-

tion.

recommend:<action> suggests that action be en-

acted by the user.

display:<text> gives informal guidance by dis-

playing the help message text .

6.2 Process enactment at work

We now outline how our process modelling framework

applies to the scenario described in section 3. We have

selected steps 2 and 3 to discuss how guidance should

be provided to the user. The reader may also �nd it

useful to consult section 3 on page 2 to recall some of

the details.

Step 2 The ViewPoints A and B do not agree with

each other (Figure 4). Potentially, both A and B can

discover the inconsistency. However, given that the

Speci�cation of B is empty, B is unlikely to initiate the

check and may refuse to cooperate with A on this mat-

ter. ViewPoint A waits for some acknowledgement mes-

sage from the decomposition ViewPoint because A ini-

tiated B's creation. E�ectively, the checking of global

check 2 is therefore suspended as long as B remains

empty. The process model of B, however, will advise

Bob to elaborate ViewPoint B, thus making it non-

empty. The checking of global constraint 1 at View-

Point A would detect the presence of B and update the

local process model.

Example The invocation of checks by Anne or Bob

can be inhibited by the following tests and rules:

TD: ^.f0,10g$ underdeveloped

Tf : .*U[^r(*)]*$ commissioned-vp-

not-sighted-yet

Page 7

05 <F> add-link

04 <F> add-link

06 <F> add-link

08 <P> child-exist-check

07 <D> make-node-composite

10 <U> send-commision-viewpoint

09 <T> child-exist-check-failed

B (owner=Bob; domain=Y)

Specification Work Record

A (owner=Anne; domain=top)

Work Record

d4

d1
d3

d2

X Y

Specification

Figure 4: Now a decomposition ViewPoint for Y exists, but the inputs and outputs do not match (step 2).

Rule: R2

Situation: :TD
Response: display:

\Viewpoint should be developed fur-

ther"

Rule: R3

Situation: Tf

Response: display:

\do not enact child-exist-check

or child-agrees-check-request

because ViewPoint creation com-

missioned but not acknowledged"

In this situation R2 advises Bob to perform some ad-

ditional local development before considering any non-

local checks. R3 tells Anne to wait until the ViewPoint

to be created by Bob reports its existence to View-

Point A.

Step 3 Now, all constraints are satis�ed (Figure 5).

All global checks are eventually initiated by A or B with

their result communicated to the work record of both

ViewPoints. The checks carried out separately, how-

ever, do not guarantee that both ViewPoints are con-

sistent, even at any single point in time. To achieve

this would require two-party checks to be performed as

atomic transactions.

Example The initiation of the agreement check be-

tween A and B is recommended by these tests and rules:

Tg(v): .*q(v)[^P]*$ child-located

TE : .*Q[^0]*$ parent-probably-
exists

Rule: R5

Situation: TE

Response: recommend:

parent-agrees-check-request-(v)

Rule: R4(v)

Situation: Tg(v)
Response: recommend:

child-agrees-check-request-(v)

For ViewPoint A, Tg(B) succeeds when ViewPoint B

has been identi�ed. Consequently, Anne is advised to

check the agreement with the child whose existence is

now reasonably certain. TE tests for a recent success

of the check for the existence of B's parent. If this is

the case, Bob can also initiate the agreement check with

ViewPoint B's parent, A.

7 Related Work

Iida et al. describe the use of communicating tasks de-

�ned by regular expressions to model cooperative soft-

ware development processes [13]. Unlike our work how-

ever, their system focuses on programmed processes and

strict enaction, rather than guidance and tolerated de-

viation.

Ben-Shaul and Kaiser proposed an approach towards

\modelling and enaction of inter-group collaboration

among independent, autonomous, and, possibly, pre-

existing processes" [6]. They presented an \interna-

tional alliance" metaphor to de�ne collaboration in

terms of `treaties' which are enacted at `summits'. Con-

ceptually, our consistency constraints ful�l the role of

such treaties, and the application of a consistency check

can also be interpreted as a summit between two View-

Points. Our approaches di�er, in that we focus on intra-

group collaboration whereas Ben-Shaul and Kaiser ad-

dress cooperation among groups.

Jarke et al. describe decision-oriented, logically cen-

tralised process models [14]. They propose process mod-

els dedicated to guidance which use pattern matching to

identify situations that can be mapped into guidance, a

clear similarity to our work. They also use process mod-

els to structure process traces, a task ful�lled (in a less

exible way) by the Work Records in our framework.

Jarke et al. address the issue of deriving guidance from

these process traces. We have identi�ed this problem in

our framework and are currently investigating possible

solutions.

Balzer [3] describes a mechanism for managing in-

consistencies employing \pollution markers" to identify

constraints that have been violated, which can then be

either avoided or resolved. We have generalised and de-

Page 8

A (owner=Anne; domain=top)

Work Record

05 <F> add-link

06 <F> add-link

07 <D> make-node-composite

08 <P> child-exist-check

09 <T> child-exist-check-failed

10 <U> send-commision-viewpoint

11 <q(B)> child-located-me-B

Specification

d4

d1
d3

d2

X Y

Work Record

B (owner=Bob; domain=Y)

d5

d4

Y.2Y.1

01 <A> add-node

02 <A> add-node

03 <F> add-link

04 <F> add-link

05 <F> add-link

06 <F> add-link

07 <O> parent-exists-check

08 <Q> parent-..-succeeded

Specification

d2

d3

Figure 5: The speci�cation is now consistent with respect to the formulated constraints (step 3).

centralised these concepts in our approach. In his work,

Balzer also uses enforced consistency constraints, which

we consider problematic to adopt in our framework.

Narayanaswamy and Goldman advocate \lazy" con-

sistency as basis for cooperative software development

[19]. They focus mainly on preventing conicts of up-

dates of shared artefacts, where we concentrate on con-

ict detection and resolution. In their setting, depen-

dencies between products are de�ned by a single explicit

relation. In contrast, our framework allows for many dif-

ferent kind of such dependencies to be de�ned in terms

of consistency constraints. This gives us more detailed

information for the resolution of inconsistencies.

8 Further Work

We have identi�ed three major areas in need of further

work. These are: guidance; support for evolution; pro-

cess speci�cation support. We see the role of process

modelling as providing guidance rather than automa-

tion. In this case the way in which the guidance is

framed and the means by which the guidance is actu-

ally delivered are critical. In this paper we have con-

centrated on process observation and decision making,

however the practical utility of the techniques described

will depend on advances in guidance. Some indication

of our approach to this problem is given in [9]. We have

indicated above some of the problems of evolution in an

environment in which ViewPoints are created and (oc-

casionally) destroyed, and we have outlined our solution

to these problems. We feel that this area is in need of

further work and to this end we will be exploring other

grammar-based schemes. We have, as yet, little experi-

ence of how to actually arrive at process models of the

form we have presented. Compositional process model

design requires attention, in particular derivation of lo-

cal process models from higher level cooperation poli-

cies. There are a number of improvements we would

like to make to our implementation, of which the most

pressing is integration with The Viewer; also some im-

provements to the user interface we provide to the pro-

cess modelling capability are required.

9 Conclusions

This paper has examined the application of process

modelling techniques to the problem of consistency

management. The approach proposed in this paper is

based on constraint checks derived from a static notion

of consistency.

We have developed an architecture for communicat-

ing local process models which is fully decentralised. In

this respect, we believe, it reects the nature of develop-

ment processes in multi-perspective environments (ex-

empli�ed by the ViewPoints framework). Global and

local consistency checking is driven by local process

models employing regular grammars and rules. This we

achieve by decomposing and distributing global strate-

gies and protocols for cooperation and communication.

We have presented a communication mechanism based

on message passing between ViewPoints, and conse-

quently their local process models. We have also shown

that protocols for two-party consistency checking can

be built on top of this communication layer.

Our process models are `�ne-grained', and therefore

capture the level of detail which we believe to be essen-

tial for adequate guidance. The granularity of process

models in our framework critically depends on the gran-

ularity of consistency checks. Therefore we also favour

�ne-grained consistency constraints.

The application of the proposed process modelling ar-

chitecture to the scenario has demonstrated the process-

model driven consistency management as the innovative

feature presented in this paper. We have also developed

a prototype implementation of our process modelling

framework which we have used to validate the ideas de-

scribed.

10 Acknowledgements

We would like to gratefully acknowledge the construc-

tive comments of Michael Goedicke. This work was

partly funded by the UK Department of Trade and In-

dustry (DTI) as part of the ESF project, by the UK

EPSRC VOILA project, and by the European Union

(HCM, ISI, ESPRIT BRA PROMOTER).

Page 9

REFERENCES

[1] In A. van Lamsweerede and A. Fugetta, editors, Pro-

ceedings of the 3rd European Software Engineering Con-
ference (ESEC '91), volume 550 of LNCS, Milan, Italy,

October 1991. Springer-Verlag.

[2] L. Ballesteros. Using ViewPoints to Support the FU-

SION Object-Oriented Method. M.Sc. Thesis, Depart-

ment of Computing, Imperial College, London, UK,
September 1992.

[3] R. Balzer. Tolerating inconsistency. In Proceedings

of the 13th International Conference on Software En-

gineering, Austin, Texas, May 1991. IEEE CS press.

[4] N. Barghouti and G. Kaiser. Scaling up rule-based soft-

ware development environments. In van Lamsweerede
and Fugetta [1], pages 380{395.

[5] Bell Telephone Laboratories, Inc., Murray Hill, New

Jersey. UNIX programmer's manual, seventh edition,

1983. Volume 2.

[6] I. Ben-Shaul and G. Kaiser. A paradigm for decentral-
ized process modeling and its realization in the OZ envi-

ronment. In Proceedings of the 16th International Con-

ference on Software Engineering, pages 179{188, Sor-
rento, Italy, May 1994. IEEE CS press.

[7] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nu-
seibeh. Coordinating Distributed ViewPoints: the

anatomy of a consistency check. International Jour-

nal on Concurrent Engineering: Research and Applica-
tions, Special issue on conict management, 2(3), 1994.

[8] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer,

and B. Nuseibeh. Inconsistency handling in multi-

perspective speci�cations. In IEEE Transactions on
Software Engineering, August 1994.

[9] A. Finkelstein and J. Kramer. TARA: Tool as-
sisted requirements analysis. In Conceptual Modelling,

Databases & CASE: an integrated view of information

system development. McGraw Hill, 1991.

[10] A. Finkelstein, J. Kramer, B. Nuseibeh, M. Goedicke,
and L. Finkelstein. ViewPoints: A Framework for

integrating multiple Perspectives in System Develop-

ment. International Journal of Software Engineering
and Knowledge Engineering, 2(1):31{58, March 1992.

[11] P. Graubmann. The HyperView Tool Standard Meth-

ods. REX technical report REX-WP3-SIE-008-V1.0,

Siemens, Germany, July 1990.

[12] P. Graubmann. The Petri Net Method ViewPoints in

the HyperView Tool. REX technical report REX-WP3-

SIE-021-V1.0, Siemens, Germany, January 1992.

[13] H. Iida, K. Mimura, K. Inoue, and K. Torii. Hakoniwa:

Monitor and navigation system for cooperative devel-

opment based on activity sequence model. In 2nd In-
ternational Conference on the Software Process, pages

64{74, Berlin, Germany, 1993.

[14] M. Jarke, K. Pohl, C. Rolland, and J. Schmitt.

Experience-Based Method Evaluation and Improve-

ment: A Process Modeling Approach. NATUREReport
Series 94-15, ESPRIT Project 6353, RWTH Aachen,

Germany, 1994.

[15] J. Kramer. CASE Support for the Software Process: A

Research Viewpoint. In van Lamsweerede and Fugetta

[1].

[16] J. Kramer and A. Finkelstein. A con�gurable frame-

work for method and tool integration. In Euro-
pean Symposium on Software Development Environ-

ments and CASE, volume 509 of LNCS, pages 233{257,

K�onigswinter, Germany, June 1991. Springer-Verlag.

[17] Fui Kien Lai. CORE in The Viewer. M.Sc. Thesis,
Department of Computing, Imperial College, London,

UK, September 1993.

[18] U. Leonhardt, A. Finkelstein, J. Kramer, and B. Nu-

seibeh. Decentralised process enactment. Technical Re-

port 95/5, Department of Computing, Imperial College,
London, UK, January 1995.

[19] K. Narayanaswamy and N. Goldman. \Lazy" Consis-
tency: A Basis for Cooperative Software Development.

In Proceedings of CSCW'92, pages 257{264, Toronto,

Canada, 1992. ACM press.

[20] B. Nuseibeh and A. Finkelstein. Viewpoints: A vehi-

cle for method and tool integration. In Proceedings of
the International Workshop on Computer-Aided Soft-

ware Engineering (CASE '92), pages 50{60, Montreal,

Canada, July 1992. IEEE CS press.

[21] B. Nuseibeh, A. Finkelstein, and J. Kramer. Fine-grain

process modelling. In Proceedings of the 7th Interna-
tional Workshop on Software Speci�cation and Design

(IWSSD-7), pages 42{46, Redondo Beach, California,
December 1993. IEEE CS Press.

[22] B. Nuseibeh, J. Kramer, and A. Finkelstein. Express-
ing the relationships between multiple views in require-

ments speci�cation. In Proceedings of the 15th Interna-

tional Conference on Software Engineering, pages 187{
196, Baltimore, Maryland, May 1993. IEEE CS press.

[23] B. Nuseibeh, J. Kramer, and A. Finkelstein. A frame-
work for expressing the relationships between multiple

views in requirements speci�cation. In IEEE Transac-

tions on Software Engineering, volume 20, pages 760{
773. IEEE CS Press, October 1994.

[24] T. Thanitsukkarn. The Constructive Viewer. M.Sc.
Thesis, Department of Computing, Imperial College,

London, UK, September 1993.

Papers related to the ViewPoints framework can be

found on ftp://dse.doc.ic.ac.uk/dse-papers/.

Page 10

