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Abstract This paper uses a multi-objective optimisation

approach to support investigation of the trade-offs in var-

ious notions of fairness between multiple customers.

Results are presented to validate the approach using two

real-world data sets and also using data sets created spe-

cifically to stress test the approach. Simple graphical

techniques are used to visualize the solution space. The

paper also reports on experiments to determine the most

suitable algorithm for this problem, comparing the results

of the NSGA-II algorithms, a widely used multi objective

evolutionary algorithm, and the Two-Archive evolutionary

algorithm, a recently proposed alternative.

Keywords Pareto optimality � Fairness analysis �
Requirements assignment � Multi-objective genetic

algorithms � Decision making

1 Introduction

This paper is concerned with fairness. That is, to what

extent is it possible to say that an allocation of require-

ments to customers is fair, when there are multiple

customers, each with their own idea of what the next set of

requirements should be.

Of course, as soon as one embarks upon a discussion of

fairness, the issue of what one means by fairness must be

addressed. What might appear to be manifestly fair to one

person, may seem exceedingly unjust to another. In

requirements engineering, there are several possible ways

in which fairness can be defined. Rather than picking one

of these in a somewhat arbitrary fashion, this paper advo-

cates a multi objective search based framework, in which a

requirements engineer can incorporate all proposed models

of fairness.

The framework proposes that each notion of fairness

should form an objective in a multi objective, Pareto

optimal Search Based Software Engineering (SBSE) set-

ting. Pareto optimality is well-suited to this scenario,

because it makes no assumptions about which objective

takes priority. As will be seen, the approach advocated in

the paper can be used to explore the extent to which a

solution can be fair according to all definitions of fairness.

The optimizing approach can also be said to reveal the

inherent tensions and trade offs between the different

notions of fairness.

In this way, SBSE is used not to provide an optimal

solution to some particular instantiation of the choice of

fairness. Rather, it is used to provide insight by exploring

the space of possible solutions and the relationships

between them. The aim of this work is thus not to replace a

decision maker with an automated tool that allocates

requirements, but to provide a new form of decision
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support; one that searches for optimal balances, guiding

the decision maker. The approach can be used to reveal the

structure of the optimization problems that characterise the

difficult balancing act faced by the requirements engineer.

The paper concerns the requirements analysis setting in

which there are many customers, each with competing (and

possibly conflicting interests). This is an increasingly pre-

valent scenario because of the growing scale and

complexity of the organisations that requirements analysis

must address. Where there may be many customers, each

with their own view on the sets of requirements to be

prioritized, the goal of the requirements engineer may

appear to resemble an invidious attempt to please ‘‘all of

the people all of the time’’.

The authors have worked with Motorola on the problem

of multi-customer requirements. The techniques for fair-

ness analysis proposed in this paper have been applied to a

real world set of requirements from Motorola and the

results are reported as part of the validation of this work.

The paper also uses a data set from a previous study by

Greer and Ruhe, together with synthetically created data

that explore the behaviour of the optimization algorithms

used over a range of possible data configurations.

The Motorola data set concerns a set of 35 requirements

for hand held communication devices. In this case, the

customers are four mobile telephony service providers,

each of which has a different set of priorities with respect

to the features that they believe ought to be included in

each handset. Motorola also maintains cost data, in the

form of the estimated cost of implementation of each

requirement.

To address the fairness analysis problem, the paper

adopts a search-based optimisation approach, which it uses

to automate the exploration of the possible trade offs and

conflicts between various notions of fairness. The search

explores the space of possible allocations of requirements

for the next release of the system.

Requirements analysis problems, with their large space

of possible solution choices and complex and often com-

peting constraints have proved to be natural candidates for

optimisation based analysis. Previous work in this area has

shown that metaheuristic optimisation techniques can be

used to search for a balance between the costs and benefits

associated with sets of requirements in what has come to be

known as the Next Release Problem (NRP) [5, 27] and

Release Planning [13, 33–35, 46–48]. That is, the problem

is to find an answer to the question: ‘which requirements

should appear in the next release of the system?’.

Existing work on this problem has tended to treat the

NRP as a single objective problem formulation, in which

the various constraints and objectives that characterize the

requirements analysis problem are combined into a single

objective fitness function. A variety of optimisation

algorithms have been applied to single objective formula-

tions, including integer linear programming, greedy

algorithms, branch and bound, simulated annealing and

genetic algorithms [5, 27, 53]. Single objective formula-

tions have the draw back that the maximisation of one

concern might be achieved at the expense of the potential

maximisation of another resulting in a bias guiding the

search to a certain part of the solution space.

More recently however, there has been work on multi-

objective formulations of the problem [49, 56]. In this work

on the Multi-Objective Next Release Problem (MONRP),

each of the objectives to be optimized is treated as a sep-

arate goal in its own right; the multiple objectives are not

combined into a single (weighted) objective function. This

allows the optimisation algorithm to explore the Pareto

front of non-dominated solutions. Each of these non-

dominated solutions denotes a possible assignment of

requirements that maximizes all objectives without com-

promising on the maximisation of the others.

Hitherto, the only work on the MONRP has considered

two possible bi-objective formulations, one in which the

two objectives to be optimized are cost and value [56] and

the other in which the two objectives are implementation-

based and business-based [49]. However, no previous

work has considered the problem of fairness analysis in

requirement optimisation.

The problem of fairness in requirements allocation has

two aspects:

1. What is a reasonable way to measure fairness?

2. To what extent can a solution be shown (to the stake

holders) to be a fair allocation of requirements.

These two aspects are interrelated and complicated by

the fact that there is no single accepted notion of fairness.

For example, an allocation might be deemed to be fair

where it to satisfy the same number of requirements for

each customer. However, this might be over-simplistic;

perhaps the solution should give each customer roughly

equal value (as perceived by the customer) or, alterna-

tively, roughly equal cost should be spent in implementing

each customers’ requirements.

This paper addresses these issues. It is the first to

introduce techniques for analysis of the trade-offs between

different customers’ notions of fairness in requirements

allocation, where there are multiple customers with

potentially conflicting requirement priorities and also pos-

sibly different views of what would constitute fair and

equitable solution.

The paper shows that using a multi-objective Pareto

optimal search for optimal allocations of requirements, it is

possible to treat each candidate notion of fairness as a

separate optimisation objective in its own right. The paper

shows that, using this multi objective approach, it is
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possible to explore the trade-offs between different notions

of fairness and to attempt to locate solutions that balance

these trade-offs.

Evolutionary multicriteria optimisation has traditionally

concentrated on problems comprising two or three objec-

tives. Our formulation comprises a relatively large number

of objectives. Such problems pose new challenges for

algorithm design, visualization and implementation. In

multi-objective evolutionary search, the populations are

likely to be largely composed of non-dominated solutions.

The result is feedback to the decision maker that serves

two purposes: it allows the decision maker to see where

there are potential problems in balancing concepts of

fairness among customers and it allows the decision maker

to demonstrate to the customer that the solution adopted is

fair according to multiple fairness criteria.

In this way, the ability to automatically search for

optimal regions of the ‘fairness space’ has applications in

negotiation, mediation and conflict resolution during the

requirements analysis process. It provides an unbiased and

thorough exploration of trade offs and tensions within the

multi-dimensional and complex space of customers and

their requirements.

The primary contributions of the paper are as follows:

1. The paper gives several multi-objective formulations

of fairness in requirements allocation.

2. The paper introduces a search based approach to

explore the space of multiply fair allocations.

3. The paper reports results on the application of the

search based optimisation approach to two real-world

requirements data sets and to a synthetic data set

constructed to stress-test the approach.

4. The paper reports the results of a set of experiments

which explore the suitability of two potentially appli-

cable multi-objective evolutionary algorithms: the

widely used NSGA-II, and the more recently proposed

Two-Archive algorithm.

5. As a validation of the overall approach, the paper

reports the results of a comparison with Random

Search, showing the the results obtained by the

‘intelligent’ search based optimizing approaches sig-

nificantly outperform Random Search.

The rest of the paper is organized as follows: in Sect. 2,

the research problem is defined formally. Section 3 intro-

duces the search algorithms studied and how they are

tailored to the MONRP. Section 4 describes the experi-

mental setup and environment. Section 5 presents the

results of the experiments on real world an synthetic data

for two and four-objective instantiations of the problem

using the NSGA II algorithm. Section 6 presents a com-

parison of NSGA-II, the Two-Archive algorithm and

Random Search. Section 7 considers threats to validity of

the findings. Section 8 describes the context of related work

in which the current paper is located. Section 9 draws the

conclusion and future work.

2 Problem formulation

This section gives definitions and characteristics of the

MONRP problem as an extension of the traditional NRP

model [5].

2.1 NRP model

It is assumed that for an existing software system, there is a

set of customers,

C ¼ fc1; . . .; cmg

whose requirements are to be considered in the develop-

ment of the next release of the software.

The set of possible software requirements is denoted by:

< ¼ fr1; . . .; rng

In order to satisfy each requirement, some resources need

to be allocated. The resources needed to implement a

particular requirement can be transformed into cost terms

and considered to be the associated cost to fulfill the

requirement. Typically, these cost values are estimated,

which is the case with the real world case studies presented

below. The resultant cost vector for the set of requirements

rið1� i� nÞ is denoted by:

Cost ¼ fCost1; . . .;Costng

It is assumed that not all requirements are equally

important for a given customer. The level of satisfaction

for a given customer depends on the requirements that are

satisfied in the next release of the software, which provide

value to the customers’ organizations. Each customer

cjð1� j�mÞ assigns a value to requirement rið1� i� nÞ
denoted by: valueðri; cjÞ where valueðri; cjÞ[ 0 if customer

j desires implementation of the requirement i and 0

otherwise.

Value ¼

v1;1 v1;2 � � � v1;i � � � v1;n

v2;1 v2;2 � � � v2;i � � � v2;n

..

. ..
. . .

. ..
. ..

. ..
.

vj;1 vj;2 � � � vj;i � � � vj;n

..

. ..
. ..

. ..
. . .

. ..
.

vm;1 vm;2 � � � vm;i � � � vm;n

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

Each customer cj has therefore, a subset of requirements

that they expect to be satisfied denoted by Rj such that
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Rj � <; 8r 2 Rj valueðr; cjÞ[ 0

The decision vector x!¼ fx1; . . .; xng 2 f0; 1g determines

the requirements that are to be satisfied in the next release.

In this vector, xi is 1 if requirement i is selected and

0 otherwise. This vector denotes the solution to the

problem.

2.2 Fairness in requirements assignments

Fairness is a deceptively simple concept; its implementa-

tion is complicated because the definition of fairness may

have several equally valid, but possibly conflicting for-

mulations. In order to capture and optimize fairness, a new

aspect of the MONRP is explored: Fairness in requirement

assignments. The principal motivation of fairness analysis

is try to balance the requirement fulfillments between the

customers. It could provide a convincing reference from

the view of marketing and help the decision makers to

maintain a record of fairness between the customers. It also

may play a role in mediation, negotiation and dispute

resolution.

Three factors are considered in this paper, namely, the

number, the value and the cost of the requirements fulfilled

for each customer. The aim is to calculate the absolute

amount and the percentage of each factor that is present in

a proposed MONRP solution. More formally, the three

combinations studied in this paper are:

1. Fairness on absolute number of fulfilled requirements:

Maximize NA

Minimize rðNAÞ

where NA is the mean value of the vector NA.

The vector NA ¼ fNA1; . . .;NAmg represents the abso-

lute number of fulfilled requirements for each customer,

where NAj ¼ jRjj: Thus, the aim is to maximize the

average absolute number of fulfilled requirements for all

the customers whilst minimizing the standard deviation

of the absolute number fulfilled requirements for each

customer.

2. Fairness on absolute value of fulfilled requirements:

Maximize VA

Minimize rðVAÞ where VAj ¼
Xn

i¼1

valueðri; cjÞ � xi

The vector VA ¼ VA1; . . .;VAm represents the fulfilled

value for each customer. In this vector, similarly,

VAjð1� j�mÞ is the jth customer’s fulfilled value:

This objective function rewards solutions for which

each customer obtains the same value. It penalizes

solutions the more they depart from this equitable

outcome.

3. Fairness on the percentage of value and cost of fulfilled

requirements:

The vector Cost C ¼ fCost C1; . . .;Cost Cmg repre-

sents the costs of fulfilled requirement for each

customer. In this vector, Cost Cjð1� j�mÞ is the jth

customer’s fulfilled cost:

Cost Cj ¼
Xn

i¼1

costi � xi if ri 2 Rj

The vector VP ¼ fVP1; . . .;VPmg represents the

percentage of fulfilled requirements’ value for each

customer.

VPj ¼
VAj

P
r2Rj

valueðr; cjÞ
� 100%

to minimize the standard deviation of spend on each of

the customers,

Minimize rðCost CÞ

to minimize the standard deviation of the percentage of

fulfilled value for customers,

Minimize rðVPÞ

to maximize the overall average fulfillment of each

customers’ objectives

Maximize VP

and finally to minimize the overall cost of the next

release

Minimize
Xn

i¼1

costi � xi:

3 Optimisation algorithms

This section describes the search algorithms used in this

paper. In the solution of Multi-Objective Optimisation

Problems (MOOPs) there exist multiple and possibly

conflicting objectives to be optimized simultaneously.

There are various approaches to solve MOOPs. Among

the most widely adopted techniques are: sequential opti-

misation, e-constraint method, weighting method, goal

programming, goal attainment, distance based method and

direction based method. For a comprehensive study of

these approaches, readers may refer to the survey by

Szidarovsky et al. [52] and Collette and Siarry [16].

3.1 Pareto-optimal front

The multi-objective search algorithms used in the paper are

based on the concept of dominance to solve MOOPs. In the

algorithms, two solutions are compared on the basis of

234 Requirements Eng (2009) 14:231–245

123



whether one dominates the other solution or not [18]. We

describe the domination concept below:

In a Multi-Objective Optimisation Problem, each solu-

tion here is defined as a vector of decision variables x!: It is

assumed that there are M objective functions fið x!Þ where

i ¼ 1; 2; . . .;M: The objective functions are a mathematical

description of performance criteria. Often these criteria are

in conflict with each other [43].

We wish to find a set of values for the decision variables

that optimizes a set of objective functions. A decision

vector x! is said to dominate a decision vector y! (also

written as x!� y!) iff:

fið x!Þ� fið y!Þ 8i 2 f1; 2; . . .;Mg;

and

9i 2 f1; 2; . . .;Mgjfið x!Þ[ fið y!Þ:

All decision vectors that are not dominated by any other

decision vector are called non-dominated or Pareto-optimal

and constitute the Pareto-optimal front. These are solutions

for which no objective can be improved without detracting

from at least one other objective.

The goal of the Multi-Objective Optimisation Problem

(MOOP) is to find an ideal vector of decision variables x!;
which optimizes a vector of M objective functions fið x!Þ
subject to inequality constraints gjð x!Þ� 0 and equality

constraints hkð x!Þ ¼ 0 where j ¼ 1; 2; . . .; J and k ¼
1; 2; . . .;K:

Without loss of generality, a MOOP can be defined as

follows:

Maximize ff1ð x!Þ; f2ð x!Þ; . . .; fMð x!Þg

subject to:

gjð x!Þ� 0; j ¼ 1; 2; . . .; J

and

hkð x!Þ ¼ 0; k ¼ 1; 2; . . .;K

where x! is vector of decision variables; fið x!Þ is the ith

objective function; and gð x!Þ and hð x!Þ are constraint

vectors.

These objective functions constitute a multi-dimensional

space which is called the objective space, Z. For each

solution x! in the decision variable space, there exists a

point z* in the objective space:

9z� 2 Z

z� ¼ f
!ð x!Þ ¼ ðf1; f2; :::; fMÞT :

3.2 Evolutionary algorithms

Metaheuristics are a family of approximate optimisation

techniques for solving the computational problem, which

have received increasing attention in recent years. Among

metaheuristics, Evolutionary algorithms (EAs) are partic-

ularly desirable to solve MOOPs, primarily because of their

population-based nature. This enables them to capture the

dominance relations in the population as a vehicle to guide

the search towards Pareto-optimal front. They deal simul-

taneously with a set of possible solutions (the so-called

population) which can find good approximations of Pareto-

optimal set in a single run. Additionally, EAs are less

susceptible to the shape or continuity of the Pareto-optimal

front [14].

EAs usually contain several parameters that need to be

‘tuned’ for each particular application. For completeness,

and to facilitate replicability, we give details of algorithmic

tuning in Sect. 4.2. In addition, since the EAs are stochastic

optimisation techniques, different runs tend to produce

different results. Therefore, multiple runs of the same

algorithm on a given problem are needed to statistically

describe their performance on that problem. For a more

detailed discussion of the application of EAs in multi-

objective optimisation, the reader is referred to Coello

et al. [15] and Deb [18].

To solve the MONRP, multi-objective EAs need to

fulfill two primary roles:

1. Guiding the search towards the Pareto-optimal set to

accomplish optimal or near-optimized solutions.

2. Maintaining a diverse population to achieve a well

distributed non-dominated front, thereby fully explor-

ing the solution space.

3.3 The NSGA-II algorithm

The Non-dominated Sorting Genetic Algorithm-II (NSGA-

II), introduced by Deb et al. [20] is an extension to an

earlier multi-objective EA called NSGA developed by

Srinivas and Deb [51]. The NSGA-II incorporates elitism

to maintain the solutions of the best front found. The rank

of each individual is based on the level of non-domination.

The NSGA-II is a computationally efficient algorithm

whose complexity is OðMN2Þ; compared to NSGA with the

complexity OðMN3Þ; where M is the number of objectives

and N is the population size.

The population is sorted using the non-domination

relation into several fronts. Each solution is assigned a

fitness value according to its non-domination level. In this

way, the solutions in better fronts are given higher fitness

values. The NSGA-II uses a measure of crowding distance

to provide an estimation of the density of solutions

belonging to the same front. This parameter is used to

promote diversity within the population. Solutions with

higher crowding distance are assigned a higher fitness
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compared to those with lower crowding distance, thereby

avoiding the use of the fitness sharing factor with its

associated computational cost [30].

Deb et al. [20] assumed that every individual i in the

population has two attributes: non-domination rank ðirankÞ
and crowding distance ðidistanceÞ:

A partial order � is defined as follows

i � j if ðirank\jrankÞ or

ððirank ¼ jrankÞ and ðidistance [ jdistanceÞÞ

That is, between two solutions with differing non-domi-

nation ranks, the solution with the lower (better) rank is

preferred. Otherwise, if both solutions belong to the same

front, then the solution that is located in a less crowded

region is preferred [20].

The algorithm can be described as follows. Initially, a

random parent population P0 with size N is created.

Tournament selection, crossover, and mutation operators

are used to create a child population Q0 of size N [20]. The

NSGA-II procedure executes the main loop described in

Algorithm 1.

The NSGA-II algorithm was applied to the Fairness in

Requirement Assignments Problem in order to identify

Pareto front in different scenarios.

3.4 The Two-Archive algorithm

The Two-Archive algorithm was introduced by Praditwong

and Yao [44]. It substitutes the new dominated solutions

for the existing dominated solutions introduced by PESA

[37]. Truncation is performed at the end of archiving non-

dominated individuals, as it is in NSGA-II [20] and SPEA2

[57].

In the algorithm, there are two archives used to collect

and record candidate solutions in the population: the

Convergence Archive (CA) and the Diversity Archive

(DA). If a non-dominated solution selected from the pop-

ulation dominates other members in the archives, it enters

the CA and the dominated members are deleted, otherwise

it enters the DA without deleting any members in the

archives.

The total size of CA and DA is fixed, but the size of

each archive varies. When the number of members in the

archives exceeds the capacity of archives, the members of

the DA with the shortest distance to the members in the

CA are deleted until the total size falls within the

threshold.

The details of the Two-Archive algorithm are shown by

Algorithm 2 and Algorithm 3, which describe the top level

and archiving processes, respectively.

Algorithm 2: The Two-Archive Algorithm (the
main loop) Praditwong and Yao (2006)

Initialise the population1

Initialise archives to the empty set2

Evaluate initial population3

Set t = 04

repeat5

Archive non-dominated individuals6

Select parents from archives7

Generate new population using genetic8

operator
Evaluate the new population9

t = t + 110

until t == MAX GENERATION;11

3.5 Random Search

The Random Search technique was also applied to the

MONRP. This is merely a ‘sanity check’; all metaheuristic

algorithms should be capable of comfortably outperform-

ing Random Search for a well-formulated optimization

problem.

4 Experimental set up

4.1 Data sets

This section describes the test data sets used to fulfill

the research tasks of fairness analysis in requirements

assignments. There are three data sets used in our

experiments.
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The first data set is generated randomly with 30

requirements and 5 customers according to the problem

model. The values and costs are assigned as follows:

random choices were made for value and cost; the range of

costs were from 1 through to 9 inclusive (zero cost is not

permitted). The range of values were from 0 to 5 inclusive

(zero value is permitted, indicating that the customer places

no value on, i.e. does not want, this requirement). This

simulates the situation where a customer ranks the choice

of requirements (for value) and the cost is estimated to fall

in a range, very low, low, medium, high, very high. The

authors’ experience indicates that customers prefer such a

coarse grained scale. While a finer level of granularity may

be more theoretically interesting for the research purposes,

in practice customers are uncomfortable with such fine-

grained value assignments.

The second data set is taken from Motorola [6] as shown

in Table 1. The Motorola data set has 4 customers and 35

requirements.

Table 2 shows the third data set that is taken from Greer

[27]. The Greer data set has 5 customers and 20 require-

ments. Greer’s data do not contain information about the

cost of each requirement. For the purpose of feeding this

useful industrial data into our algorithm, the cost of the

requirements were generated randomly within the range

from 10 to 1100, following a Gaussian distribution.

4.2 Algorithmic tuning

Each algorithm was run for a maximum of 10,000 function

evaluations. The number of executions of each algorithm

was 30 times for each data set. The initial population was

set to 200. A simple binary GA encoding was used, with

each bit to code for a decision variable (the inclusion or

exclusion of a requirement). The length of a chromosome

is thus equal to the number of requirements. Each experi-

mental execution of algorithms was terminated after 50

generation (i.e. after 10,000 evaluations). The genetic

approach used the tournament selection (with tournament

size of 5), single-point crossover and bitwise mutation for

binary-coded GAs. The the probability of the crossover

operator being applied was set to Pc ¼ 0:8 and the proba-

bility of the mutation operator (per gene) to Pm ¼ 1=n

(where n is the number of all possible requirements). In the

Two-Archive algorithm, the total capacity of the archives

was 200. The algorithm selects parents from both archives

to the mating pool. An archive was chosen with a

Table 1 Feature data from Motorola

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18

100 50 300 80 70 100 1000 40 200 20 1100 10 500 10 10 10 20 200

r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35

1000 120 300 50 10 30 110 230 40 180 20 150 60 100 400 80 40
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probability that is set to 0.6. The crossover and mutation

probability in the Two-Archive algorithm are the same as

NSGA-II’s. Readers may refer to Goldberg [26] for

detailed information about GAs and also to Deb [18] and

Coello et al. [15] for a comprehensive review of multi-

objective evolutionary algorithms.

5 Results and analysis for two and four objective

formulations

In this section, we present different fairness models in

requirement assignments and the results of applying the

NSGA-II algorithm to different problem instances. Three

experiments were conducted and the results shown in

Figs. 1, 2 and 3, respectively. In order to demonstrate the

evolutionary process of the NSGA-II algorithm, the initial

populations, the populations generated by the median

generation and the final non-dominated solutions were

plotted in the figures. Each point represents a subset of

requirements for the next release. The small ‘•’, ‘*’ and

solid ‘m’ denote the increasingly better solutions found.

Therefore, the algorithm’s progress towards the final Pareto

front produced is visualized by increasingly darker and

larger points.

The results of the first experiment are shown in Fig. 1

where all the populations are plotted for the three data sets.

In this experiment, the two objectives are: (a) minimize the

standard deviation of the absolute number of fulfilled

requirements for each customer and (b) maximize the

overall average number of fulfilled requirements for all

customers.

We observe that the search techniques guide the popu-

lation towards the Pareto front. The optimal fronts are

shown in the results for both random and the Motorola data

set. On these two fronts, the standard deviation of fulfilled

Table 2 Feature data set taken from Greer 2004

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

c1 4 2 1 2 5 5 2 4 4 4

c2 4 4 2 2 4 5 1 4 4 5

c3 5 3 3 3 4 5 2 4 4 4

c4 4 5 2 3 3 4 2 4 2 3

c5 5 4 2 4 5 4 2 4 5 2

r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

c1 2 3 4 2 4 4 4 1 3 2

c2 2 3 2 4 4 2 3 2 3 1

c3 2 4 1 5 4 1 2 3 3 2

c4 5 2 3 2 4 3 5 4 3 2

c5 4 5 3 4 4 1 1 2 4 1
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Fig. 1 Results of fairness on absolute number of fulfilled
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requirements increases with overall average number. This

implies that the more requirements are fulfilled, the less

fairness is provided to the customers. This is partly because
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Fig. 3 Results of fairness on percentage of fulfilled value and cost
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the customers in these two data sets demand different

numbers of requirements. As the number of the selected

requirements increases, it becomes easier for the algorithm

to adjust the allocations of fulfilled requirements to dif-

ferent customers to obtain a lower standard deviation (more

fairness). The most top-right solid ‘N’ on the fronts denotes

the solutions in which all requirements for the customers

are fulfilled.

In Fig. 1a, the eight ‘�’ along the X-axis with zero

standard deviation show that NSGA-II is able to obtain

subsets of requirements that fulfill each customer with the

same number of requirements. However, in Fig. 1b, we

cannot observe this sort of ‘‘perfectly-fair’’ solution. This is

because of the difference between the sparsity pattern of

the Customer–Requirement matrix of these two data sets.

In the Motorola data set, every requirement is demanded

by only one customer exclusively, and the forth customer

requests only a single requirement. This pattern dramati-

cally increases the difficulty for NSGA-II to obtain the only

‘‘perfectly-fair’’ solution that fulfills each customer with

only one requirement.

On the other hand, the result for the Greer data set shows

the standard deviation remains at zero throughout the

search. This is also because of the distribution of the data,

which, in this case is perfectly uniform. That is, in the

Greer data set, every customer requests every requirement,

so all customers would have an equal number of fulfilled

requirements, no matter which requirements are selected in

the next release.

Figure 2 illustrates the results for the second experiment

in which the two objective functions are: (a) minimize

the standard deviation of the absolute value of fulfilled

requirements for each customer and (b) maximize the

overall average value of fulfilled requirements for all the

customers. On the fronts of these results, a similar trend is

observed: the degree of fairness decreases as the overall

coverage increases.

In the third experiment, information on the cost of the

requirements is taken into account. This allows us to obtain

fairness information within different budget constraints.

Four objectives are considered: (a) minimizing the overall

cost of the next release, (b) minimizing the standard

deviation of the cost spent on each customer, (c) mini-

mizing the percentage of fulfilled value for each customer

and (d) maximizing the overall average fulfilled value for

all customers.

Here, we consider the fairness on both cost and value

simultaneously. The results are plotted in Fig. 3. It is

something of a challenge to visualize a four-dimensional

solution space in a two-dimensional figure. In this figure,

each bar represents an optimal solution on the Pareto front.

The location of each bar in the (x, y) plane shows the

average fulfilled value for all customers and the standard

deviation of fulfilled value for each customer respectively.

The height of each bar shows the overall cost for each

optimal solution. The standard deviation of the cost spent

on each customer is shown by the gray scale of each bar.

From the results for all the data sets, it can be seen that

as the overall fulfilled value increases along the X-axis, the

standard deviation of cost spend on the customers also

increases. This observation replicates the previous experi-

ments reported in this paper.

There is also an interesting observation in Fig. 3b. There

are no solutions in the ‘empty triangle’ area around 50%

fulfillment on the average value. The reason for this lies in

the fact that the fourth customer in the Motorola data set

only requests a single requirement. Thus, the percentage of

fulfilled value for this customer has to be either 0% or

100%. Consider those solutions on the edge of this triangle,

when the overall percentage is growing between 0 and

50%, the fulfilled value for this customer stays at 0%. This

is because the other customer’s fulfillment is below 50%, if

the fourth customer has 100% fulfillment then the standard

deviation will increase and the solution will leave the edge.

Thus, on the edge of the triangle leading up to 50% overall

fulfillment, the standard deviation must increase if one of

the customer’s fulfillment remains at zero while the other

customer’s fulfillment increases.

The experiments show that as more requirements are

fulfilled, less fairness is provided to the customers. This is

partly due to the high variation in the customers’ number

of requirements in the examined data sets. However,

fortunately as the number of the selected requirements

increases, the algorithm has more scope in which to search

for optimally fair solutions. It was also observed that the

quality of final solutions in terms of fairness is partly

dependent upon the sparsity pattern of the Customer-

Requirement matrices. This is also the case for the search

algorithm, i.e. sparser customer-requirement matrixes tend

to make problem more difficult for the search algorithm.

6 Results of the experiment to compare algorithm

performance

In this section, we present the results of applying the

different optimisation algorithms to different problem

instances. They are NSGA-II, Two-Archive and Random

Search. In order to compare their performances, two

experiments were conducted concerned with fairness on the

percentage of fulfilled requirements and the number of

fulfilled requirements. The results shown in Figs. 4 and 5,

respectively. Each algorithm was executed 30 times for

each data set. The final non-dominated solutions for each

technique are represented by the ‘s’, ‘*’ and ‘?’ symbols

plotted in the figures. These solutions are the best ones over
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all runs. Each point represents a optimal subset of require-

ments solution for the next release.

The two objectives in the experiments are the same as

described in Sect. 2.2: (a) minimize the standard deviation

of the absolute number or value of fulfilled requirements

for each customer and (b) maximize the overall average

number or value of fulfilled requirements for all customers.

The results of the first experiment are shown in Fig. 4.

In Fig. 4a, the symbol ‘	’ denotes the solutions produced

by the NSGA-II algorithm, while the ‘�’ symbol denotes

the results generated by the Two-Archive algorithm. We

observe that there is no gap between the two sets of solu-

tions. The Pareto fronts of each solution share many

common points and almost overlap completely. Therefore,

from the figure we can see the Pareto front consists of the

markers ‘~’. This means that these two sets of solutions

have a large intersection and the search techniques perform

better than the Random Search. The results generated by

the Random Search could not reach the Pareto front as can

be seen by direct observation of the figures.

In terms of performance of two search algorithms, it is

difficult to distinguish between them visually, simply by
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looking at the figures displayed. Therefore, a Reference

Pareto front was constructed and used in this paper to

compare the Pareto fronts produced by different algo-

rithms. Consisting of the best solutions of each technique,

the Reference Pareto front denotes the best available

approximation to the real Pareto front. The Pareto fronts

generated by the different search techniques may partly

contribute to the Reference Pareto front. Therefore, one of

the measurements to compare Pareto fronts is to count the

number of solutions on the Reference Pareto front, namely

the solutions that are not dominated by the Reference

Pareto front. The results of this analysis are shown in

Tables 3 and 4.

In Tables 3 and 4, the results provide a more quantita-

tive analysis than the figures. For the all data sets, NSGA-II

performs best, taking the lion’s share of the Reference

Pareto front. In the Random data set and Greer data set,

NSGA-II and Two-Archive algorithms share almost the

same amount of the Pareto front. Indeed, both succeed in

covering almost the entire front, showing very similar

performance.

However, the Motorola data set, reveals a slightly dif-

ferent story. There is no algorithm that covers the entire

Reference Pareto front. The solutions from NSGA-II pro-

vide the largest share of the Reference front. Moreover, the

results from the Two-Archive algorithm also contribute

many solutions to the reference Pareto front. In addition,

there is an interesting observation in the results from the

application of the three algorithms to the Motorola data set:

there are few duplicate solutions obtained by the three

algorithms. In this case, there is almost no elements in

common in the three sets of solutions and the methods

preserve wide diversity of Pareto solutions. For this reason,

in Tables 3 and 4, adding up the numerical values together

in ‘Motorola Data Set’ row is almost equal to 100%.

Another observation shows that the Random Search

even contributes the reference Pareto front in some cases.

The algorithms having occasional good or bad performance

may be due to the different characteristics and scale size of

data sets. In terms of Random Search, this may occur when

the size of data set is comparatively small and therefore

denotes a relatively easy optimisation problem.

7 Threats to validity

The results of the current research are subject to limitations

which are inherent in any empirical study. This section sets

out these limitations, indicating how they may affect the

degree to which it is possible to generalise the results. The

two real data sets from industry and the literature might not

be regarded as a fair representative of all real cases. In

order to overcome this, a third set of synthetic data was

generated to provide a better coverage of potential

instances that remained uncaptured the two real world case

studies. More real problems would result in a greater

ability to generalise. However, it is known to be difficult to

obtain real world data sets; they are typically considered

confidential by the companies that own them.

The two algorithms (NSGA-II and Two-Archive) used

in this study denote one popular and one comparatively

new multi-objective search algorithm. Evolutionary algo-

rithms have been shown effective and efficient in a wide

range of problems but, like any other metaheuristic algo-

rithm, there is no guarantee that they are the best available

solution for a given problem. As a result, there might

be better performing algorithms for fairness analysis.

Although identification of the best algorithms for the

problem could be the subject of a separate paper, we feel

the chosen algorithms are appropriate to address the main

research questions in this paper. Our results have demon-

strated that the evolutionary optimisation algorithms are

superior to Random Search. While this is a relatively low

threshold to aim for, it does provide a validity check on the

approach. Also, in the absence of any alternative technique,

Random Search is a natural choice for a base line validity

check. Future work may be able to define further

improvements.

A number of assumptions have been made regarding the

operators as well as parameter values of the search algo-

rithms which can influence the results. However, all

assumptions are the same for both algorithms to minimize

environmental factors during the experimentations. Per-

formance of the algorithms could have been improved by

individual fine tuning empirically or through systematic

experimentation. This is beyond the scope of the current

research but could be suggested as an avenue for future

research.

Table 3 Percentage of solutions on the reference Pareto front (fair-

ness on absolute number of fulfilled requirements)

NSGA-II (%) Two-Archive (%) Random (%)

Random data set 100 100 0

Motorola data set 63.17 32.69 4.36

Greer data set 100 100 0

Table 4 Percentage of solutions on the Reference Pareto front

(fairness on absolute value of fulfilled requirements)

NSGA-II (%) Two-Archive (%) Random (%)

Random data set 100 98.08 0

Motorola data set 55.92 44.34 0.40

Greer data set 100 100 0
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In addition, we do not consider dependencies that may

exist between the requirements. For instance, some

requirements may be coupled together. That is, if one

requirement is selected in one release, then the others

should be included as well in order to satisfy dependencies.

This problem could be addressed, for example, by intro-

ducing new criteria as the constrains in our models.

A chosen subset of requirements is a possible solution if it

satisfies both the objectives and the dependence constrains.

8 Related work

In the area of requirements engineering, several related

studies have been proposed for requirements analysis

and optimisation. Karlsson [33, 34, 47] provided the

methodologies for assigning priorities to requirements and

developing strategies for selecting an optimal set of

requirements for implementation. The Focal Point tool

(marketed by Telelogic) is based on this work.

Bagnall et al. [5] suggested the term Next Release

Problem for requirements planning and described the var-

ious metaheuristic algorithms to find a high quality, but

possibly suboptimal, solution to balance customer requests.

Van den Akker et al. [53] study a variation of the problem

using integer linear programming to find exact solutions

within budgetary constraints.

Zhang et al. [56] considered value and cost as two

separate criteria in their multi-objective next release

problem (MONRP) formulation. They consider an inte-

grated value function, comprising of the values associated

with each customer using search-based techniques. Also,

the scalability of the approach (in terms of e.g. number of

requirements and number of customer) was discussed in the

paper. The authors have compared the performance of the

techniques and the impact of requirement and customer set

size on the different scale data sets.

Greer and Ruhe [27] address software release planning

by minimizing total penalty and maximising total benefit in

the form of an integrated objective function with user

defined weights for each objective.

More recently, there has more work on multi-objective

formulations of the NRP [49, 55]. Ruhe and Omolade [49]

showed how search based optimisation can balance the

tension between user-level and system-level requirements

and track dependencies from user requirements into their

impact on system components. Zhang et al. [55] summa-

rised existing achievements and described future

challenges for Search Based Requirements Optimisation in

recent years.

Problems associated with multiple customers with

completing and conflicting view points has been known for

some time [41]. In et al. [31, 32] proposed the WinWin

model to help the stakeholders’ negotiation process based

on Multi-Criteria preference analysis. Another approach to

resolve stakeholder conflicts is the ViewPoint approach

[22, 23], which separates the different opinions among the

stakeholders and can detect conflicts automatically. In the

stakeholder requirements analysis problem, Robinson et al.

[1, 45] worked on a requirements negotiation model which

provided automated support to generate requirements

resolutions.

Fleming et al. [25] use progressive articulation of design

preferences to assist in reducing the region of interest for

the search and, thereby, simplifying the problem. Corne

and Knowles [17] compare a number of ranking methods to

address the shortcoming of existing evolutionary algo-

rithms for many-objective optimisation. Deb and Kumar

[19] suggest an interactive method to incorporate user

preferences in guiding the multi-objective search. The idea

is to reduce the search space by focusing on the more

favourable regions of the Pareto front. This approach has

potential application in the multi-objective next release

problem provided that the user is prepared to identify their

preferences during the search.

Though other authors have considered conflicts and

negotiations, the present paper is the first to address the

issue of ‘‘fairness’’ in requirements analysis. The paper is an

extended version of a paper from the Requirements Engi-

neering conference [24]. The primary technical extension in

this paper lies in the results of the comparative algorithmic

study reported in Sect. 6, though other sections have also

been extended and/or rewritten to provide more detail.

The approach advocated in this paper is based on Search

Based Software Engineering (SBSE) [28], which has been

widely used to provide optimal and near optimal solutions

to problems from a range of software engineering problems

from software engineering project management [2–4, 12,

21, 36] through design [29, 39, 40, 50] to testing [7–11, 38,

54] and refactoring [42].

9 Conclusions

This paper introduces the concept of fairness in require-

ments analysis and optimisation using a new formulation of

Multi-Objective Next Release Problem. Three fairness

models were introduced to balance the requirements

fulfillments between the customers.

The work reported here is the first to address the issue of

fairness balance among different definitions of fairness.

The formulations adopted cover simplified scenarios.

However, even with the relatively simple formulations

adopted in this paper, it has been possible to use search

based optimization techniques to reveal tensions between

fairness definitions.
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The experiments upon which this paper reports dem-

onstrate that search based techniques can be applied to real

world data sets and illustrate the way in which they reveal

hidden tensions implicit in these data sets.

The paper presents results of a comparative study of

Random Search and two more sophisticated, evolutionary

multi-objective search techniques. The results validate the

overall approach, showing that the more sophisticated

techniques comfortably outperform Random Search. The

results also reveal that results across the more sophisticated

techniques are reassuringly consistent in terms of their

performance and somewhat complementary in terms of

their diversity.

Future work will verify these findings by applying other

search techniques and also classical optimisation techniques,

such as, integer programming, nonlinear programming etc.

This will provide valuable feedback to researchers and

practitioners in the software engineering community.
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