
Journal of Grid Computing 00: 1–16, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

1

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

Relating Requirements and Architectures: A Study of Data-Grids

Anthony Finkelstein, Clare Gryce and Joe Lewis-Bowen
University College London, Gower Street, WC1E 6BT London, UK
E-mail: {a.finkelstein,c.gryce,j.lewis-bowen}@cs.ucl.ac.uk

Key words: architecture, data-Grid, evaluation, requirements, style, suitability, survey

Abstract

The requirements and architecture of any complex software system are highly interdependent. We have studied
the relationship between these two concerns in several data-Grid systems. Data-Grids are characterized by an
infrastructure that focuses on the coordinated management of, and access to distributed data resources. We survey
current data-Grid projects to demonstrate that a set of general requirements for data-Grid systems can be identified.
Architectural styles are a way of highlighting design and engineering similarities between software systems. We
consider the styles that are exhibited by current data-Grids and use a lightweight methodology to analyze how
these styles support general requirements. Our conclusions provide guidelines to assist the data-Grid developer in
making informed architectural choices.

1. Introduction

In this paper, we present an extended case study of
the relationship between the requirements and archi-
tecture of data-Grid systems. The architectures of
current data-Grids can be shown to exhibit characteris-
tics of various architectural styles. By analyzing how
these styles support the core requirements of the do-
main, we can identify those styles that offer ‘best-fit’
and provide guidelines for the engineering of data-
Grid systems. The relationship between requirements
and architectures is not a concern unique to the Grid
domain, but an area of active enquiry in the wider
software engineering community. By means of this
detailed study we hope to contribute to this discussion.

Within an informal taxonomy of Grid systems,
data-Grids are concerned with the generation of new
information from distributed data repositories. Data-
Grids yield new information in various ways, by
making available to scientists an unprecedented vol-
ume of useful data. They allow more rigorous sta-
tistical analysis, and enable the application of new
data-mining techniques and the cross-correlation of
sets of data that have not previously been compared.
Data-Grids are characterized by an infrastructure that
focuses on the coordinated management of distrib-

uted data resources and the provision of data access
mechanisms.

Data-Grids present many challenges to the sys-
tems developer. Many requirements are subject to
change, whilst the development environment is pop-
ulated with new technologies, tools and paradigms.
Grids cover many scientific domains and generally
include stakeholders with a diversity of skills and
experience.

The requirements and architecture of any software
system are highly interdependent. The architecture is
the first artefact in the development process that ad-
dresses the requirements of the system. In particular,
many of the desired qualities of the system commonly
referred to as ‘non-functional’ requirements such as
security, performance etc., can be largely determined
by architectural choices. Conversely, architectural de-
cisions can feedback to the requirements, constrain-
ing the system under development. For a system as
complex as a data-Grid, understanding system require-
ments and using them to make informed architectural
choices, is crucial to project success.

Architectural styles are a way of abstracting archi-
tecture instances to highlight design and engineering
similarities [13]. They can be used to help the architect
make informed choices about system design. A num-
ber of architectural styles for distributed software

grid8r2.tex; 3/12/2004; 13:49; p.1

VTEX(VR) PIPS No.: DO00006745 artty:res(gridkap:bio2fam) v.1.2

A
U

T
H

O
R

'S
 P

R
O

O
F

!

PDF-OUTPUT



2

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

systems have been identified and documented. Each
supports specific qualities, offering certain guaran-
tees about the attributes and behavior of the deployed
system. Styles can also be combined to reflect the rela-
tive importance of desired system qualities and design
trade-offs. By using architectural styles as a starting
point for system design, the architect can exploit the
benefits of re-use, reducing risk and improving the
efficiency of the development process.

In the next section of the paper, we review the key
architectural styles of distributed systems and examine
which current data-Grids use these styles. In Section 3,
we review the system requirements of current data-
Grid projects, deriving a set of general requirements
for the data-Grid domain. We then analyze how the
documented architectural styles support the general
requirements of the domain. After this detailed re-
view, targeted at data-Grid practitioners, we present
a novel, lightweight method, of especial interest to
software engineers. Section 5 describes the method
for quantifiable evaluation of style suitability for ful-
filling requirements. Observations, conclusions and a
summary of future work follow.

1.1. EGSO

We are directly involved in EGSO, the European Grid
of Solar Observations [21], and refer to this project
as a test case. This data-Grid is being developed by
8 European and 2 United States institutions to en-
able a ‘virtual observatory’ for the worldwide solar
physics community. It will provide unified access to
distributed, heterogeneous solar observations and re-
lated scientific data, and form a platform for their
analysis.

Since the project’s launch, requirements have been
gathered from data providers and scientific users. We
have also collaborated with other astronomy data-Grid
projects, especially AstroGrid [17] and VSO [29].
The elicited EGSO requirements were analyzed –
following software engineering best practice – with
use cases, MSCW prioritization and goal decomposi-
tion [5, 6].

We then investigated whether other data-Grids had
identified similar requirements to those of EGSO, hop-
ing to reuse suitable technology and good design pat-
terns. It became clear that there were common, chal-
lenging requirements that characterized data-Grids.
However, we did not find any documentation that ab-
stracted these and fitted them to generic solutions.
Reuse, especially of distributed system technology,

does commonly occur in data-Grids, but in an in-
formal way, without clear application of engineering
principles.

This paper documents our review of data-Grids and
their common requirements. The analysis of architec-
tural style suitability also presented is a technology
independent solution to many of these challenges. It
should therefore serve the wider community of data-
Grid planners, managers, architects and developers.

1.2. Projects Surveyed

Our review of data-Grids includes eight further
projects, listed below. These were identified as suit-
able for study owing to their focus on the federation
of data resources, and their combined coverage of
a variety of application domains (particle physics,
biomedical and bioinformatics, astronomy and Earth
observation). The ready availability of information
about project requirements, architecture and services
was also a determining factor; information gathered
and presented in this paper was from the project web-
sites at the time of writing, including informal project
documents and web content, as well as more formal
papers.

1.2.1. AstroGrid
AstroGrid [17] aims to build a data-Grid for UK as-
tronomy, ultimately contributing to a global Virtual
Observatory. It aims to deliver a working data-Grid for
key selected databases, with associated data-mining
facilities, by late 2004. AstroGrid will cover astron-
omy, solar physics, and space plasma (solar terrestrial)
physics, through a partnership between UK archive
centers and astronomical computer scientists.

1.2.2. BIRN
The Biomedical Informatics Research Network
(BIRN) [18] is a US based project that aims to fos-
ter large-scale Biomedical science collaborations. This
will be made possible through an infrastructure en-
abling data integration, high speed networking, dis-
tributed high-performance computing and application
software. Three ‘test bed’ projects including groups
working on a variety of applications will be used to
drive the definition, construction, and use of a ‘feder-
ated data system’. The vision of the project is to enable
the testing of new hypotheses through the analysis of
larger patient populations and multi-resolution views
of animal models through data sharing and the inte-
gration of site independent resources for collaborative
data refinement.

grid8r2.tex; 3/12/2004; 13:49; p.2



3

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

1.2.3. EDG
The European DataGrid (EDG) [20] is an expan-
sive EU funded project. It aims to enable access to
geographically distributed compute power and stor-
age facilities belonging to different institutions across
Europe. The project uses three scientific disciplines
with different application and domain specific needs
as drivers; high-energy physics, biology and Earth
observation. Running from 2001–2003, the first and
main objective for the project was the sharing of huge
amounts of distributed data over the existing network
infrastructure.

1.2.4. ESG
The Earth System Grid (ESG) [22] is a US project
with the primary goal of addressing current chal-
lenges in the analysis of, and knowledge development
from global Earth System models. The project will
use generic Grid technologies and application-specific
technologies, distributed supercomputing resources
and large-scale data and analysis servers to create a
seamless and powerful environment for climate re-
search.

1.2.5. GriPhyN
The Grid Physics Network project (GriPhyN) [24] has
the primary objectives of providing the IT advances re-
quired to enable Petabyte-scale data intensive science.
Driving the project are four physics experiments that
produce extremely large volumes of data, and the need
for scientists to be able to extract complex information
from this data independent of geographic location. To
meet these challenges, GriPhyN focuses its research
on realizing the concept of Virtual Data; the definition
and delivery to a large community of a virtual space of
data products derived from experimental data.

1.2.6. myGrid
The myGrid project [25] is targeted at developing mid-
dleware to support in-silico experiments in biology
on a Grid. In contrast to other projects based around
Biomedical or bio-informatic applications, myGrid
focuses on the resolution of issues arising from the
semantic complexity of data and services, such as re-
source discovery, workflow enactment and distributed
query processing.

1.2.7. NVO
The US National Virtual Observatory program
(NVO) [26] is collaboration aiming to investigate

frameworks for the construction of a virtual observa-
tory. This includes research into and development of
standards and protocols for data exchange and access.
The project has built several application prototypes
to drive this research, working cooperatively with the
astronomical community.

1.2.8. PPDG
The Particle Physics Data Grid collaboration (PPDG)
[27] is driven by the needs of current and near-future
research in particle and nuclear physics. It draws on
the requirements of a wide range of experiments, aim-
ing to develop an early Data Grid architecture and
evaluate prototype Grid middleware. Project goals
and plans are ultimately guided by the immediate,
medium-term and longer-term needs and perspectives
of these representative experiments, some of which
will run well beyond 2010.

2. Architectural Styles

Architectural styles [13] are high level design pat-
terns [10] that describe software systems in terms
of logical components and connectors. Their abstract
description assigns key properties, relationships and
responsibilities in a decomposed view of the sys-
tem.

Five well established, distributed system styles are
introduced below and applied to data-Grids. Key ar-
chitectural features are described for each. As the
application of an architectural style is commonly and
sometimes ambiguously stated, they are defined here
in terms of component communication. Examples
of existing technologies that use the styles are also
given.

Subsequent evaluation of reviewed projects use of
each style has typically been inferred from available
documentation. Where a style is not explicitly cited, it
may be inferred by the function and interaction of sys-
tems’ components. In some cases, technology choice
imposes architecture, so a few data-Grid technologies
are also reviewed. Our findings are summarized in
Table 1.

2.1. Layered

A system may be simplified by dividing it into layers
with interfaces. Each layer has unique responsibili-
ties, and distributed instances have a direct virtual
communication path. In this way, programs at one

grid8r2.tex; 3/12/2004; 13:49; p.3



4

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

Table 1. Summary of projects’ architecture styles.

Architecture

Peer-to-

Layered n-tier peer Dataflow Agent

Tools Condor-G Y Y

Giggle Y

Globus 2 Y Y

Spitfire Y

Projects AstroGrid Y Y

BIRN Y Y

EDG Y Y Y

ESG Y Y

EGSO Y Y

GriPhyN Y Y Y

myGrid Y Y

NVO Y

PPDG Y Y Y

layer can ignore issues handled in other layers, sim-
ply relying on their service. At the highest layer, the
application may use an API without coupling to its
implementation, whilst at the lowest layer the physical
operation may be implemented mechanically, ignor-
ing the variety of use and design subtleties at higher
levels.

The logical content of data and control messages
(information and commands) are translated by the lay-
ers to diverse representations. Enterprise databases
(integrating the heterogeneous schema of distributed
repositories) and high level programming languages
(supported by compilers and virtual machines) are
examples of layered architectures.

Observed Application
The use of true, layered architectures is not evident,
though some projects use conceptual layers to describe
the system from a functional perspective. EDG follows
the layered Grid Architecture of Foster and Kessel-
man [8]. This is a reference model in which layers
are defined by the general function of their compo-
nents and the interactions between them. In common
with true layered architectures, components in each
layer can use the capabilities provided by lower layers.
However, the Grid architecture is actually a variation
of a true layered architecture, as it allows some degree
of layer ‘bridging’, with higher layers communicating
directly with lower layers rather than through interme-
diate layers. Also in common with layered architec-

tures, the Grid Architecture describes how layers are
defined by communication protocols.

2.2. n-tier

Business logic (functionality associated with a user’s
needs) may be separated from process logic (technical
solutions for classes of application) using tiers. This
architecture allows flexibility and transparency from
the front end user driven behavior to the back end
system administration. Transparency allows homoge-
nous use of diverse distributed, and the redundancy
and growth that supports reliability and scalability.
This is enabled by components’ platform independent
interfaces. The middleware that enables tier abstrac-
tion typically provides minimal basic services via core
component interfaces. Systems may reuse components
within this framework to build their functionality.

Interaction about a tier is independent but con-
nected; messages used by the application have a many-
to-many relationship with messages using back end re-
sources. CORBA and J2EE provide component based
middleware for diverse distributed systems in concep-
tual tiers. Generic interfaces define web services on
application servers such as WebSphere.

Observed Application
The layered EDG model also has n-tier characteristics,
with functional components that can be deployed inde-
pendently. It reuses components from the Globus [23]
project alongside EDG specific initiatives, including
the following core components. The Replica Location
Service, instantiated by Giggle distributed compo-
nents [4], maps logical to physical file names flexibly
and hierarchically. The Metadata Catalog uses Spit-
fire [28], a web service with local and a global layers,
to provide a uniform interface to distributed metadata
resources. Reptor, a reference implementation of the
Replica Management Service that offers a single point
of entry to the core capabilities, exposes web service
interfaces with a configuration API.

Other projects make their underlying architec-
ture of distributed components more explicit. PPDG
and GriPhyN re-use Globus, Condor [19] and other
data-Grid projects’ components. Their Virtual Data
Toolkit subsystem uses a workflow framework for
data-product discovery and re-derivation. ESG also
reuses Globus Metadata Catalog Services (MCS) and
Giggle components with domain specific analysis
and visualization components. BIRN reuses Meta-
data Catalog (MCAT) and Storage Resource Broker

grid8r2.tex; 3/12/2004; 13:49; p.4



5

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

(SRB) [3] for data retrieval, with other functional com-
ponents. These include plug-in visualization servers
and the Data Mediator that maps between knowledge
domains.

AstroGrid, myGrid and NVO adopt web service
technologies. AstroGrid is OGSA [15] compliant, and
the NVO testbed integrates web services with the Grid
technology components MCS and Giggle. NVO also
off-loads large computational tasks to subsystems,
whilst both use a registry component for resource dis-
covery. The myGrid project wraps existing domain
tools in web services alongside Globus components,
Condor and SRB – used for Grid task management and
uniform data access.

EGSO’s architecture has three tiers of subsystems,
each built from encapsulated components, for par-
ticipating functional roles – Consumer, Broker and
Provider. The abstract architecture is not tied to spe-
cific technologies.

Tiered architecture is further supported by data-
Grid components that go beyond Grid functionality;
Globus components also provide monitoring and secu-
rity capabilities. The thin, web-based clients typically
provided for data-Grid users also demonstrate that
designers have adopted the n-tier style.

2.3. Peer-to-Peer

Peer-to-peer nodes have symmetrical relationships, for
example functioning both as client and server when
creating and performing service requests. In a peer-
to-peer network, a large number of nodes may share
resources without dependence on central points of
control.

Communication sessions in peer-to-peer networks
are typically a triangular sequence of requests for ser-
vice until a match is made, then service invocation,
before the reply to the origin. IP networks have peer-
to-peer characteristics, though file sharing services
such as Gnutella are the paradigm of this architec-
ture. JXTA is a flexible middleware for peer-to-peer
resource sharing.

Observed Application
Data-Grids are rarely explicitly described as peer-
to-peer networks, though descriptions of subsystem
interaction suggest emergent peer-to-peer architec-
ture. In particular, components for resource discovery
and metadata management are generally distributed
implementations in which peers forward messages.

The EDG metadata catalog uses Spitfire with
a global layer for transparent access to meta-
data resources – in distributed implementation this
could exhibit peer-to-peer behavior. The MCS of
PPDG/GriPhyN is distributed by partitioning and
replicating metadata – as this would be transparent to
the user, queries must be forwarded between nodes
in peer-to-peer fashion. Conversely AstroGrid’s tiered
resource registries forward metadata updates. EGSO
explicitly describes the Broker subsystem as a dis-
tributed infrastructure for marshalling user requests
and managing metadata resources. Broker instance in-
teraction supports fault tolerance whilst presenting a
homogenous service for other subsystems.

2.4. Dataflow

Processing components may be organized in sequence,
so that the output of one forms the input of the next.
Branching is possible to allow concurrent progress,
but may require later synchronization if paths rejoin.
Different scheduling strategies may be used to suit
the functional requirements, and may require some
intelligence to make the best use of resources.

The messages between components for one job
have different content after each transformation.
A pipeline of processes or filters (such as in a Unix
shell script) is an example of data-flow architecture,
and many parallel computing tasks (such as finite
element simulation) run in a data-flow sequence.

Observed Application
Several projects include subsystems with the data-flow
architecture’s characteristic interaction pattern. BIRN
uses a data pipeline processing architecture for analy-
sis and visualization in modular toolkits integrated
with other components. ESG also specifies analy-
sis and visualization components, including ‘filtering
servers’ for running user-specified analysis routines.

Particle Physics’ key requirement for derived data
products has driven the PPDG/GriPhyN Virtual Data
Toolkit, in which datasets are defined by transforma-
tions. This enables data product re-creation through
workflows, with parallel task management supporting
by Condor-G.

2.5. Blackboard/Agent Based

Complicated tasks can be tackled by dividing work
amongst software agents, running concurrently on dis-
tributed platforms and using a shared ‘blackboard’

grid8r2.tex; 3/12/2004; 13:49; p.5



6

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

data area. This architecture may solve a problem by
applying a variety of analytic or heuristic methods
to one data set, or find information in the content or
relations of distributed data sets.

Simple agent protocols only pass messages (only
differing in content) via the blackboard (a shared
critical resource). Artificial intelligence and data min-
ing applications use this architecture for information
processing.

Observed Application
The Bioinformatics community has a large number
of heterogeneous, rapidly evolving data resources.
The myGrid project architecture uses agent technol-
ogy to notice changing ‘views’ of project resources.
The ‘open platform’ for data and tool interoperabil-
ity acts as a domain blackboard; changes trigger user
notification events.

2.6. Hybrid Styles

It has been demonstrated that many projects use sev-
eral architectural styles. Characteristics of different
styles may be legitimately combined in a software sys-
tem. Cumulative benefits may be gained, and hybrid
styles are pragmatic when systems are built of sub-
systems (including legacy architecture). Even though
pure architecture is rarely implemented, well cho-
sen styles should still help to meet non-functional
requirements. Evaluating the relative benefit of each
style is made harder, however, by overlapping design
solutions.

3. Current Projects – Requirements

A set of 83 general requirements for data-Grids were
derived from our gathered information of the require-
ments of the representative projects listed in Section 1.
These are summarized under 18 headings in this sec-
tion, organized in three classes: characteristic require-
ments, functional requirements and non-functional
requirements. The first are the broadest, represent-
ing properties that characterize a distributed system
as a data-Grid. The second group are more specific,
describing what the system must do to fulfill its char-
acteristic requirements. The third represent other traits
that the system should demonstrate, frequently con-
straints on the former. Though some avoid the terms
‘functional’ and ‘non-functional’ requirements, saying
their respective use is contextual, our definitions make
them clear and useful in this work.

We found a notable lack of documentation de-
scribing requirements in a formal or systematic man-
ner. Instead, requirements were typically stated as
high-level system goals or application specific objec-
tives. Though we assumed this informal information
is incomplete, similar high-level system objectives
emerge. From these we draw conclusions about the
general, domain-independent requirements for data-
Grids. Relative priorities were also abstracted, and
recorded for each derived requirements according to
the popular MSCW (or MoSCoW) scheme – for
‘must’, ‘should’, ‘could’ and ‘would like’. Often
projects’ documents used these terms informally, or
used other phrases that implied priority such as “it
is important that”. When requirements are frequently
stated in diverse projects, we also judged them higher
priority paradigm data-Grid requirements. Conversely,
we ranked rare, potentially domain specific require-
ments ‘could’.

The complete set of general data-Grid require-
ments with their priorities is given elsewhere [1]. That
table also shows which projects referred to each re-
quirement. Some of those requirements are shown
here in Table 4. The following summarizes and dis-
cusses them.

3.1. Characteristic Requirements

1. Data Resources
The primary purpose of a data-Grid is to include dis-
tributed, possibly heterogeneous data resources in a
single networked system. The resulting data-Grid may
be considered as one, logical resource. A data-Grid
is required to be able to include data resources that
are distributed across normal boundaries of access; i.e.
geographical, administrative or organizational.

2. Access to Resources
The users of the data-Grid require access to its re-
sources. Specifically, they need to discover and use the
available resources. Access is generally required to be
location transparent; from the user’s perspective, the
data-Grid offers a single, ‘virtual’ data resource.

3.2. Functional Requirements

3. Data and Data Management
All projects require the ability to include data of var-
ious formats and structures. This may be commonly
used data formats (e.g., for images), or domain spe-
cific (e.g., Astronomy FITS files). Data can also be

grid8r2.tex; 3/12/2004; 13:49; p.6



7

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

categorized as raw, processed or annotation data. The
relative representation of each of these types varies
between projects.

Most projects require multiple copies of included
files or data set. In the majority of cases these are
replicas for network optimization. In the Biomed-
ical domain there can be multiple proprietary formats
of each file. Several projects distinguish underlying
media, with special treatment of tape archives. An as-
sociated requirement is for data to have both logical
and physical identifiers. Many projects also require
that users are able to create their own logical views
or collections of data.

4. Metadata
All projects require support for existing domain meta-
data standards. Most require easy interchange between
domain standards to create a comprehensive metadata
framework. Many require that this framework be ex-
tensible, with users able to create their own metadata
at various levels of granularity.

Some projects require the automatic extraction or
generation of metadata for given datasets or new data
products. This implies automatic catalogue update.

5. Data Querying and Data Access
Most projects require both ‘push’ and ‘pull’ data
querying techniques. Users should be able to submit
queries based on attributes of data (through the use of
catalogues and indices), or based on pattern matching
or data mining methods. Several also require support
for user-built complex queries, termed ‘pipelines’ or
‘workflows’.

Most discuss the capability to run queries that span
multiple data resources as an ‘advanced’ requirement,
though it is given high priority by the Biomedical and
Astronomy domains. Projects in Physics and Astron-
omy domains require data-access granularity within
files. The Biomedical, Earth observation and Sun–
Earth domains require rapid and frequent access to
their volatile data.

6. Data Processing
All projects require processing resources to be avail-
able as part of their Grid system. Projects and testbeds
serving the Physics community place the greatest em-
phasis on this, to incorporate the many distributed, het-
erogeneous compute resources currently used within
the community.

Commonly there are special requirements for
processing data stored on resources remote from com-
putation resource; Earth Observation and Astronomy

projects also emphasize portable user code. Another
special case is for processing across multiple data
resources.

Processing resources are generally required to
support computationally intensive and lengthy tasks.
Some projects explicitly specify parallel processing
capabilities or pipeline support. In some cases tem-
porary local storage resources are required for data
staging.

7. Data Transfer
Most data-Grids need to transfer entire datasets. Parti-
cle Physics projects require continuous network traffic
from data production centers to tiered data resource
nodes.

8. User Interface and User Functions
Several projects require usable interfaces for users in a
variety of roles, including some that are not IT literate.

Key user functions include: data browsing, data
selection and query, local data visualization, browsing
and access to analysis services, uploading user code,
data management, account management, tracking and
organizing active jobs. The interface should support
several of these in the same user session through an
integrated workbench.

On-line help and, in some projects, collaborative
workspace are also required. In all cases, interfaces
must by highly interactive. Graphic web portals are
typically specified. Some projects require that a user
tasks persist after disconnection.

9. Applications and Tools
Most projects require integration with existing ap-
plications. Users may be able to create new func-
tionality via APIs or by composing-services. Astron-
omy projects go beyond reusing existing visualization
tools; users should be able to browse synoptic images
that summarize data.

10. System Information, Monitoring and Tracking
All projects explicitly require that users or adminis-
trators can access information about the system it-
self, including static resources metadata and dynamic
information about system state. This information
is used for higher-level capabilities: error detection
and tracing, application and job monitoring, perfor-
mance optimization, task evaluation and scheduling,
resource management, metering and accounting. Par-
ticle Physics projects have notably detailed require-
ments for the such capabilities.

grid8r2.tex; 3/12/2004; 13:49; p.7



8

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

11. Resource Management and Scheduling
A related ubiquitous requirement is for the manage-
ment of work over distributed resources. At the most
basic level, jobs need to be matched to resources
in an optimal manner. Many projects also require
job priority management, and bottleneck identifica-
tion and correction. Particle Physics projects emphasis
this, specifying interactive resource allocation that al-
lows re-negotiation of running jobs. A requirement for
check-pointing is also typical.

12. Interoperability
Many projects need to work with other Grids in related
domains. The noted need to support existing metadata
standards is partly motivated by this intercommunica-
tion requirement.

3.3. Non-functional Requirements

13. Security
Most projects do not state security requirements in
depth. All specify a need for authentication (verify-
ing the declared identity of a system user or resource)
and authorization (linking that identity to a set of per-
mitted actions), sometimes with auditing (recording
the actions carried out by system entities). Auditing
is usually refined to accountability (of users and re-
sources for their actions) and management of usage
quotas (or billing).

Further requirements for security are documented
in general terms, usually referring to ‘ideal’, networks.
Though specific requirements are not described, the
following are implied by such discussion: the sys-
tem should respect all types of local security policies,
should allow users to be mobile, and should ensure
the integrity of data. The problem of exposing all
data, while ensuring robust security services, is also
noted.

14. Load, Capacity and Scalability
Projects commonly state the required data volume of
systems to be ‘Petabyte scale’, Particle Physics be-
ing generally higher. Individual file and data set sizes
varies widely; 20 MB to 2 GB files, and 1 TB to
100 TB data sets are mentioned. Expected growth rates
are also domain dependent, from over 1 PB per year in
Particle Physics to 10’s of TB in other domains.

Required capacity can be given by the number of
included data resources. Few projects include a known
number of existing resources; others state open-ended
requirements, indicating a requirement for scalability.

Capacity is also represented by the planned number
of users, with figures of between 1000 and 100,000
cited.

Anticipated system load is rarely stated in data-
Grids. It is generally suggested that systems should
support 10 to 100 times the number of processes of
standard computing nodes.

15. Performance
Most requirements for performance framed as re-
source management and scheduling, described above.
These indicate a need for optimum service levels to be
maintained as system load and system state change –
relative rather than absolute terms.

Some projects specify query response times be-
tween 5 and 10 seconds. Earth observation and Bio-
medical domains state the need for ‘near real-time’
processing of data.

16. Fault Tolerance and Robustness
General requirements for fault tolerance, or robust-
ness, are not specified in detail. Where given, they
are stated with reference to particular services: secu-
rity services should not have any possible single point
of failure, data access services should show some de-
gree of fault tolerance. It is a general requirement
that the system should offer capabilities for the re-
covery of jobs that are running in the event of system
failure.

17. Extensibility and Modifiability
Requirements for extensibility and modifiability vary
between projects. Where stated, adding new function-
ality to a system once deployed is given a high priority.
This is usually described as adding new services,
discovered via standard mechanisms. Most projects re-
quire portability of some system components, notably
user and data resource interfaces.

18. Integrability
All projects require heterogeneous component inte-
gration, whether project specific or legacy. Some
projects plan to integrate components or tools that are
in development, at various release stages.

4. Style Suitability

In Section 2 we introduced and discussed the ar-
chitectural styles demonstrated by current data-Grid
projects. In this section, we summarize the ways

grid8r2.tex; 3/12/2004; 13:49; p.8



9

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

in which these styles variously support the general
requirements for data-Grids presented above. A com-
plete, more formal presentation of this information,
used for the analysis described in Section 5, is given
in elsewhere [1].

1. Data Resources
Layered and tiered styles support the transparency re-
quired to present distributed, heterogeneous resources
as one logical entity. n-tiered and agent architectures
may support a single point of entry. Implemented
peer-to-peer networks also host diverse data types.

2. Access to Resources
Tiered and peer-to-peer networks support location
transparency, allowing users access to unknown re-
sources. Peer-to-peer networks may go further to
render location anonymous, whilst n-tier middleware
also hides resource duplication and migration. Agents
may indirectly support resource discovery by creating
catalogues in advance of user resource look-up.

3. Data and Data Management
Detailed data management requirements are largely
resolved at lower levels of design. However, a layered
paradigm could help data format abstraction. n-tier
middleware typically uses basic data types abstractly
and marshals data structures at the OSI presentation
layer.

4. Metadata
Strong requirements for diverse, flexible metadata
schema further support styles that offer abstraction,
notably layered and tiered architecture. Both allow
heterogeneous, volatile low level or back-end schemas
to be presented homogeneously. Though a tiered mid-
dleware introduces additional metadata, it should be
very flexible. A peer infrastructure that separates dis-
covery from content may support diverse metadata
too.

The requirement for automatic metadata genera-
tion could be met by the “divide and conquer” method
of peer-to-peer and agent based architectures. Filters
or agents may be employed for the metadata trans-
formation requirement, possibly helped by a standard
layer connection protocol.

5. Data Querying and Data Access
The client–server solution to traditional query services
is a simplification of n-tier architecture. An additional
middle tier could coordinate distributed queries and

handle different granularities transparently. Agent and
filter methods are well suited for pattern and data-
mining queries (and may work within files). For rapid
access, concurrent task management in a pipeline co-
ordinated by a middle tier would be more suitable than
agents.

6. Data Processing
Tiered architecture decouples the application from
back end activity, allowing a variety of distributed
resources to be used for lengthy or concurrent oper-
ations. Peers and agents may support mobile tasks
that make progress on diverse resources in parallel.
Pipeline architecture is also well suited for executing
lengthy tasks in parallel, exploiting variation in the
capabilities of resources.

7. Data Transfer
Well-established protocols satisfy reliable data trans-
fer by implementing the OSI layers. Pipeline archi-
tecture may also be applied for parallel data stream
control.

8. User Interface and Functions
The abstraction provided by tiered (and layered) ar-
chitecture allows separation of client roles, and may
provide a virtual platform for mobile code and host
mechanisms for account management. Both tiered and
peer-to-peer networks support transparent service dis-
covery and use, and therefore allow task distribution,
decentralized data management and user collabora-
tions. Offline task progress may be managed by any
architecture that decouples the current job state from
the application.

9. Applications and Tools
Tiered systems satisfy the requirements for transpar-
ent access to legacy and future services (or tools
that build service based applications). Layers sup-
port abstraction of diverse back end services, whilst
peer infrastructure helps advertisement of new ser-
vices. Abstract service descriptions presented in peer
and n-tier networks may be composed into pipelines
presented to the client.

10. System Information, Monitoring and Tracking
Tiered middleware components typically maintain
metadata about a distributed system’s configuration
and state, and offer core services to access them. Peer
networks are intended to be dynamic, minimizing sta-
tic data requirements; nodes typically only maintain

grid8r2.tex; 3/12/2004; 13:49; p.9



10

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

accurate data of the current local environment. Agents
may also be deployed to discover distributed status
information.

11. Resource Management and Scheduling
All architectures that separate the client from other
system components support distributed task manage-
ment. Dispatching and managing jobs on suitable
resources are basic operations for n-tier and peer
networks, parallel pipeline schedulers and even mo-
bile agents. The n-tier architecture is well designed
to simplify management across heterogeneous re-
sources.

Queuing may be implemented in any of these ar-
chitectures, possibly using a ‘time to live’ attribute in
peer-to-peer networks. Peer networks are intended to
be free of centralized bottlenecks, whilst a pipeline
scheduler and tier configuration management should
make it possible to avoid them. Task recovery and
renegotiation is supported by pipeline mechanisms (by
check-pointing, steering and staging) and middle tier
management components.

12. Interoperability
A common protocol at one layer could hide differ-
ences at lower or higher levels. A portal to a different
network may be presented homogeneously in a tiered
architecture. Pipelines may also be used to trans-
form communication between diverse resources (as
demonstrated in compute-Grid systems).

13. Security
By separating users from resources, tiered systems
offer a mechanism for enforcing security measures.
The middleware may organize a certification process
(possibly involving third parties) and manage hetero-
geneous policies for reliable authentication and autho-
rization. This functionality forms the foundation of
other security requirements for accounting, auditing,
single sign on and data integrity checks. However,
using a separate tier may reduce the availability of
underlying resources, whilst heterogeneous or chang-
ing policies may impede pipeline tasks across resource
boundaries.

Peer networks may enforce signature exchange
and generate ‘crumbtrails’ to support audits, though
these techniques have typically been used to ensure
anonymization and integrity. A security layer may
also be employed to validate certificates and data
integrity.

14. Load Capacity and Scalability
Tiered architecture separates control from back-end
interactions, and therefore manages growth and large
data resources well. However, the required distribution
configuration and potential bottlenecks make tiered
solutions weaker than peer-to-peer networks when
scaling to very large numbers of tasks and resources.
Pipeline schedulers have proven to scale to large num-
bers of tasks, and may facilitate very large data set
access with parallel streaming.

15. Performance
Pipeline task schedulers can optimize resource usage,
and may ensure synchronous progress when process-
ing a real-time data stream. Tier networks also offer
mechanisms for performance monitoring and config-
uration management to optimize a system. However,
both these styles and peer-to-peer task distribution
are less suitable than direct resource control for rapid
interaction as their response times may be slower.
A mobile agent architecture is likely to offer even
worse performance as activities may take an arbitrarily
long time to end.

16. Fault Tolerance and Robustness
Tiered middleware coordinates shared responsibility,
allowing managed fail-over to keep security mecha-
nisms and services operational. Pipeline checkpoints
would facilitate job transfer from a failed resource.
Peer networks are designed to provide fault tolerant
routing and may also support redundant service nodes,
ensuring elastic service degradation.

17. Extensibility and Modifiability
Abstraction layers help extension and portability of
lower level facilities, providing common presentation
to applications. n-tier and peer networks also hide un-
derlying heterogeneity, supporting flexible platforms
and service extension; tier middleware and peer adver-
tisement services present abstract meta-data descrip-
tions of underlying functionality.

18. Integrability
The primary goal of n-tier architecture is the in-
tegration of heterogeneous components. To support
extension, they may enforce constraints on new com-
ponents with compatible configuration. Peer networks
also integrate diverse nodes. Layered abstraction helps
the integration of diverse low-level elements using a
common protocol.

grid8r2.tex; 3/12/2004; 13:49; p.10



11

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

5. Style Evaluation

5.1. Method

Section 2 noted how some documented architectural
styles are suitable for data-Grids. We gave an infor-
mal impression of how general data-Grid requirements
may be met by high-level design. In this section we
describe our method for making a quantified evalu-
ation. The 5 architectural styles are scored against
the 83 data-Grid requirements described in Section 3.
The complete matrix [1], partially reproduced in Ta-
ble 4, is summarized by the 18 requirement headings
of Section 3 in Table 2.

Style suitability was judged intuitively, and this
method is therefore subjective and not necessarily re-
producible. However, it is equivalent to industrial
best practice, whereby experienced software develop-
ers decide to reuse components (including function
libraries, sub-systems and design patterns) on how
they expect them to fit requirements. This method
efficiently covers a very large design space, con-
sidering whether a rich variety of possible systems

would meet many requirements. A more thorough,
tractable method would be prohibitively laborious, re-
quiring experimental proof of design properties and
their formal association to requirements. Our method
is efficient and reliable, assuming the styles achieve
that which they’re designed for.

A strong positive score (2) was awarded to styles
whose explicit purpose was the satisfaction of the
given requirement. There are several requirements that
data-Grids share with other distributed (data-intensive
and high performance) systems, and therefore estab-
lished styles have been created specifically to resolve
some of these.

Where this was not true, a positive score (1) was
indicated for styles that should still help to satisfy
the given requirement. This score may be given if
technology associated with the style have historically
exhibited the required behavior, or if primary fea-
tures of the architecture may be adapted to satisfy the
requirement.

A negative score (−1) was given to a style that
undermines a requirement. This may be because the
goal of the architecture contradicts the requirement, or

Table 2. Architecture fit summary.

Architecture

Requirement Peer-to-

Layered n-tier peer Dataflow Agent Sensitivity

1. Data resources ++ ++ + − 6.0 High

2. Access to resources ++ ++ + 5.0 High

3. Data management + + 0.3 Low

4. Metadata + + + ++ 2.7 Medium

5. Data querying + ++ + + 1.7 Low

6. Data processing + + ++ ++ + 3.8 High

7. Data transfer + ++ 2.0 Low

8. User interface + ++ ++ ++ + 1.9 Low

9. Applications tools + ++ − + 2.0 Low

10. System information + − + 2.5 Medium

11. Resource management ++ ++ ++ + 3.2 Medium

12. Interoperability ++ ++ + 5 High

13. Security ++ ++ + − + 1.8 Low

14. Load capacity − − ++ + 2.6 Medium

15. Performance + − ++ − 2.3 Medium

16. Fault tolerance + ++ + − 3.0 Medium

17. Extensibility ++ ++ + 3.5 High

18. Integrability + ++ + 3.5 High

Suitability 27 63 41 24 16

grid8r2.tex; 3/12/2004; 13:49; p.11



12

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

Table 3. Demonstration of method for deriving architectural sensitivity, with style suitability
summary and running total, from matrix of requirements and styles detailed in [1].

Architecture

Requirement Peer-to- Absolute Average

Layered n-tier peer Dataflow Agent total sensitivity

16.1 1 2 −1 4

16.2 1 2 3

16.3 1 1 2 9–3

Summary + ++ + −
Total 0 3 4 1 −1

mechanisms typically implementing the style would
have a negative impact on the required behavior.

A neutral ranking (0) was given when the archi-
tecture has no obvious impact on the requirement,
or has balancing positive and negative effects. Many
data-Grid requirements were neutral for several styles,
as the abstract systems described by the styles and
the core technology that implements them would not
fulfill the requirement; the behavior would be imple-
mented within a component or performed by a related
subsystem.

The detailed requirements are listed with the score
given for each architectural style that impacts its res-
olution. A brief reason for the score is given in each
case. A section of the complete table given in [1]
is shown in Table 4. (In this the original matrix
of requirements against styles has been flattened for
presentation.)

The symbols in Table 2 indicate the strongest score
in the given group of requirements. For example, the
tiered style is marked with ‘++’ for requirements
group 18 as it scored 2 for requirement 18.1, even
though it only scored 1 for 18.2.

The average absolute value of the scores across
styles for each requirements group indicates that class
of requirement’s architectural sensitivity; a low score
indicates architecture choice does not much influence
whether a requirement can be met. The values are
given in the right-hand column of Table 2, with the
words ‘high’, ‘medium’ and ‘low’ indicating which
third of architectural sensitivity scores the requirement
group falls into.

By simply summing the scores for each style for
all requirements, the style’s overall suitability for
data-Grid architecture is indicated; a low score either
indicates that the style cannot meet the requirements or

actually hinders their fulfillment. The values are given
on the bottom row of Table 2.

To demonstrate these operations, a fragment of
the matrix is given in Table 3 with the averaged ar-
chitectural sensitivity scoring, the partial architecture
suitability sum and the summary symbols. As noted,
the details of requirements and style scores’ justifica-
tion are in [1], but the relevant section is shown here
in Table 4.

This method was inspired by design space analy-
sis [11], the ‘House of Quality’ [11] and simpler
methods of linking requirements to system compo-
nents. The candidate designs to be placed were the
five styles. However, this analysis did not specify
a system property space. The dimensions of behav-
ior would have to be built from simplified abstrac-
tions of the 83 stated requirements, hiding the detail
that defines the data-Grid problem. That is why we
scored each style was scored against every require-
ment.

5.2. Observations

The total scores of architectural style suitability for
data-Grids across the bottom of Table 2 were all posi-
tive. As the five styles considered were those observed
in current data-Grid projects, this demonstrates that
wholly unsuitable architecture are avoided. The most
commonly used style, n-tier, actually scores high-
est, supporting the choice of real projects and this
methodology.

The peer-to-peer architectural style is also highly
ranked, supporting the convergence of data-Grids and
peer networks noted in the community [9]. This
method has identified specific requirements met by a
peer-to-peer solution.

grid8r2.tex; 3/12/2004; 13:49; p.12



13

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

Table 4. Fragment of the matrix [1] of detailed requirements (with
priority and origin) against the architectural styles’ suitability score
(with justification).

16.1 The security services of a data-Grid should not have a
single point of failure.

2

Project: (Inferred)

Tier: 1 Tiers may coordinate shared responsibility, so a
validation task may fail over to a redundant resource
when the primary service point fails.

Peer: 2 Decentral peer networks are ideal for elastic
degradation of service as sub-sets of the network
may continue to make progress on node failure.

Agent: −1 If a blackboard were used for any part of the
security process, this would be potential single point
of failure.

16.2 The data access services of a data-Grid should be
faulty tolerant to some degree.

2

Project: (Inferred)

Tier: 1 A middle tier may handle transfer to redundant
nodes on primary failure to ensure continued data
access service.

Peer: 2 Peer networks are highly fault tollerant with respect
data routing.

16.3 A data-Grid should have capabilities for job recovery
in the event of system failure.

2

Project: (Inferred)

Tier: 1 Middleware may coordinate transfer of task state
from a failed resource to store or another resource.

Pipe: 1 Workflows may include checkpoints that allow for
job recovery.

18.1 A data-Grid must allow existing heterogeneous
components to be successfully integrated, as
necessary.

1

Project: EDG, PPDG, GriPhyN, BIRN, ESG, NVO,
AstroGrid, MyGrid, EGSO.

Layer: 1 Layered abstraction of low-level platforms enable
component integration.

Tier: 2 A primary aim of the transparency enabled by a
middle tier is heterogeneous component integration.

Peer: 1 Peer networks typically integrate heterogeneous
nodes (which may host heterogeneous components).

18.2 A data-Grid could allow heterogeneous components
that are not yet available, to be successfully
integrated.

3

Project: EDG.

Layer: 1 Layer abstraction also enables integration with
future diverse low-level elements.

Tier: 1 Middle-tiers should enable future integration, but
may enforce component responsibilities to allow
compatibility.

Peer: 1 Peer network flexibility should extend to future uses.

Pipeline and layered architectures score well too.
These styles are closely associated with parallel com-
puting and communication, and to some extent with
filter transformation and data management; all key
components of data-Grids. These styles only offer a
partial solution to the problems that must be resolved
in a typical data-Grid though. Though agent technol-
ogy scores lowest and apparently only offers specific
behavior at the fringes of data-Grid operation, it does
help to meet many requirements.

Conclusions may also be drawn from the require-
ments sensitivity to architectural style sensitivity to the
right of Table 2. The characteristic data-Grid require-
ments proved highly sensitive to architectural style.
As these describe top-level system goals, this demon-
strates that high-level architecture design determines
overall data-Grid behavior.

Other data-Grid requirements that were highly sen-
sitive to architectural choice concern flexibility (in-
teroperability, extensibility and integrability) and data
processing (another key data-Grid function). Most
other non-functional (load capacity, performance and
fault tolerance) and data-Grid management (meta-
data, system information and resource management)
requirements showed medium architectural sensitiv-
ity. That left security and straight-forward functional
requirements (data management, querying and trans-
fer, and user interface and application tools) with low
demonstrated sensitivity; they can more easily be en-
capsulated to fit any style. The ranked architectural
sensitivity of requirements reinforce the importance of
sound architecture for data-Grids.

6. Discussion

We have conducted a semi-formal investigation into
the general requirements of an emerging domain, the
data-Grid. We have also examined the architectural
styles evident, and their suitability with regards to
the fulfillment of these requirements. Some particular
observations and limitations of the study are outlined
below.

6.1. Style Evaluation

We have proposed a methodology by which architec-
tural styles may be analyzed to evaluate their suit-
ability for the fulfillment of stated requirements. The
study has examined five architectural styles that are
dominant in the distributed applications domain from

grid8r2.tex; 3/12/2004; 13:49; p.13



14

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

which data-Grids emerged. Other styles could have
been evaluated with these. The n-tiered architecture
could have been refined into distributed component
and web service styles; this decomposition would lead
to discussion of specific technologies’ suitability – be-
yond the scope of this review. The pipe and filter style
could be separated from various parallel execution
paradigms; the reliable scheduling strategies of these
may satisfy specific computation requirements, but at
a detailed design level not considered here. A sim-
ple client–server architecture was not discussed as it
is so weak in an Internet scale distributed context.
Mobile agent architecture, exemplified by Internet
‘bots, are related to the agent style (least applica-
ble of the five styles); they would also only satisfy a
subset of the requirements related to their functional
purpose.

The five styles examined could also have been
more strictly defined, possibly by their abstract inter-
faces or event transitions. For example, essential op-
erations for agent architecture may include spawning
new agents and agent writing to a shared blackboard.
At this level of detail it is unambiguous how a style
supports required behavior. However, such strong
characterization would exclude existing projects that
use a hybrid style or hide the characteristic style inter-
faces in design detail. Our technique allows real-world
solutions to be informally classified against the five
styles discussed.

6.2. Formalism

If architectural styles were strictly expressed, the suit-
ability of candidate architectures for the fulfillment of
requirements could be determined by formal analy-
sis methods. Architectural properties could be proven
to satisfy declarative requirements by finding consis-
tency. However, this method is of limited value in the
current data-Grid domain, as declarative constraints
cannot be reliably derived from lengthy, ill-defined
requirements.

Formal methods have been applied to analyze the
architecture of specific projects [7] and to gener-
ally distinguish Grid systems from distributed sys-
tems [14]. The former work used an event transition
language rather than a calculus for static relations. In
this way, models could be rapidly generated and easily
interpreted from informal high-level designs. How-
ever, it is not clear what benefit models of generalized
Grid architecture would be.

6.3. Non-Functional Requirements

We have seen that although the functional require-
ments for data-Grids are fairly well defined, the non-
functional requirements are expressed rather more in-
formally. Despite the low emphasis given explicitly
to non-functional requirements in documents avail-
able, in many cases appropriate architectural choices
can be inferred from stated functional requirements.
For example, the requirement for interoperability with
other Grids implies the need for extreme flexibility and
the decoupling of applications. These requirements
are well met by the abstraction enabled by n-tiered
systems.

Some types of non-functional requirement are not
approached directly at all. For example, usability is
discussed only in so far as buy-in for less technical
users must be low, and in the operation of interfaces.
However, no explicit guidance is given on interface
complexity, training and documentation requirements,
or the boundary between front-end service composi-
tion or administrative interfaces and back-end hack-
ing. Likewise, security and reliability are given limited
attention, and so do not inform architectural direction
as much as might be expected. This is particularly
true of security, where requirements are frequently de-
scribed in very coarse-grained terms, or may be stated
in terms of solutions.

6.4. Generality

It is apparent that as well as strong core requirements,
data-Grids share some other lower priority require-
ments. It is interesting that the domain can also be
characterized by its weak positive requirements, and
this may reflect that all projects currently have similar
long-term goals. However, a light overall weighting is
also given when a single project has a strong need for
a requirement that is specific to an application domain;
for example, extra sign-on points for authorization to
use medical records. These therefore appear to be low
priority general requirements when they are actually
critical for just a subset of projects. Such differences
in emphasis point to the need to develop a more re-
fined taxonomy of data-Grids, before undertaking a
more comprehensive study of appropriate architectural
styles for the domain.

6.5. Context

In order to fully understand the relationship between
requirements and architectures in the data-Grid do-
main, this relationship must also be considered in

grid8r2.tex; 3/12/2004; 13:49; p.14



15

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

a broader context. The Architecture Business Cycle
(ABC) [2] is a model that describes three key factors
that influence the architecture of a software system
throughout the development lifecycle: Requirements,
the Architect’s Experience and the Technical Environ-
ment of the development. The Requirements of the
ABC model include not only ‘system requirements’
such as those described in Section 4, but also the re-
quirements of the developing organization(s). In the
data-Grid domain, several such influences can be read-
ily identified. Firstly, some projects have very close
relationships with teams or organizations that are de-
veloping tools or technologies for data-Grids. Such
associations can result in implicit or explicit require-
ments for a project to leverage such tools or tech-
nologies in their system. Second, the fact that most
data-Grid projects are geographically distributed leads
to a requirement for a highly modular architecture.

The previous experience and expertise of the sys-
tem architect(s) may also affect the architecture of
their current project, through an inclination towards
a particular architectural choice or approach. Finally,
any software development project exists in a techni-
cal environment of trends, paradigms, technologies
and existing infrastructure that may influence the de-
velopment process and hence the architecture. These
may be specific to certain scientific domains, such
as existing networked applications and data services,
or non-specific such as the tools and software pack-
ages of the Globus Toolkit, the Web services paradigm
and the Open Grid Services Architecture (OGSA).
As discussed in Section 2, the nature of the distrib-
uted computing systems from which data-Grids have
evolved must also be considered. The architecture
of these systems will inevitably influence that of the
data-Grids that emerge from them.

6.6. Information Quality

We have indicated throughout that, being drawn from
public websites and other such available documents,
the information upon which this study is based may be
incomplete, or of uncertain currency. We have consid-
ered these limitations in the observations made, and
conclusions drawn, describing our reasoning at each
stage.

The data used is also necessarily qualitative in na-
ture. Qualitative research methodologies have been
used extensively within the Information Systems com-
munity, and our work may be considered as a Case
Study; “an empirical study that investigates a contem-
porary phenomenon within its real-life context” [16].

Our work studies the requirements and architectures
of data-Grid systems within the context of a project-
based development environment. We also note that
many of the steps involved in the process of style
evaluation were dependent upon heuristic judgments.
Given these considerations, our results are presented
as being indicative rather than definitive. Our con-
clusions may be used by data-Grid projects to guide
their initial stages of development, or to suggest direc-
tion and focus for a more in-depth study of data-Grid
systems.

7. Conclusions

In consideration of the above discussion, we are able
to draw certain conclusions from this investigation.
We have demonstrated that data-Grids are an emerg-
ing domain with a well-defined set of core functional
requirements, though poorly defined non-functional
requirements. From this, we have derived a set of
general requirements for data-Grid systems. We have
identified requirements that are particularly sensitive
to system architecture. We have considered the ar-
chitectural styles prevalent in the distributed systems
from which data-Grids have emerged, and analyzed
the fitness of these styles for fulfilling the derived
general requirements. We have determined that n-
tier architectures offer the best fit to these require-
ments, suggesting a baseline architecture for data-Grid
projects. It has also been noted that the peer-to-peer
style also offers significant benefits. Our examination
of current data-Grid projects has indicated that the n-
tier style is being use extensively, though implicitly by
the vast majority of projects. Use of other styles is also
apparent. Most systems are hybrid in style, with many
tiered components decomposing to reveal an internal
structure that conforms to an alternate style.

It is generally the case that individual projects
have made decisions about technologies and compo-
nent solutions to be used very early in the develop-
ment lifecycle, effectively freezing some high-level
design decisions. With this equal focus on require-
ments and architecture, the development process evi-
dent in the data-Grid domain roughly follows the Twin
Peaks model of system development [12]. This model
focuses explicitly on requirements and architecture,
allowing for their concurrent and semi-independent
evolution, thus addressing specific characteristics of
the data-Grid domain: the need for elaboration and im-
proved definition of requirements through early proto-
typing, the need to match existing units of architecture

grid8r2.tex; 3/12/2004; 13:49; p.15



16

1 53

2 54

3 55

4 56

5 57

6 58

7 59

8 60

9 61

10 62

11 63

12 64

13 65

14 66

15 67

16 68

17 69

18 70

19 71

20 72

21 73

22 74

23 75

24 76

25 77

26 78

27 79

28 80

29 81

30 82

31 83

32 84

33 85

34 86

35 87

36 88

37 89

38 90

39 91

40 92

41 93

42 94

43 95

44 96

45 97

46 98

47 99

48 100

49 101

50 102

51 103

52 104

(technologies and components) to requirements, and
the fact that lower priority requirements may be sub-
ject to rapid change. Twin Peaks also allows for the
evaluation of alternative design solutions offered by
existing software packages or components.

From the above conclusions, guidelines have
emerged that may serve to inform the very early stages
of design and development for data-Grid systems. In a
domain where software engineering and requirements
analysis expertise are not always available, projects
may use a set of general, core requirements and a
coarse-grained, n-tier model to explore and refine the
properties of the system through successive, rapid iter-
ation between the requirements and architecture of the
system.

8. Future Work

The EGSO project is currently moving from require-
ments analysis for architecture choice to component
and interface design. At this level, formal techniques
are successfully employed to test the design [7]. Con-
current component event transitions support progress
analysis, and rapidly developed prototypes facilitate
evaluation by the user community. In this way, the
high-level hybrid architectural description, mapped to
vague requirements, is refined to a workable design
that demonstrates how user requirements have been
interpreted. This approach further clarifies user un-
derstanding about how a data-Grid may satisfy their
goals.

Will EGSO (and other projects) really implement
their stated architectural style? As data-Grids are im-
plemented and deployed (reality bites) components
and relationships may be implemented that are not
represented in the initial architecture. It is possible
that a new architectural style will emerge, or a novel
high-level view will be useful. For EGSO we will be
able to trace implementation detail directly to a revised
architecture. We will also be able to examine other
projects via their user documentation, user experience
and reported engineering experience.

References

1. A. Finkelstein, C. Gryce and J. Lewis-Bowen, “Appendix to
Relating Requirements and Architectures: A Study of Data-
Grids”. http://grid.ucl.ac.uk/file/datagrid-appendix.pdf

2. L. Bass, P. Clements and R. Kazrnan, Software Architecture in
Practice. Addison-Wesley, 1998.

3. C. Baru, R. Moore, A. Rajasekar and M. Wan, “The SDSC
Storage Resource Broker”, in Proceedings of CASCON’98,
Canada, 1998.

4. A. Chervenak et. al., “Giggle: A Framework for Constructing
Scalable Replica Location Services”, in Proceedings of the
IEEE Supercomputing Conference, 2002.

5. N. Ching and C. Gryce, “Descending the Twin Peaks: Require-
ments and Architecture in the EGSO Project”, in Proceedings
of the UK e-Science All Hands Meeting, September 2003.

6. A. Dardenne, A. van Lamsweerde and S. Fickas, “Goal-
Directed Requirements Acquisition”, Science of Computer
Programming, Vol. 20, April 1993.

7. A. Finkelstein, J. Lewis-Bowen and G. Piccinelli, “Using
Event Models in Grid Design”, forthcoming in J.C. Cunha
and O.F. Rana (eds.), Grid Computing: Software Environments
and Tools, Springer.

8. I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the
Grid: Enabling Scalable Virtual Organizations”, The Interna-
tional Journal of Supercomputer Applications, 2001.

9. I. Foster and A. Iamnitchi, “On Death, Taxes, and the Conver-
gence of Peer-to-Peer and Grid Computing”, in Proceedings
of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS ’03), 2003.

10. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, 1995.

11. T.G. Lane, T. Asada, R. Swonger, N. Bounds and P. Duerig,
“Architectural Design Guidance”, in [13], Chapter 5.

12. B. Nuseibeh, “Weaving the Software Development Process
between Requirements and Architectures”, in Proceedings of
the ICSE 2001 STRAW Workshop, Toronto, 1996.

13. M. Shaw and D. Garlan, Software Engineering – Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

14. V. Sunderam and Z. Nemeth, “A Formal Framework for Defin-
ing Grid Systems”, in Proceedings of the Second IEEE/ACM
International Symposium on Cluster Computing and the Grid,
2002.

15. S. Tuecke et al., “Grid Service Specification”, February 2002.
http://www.globus.org/research/papers/gsspec.pdf

16. R.K. Yin, Case Study Research, Design and Methods, 3rd edn.
Sage: Newbury Park, 2002.

17. AstroGrid. http://www.astrogrid.org/
18. BIRN. “Biomedical Informatics Research Network”. http://

birn.ncrr.nih.gov/birn/
19. “Condor Project”. http://www.cs.wisc.edu/condor/
20. EDG. “European DataGrid Project”. http://eu-datagrid.web.

cern.ch/eu-datagrid/
21. EGSO. “European Grid of Solar Observations”. http://www.

egso.org/
22. ESG. “Earth System Grid”. http://www.earthsystemgrid.org/
23. “Globus Project”. http://www.globus.org/
24. GriPhyN. “Grid Physics Network”. http://www.griphyn.org/
25. myGrid. http://mygrid.man.ac.uk/
26. NVO. “US National Virtual Observatory”. http://www.us-vo.

org/
27. PPDG. “Particle Physics Data Grid”. http://www.ppdg.net/
28. “Spitfire EDG Task.” http://edg-wp2.web.cern.ch/edg-wp2/

spitfire/
29. VSO. “Virtual Solar Observatory”. http://vso.nso.edu/

grid8r2.tex; 3/12/2004; 13:49; p.16


