
 
 

Service-Oriented Workflows:  
The DySCo Framework 
 
 
Giacomo Piccinelli and Anthony Finkelstein 
University College London, UK 
 
Scott Lane Williams 
Hewlett-Packard, USA 
 
Workflow is the most popular choice among businesses for capturing and managing their 
operational knowledge. The authors propose an extension to traditional workflow that 
enables Web services to be composed into business solutions. 
 
 
From a business perspective, Web services 

represent a new channel for the offer as well as 
the acquisition of business capabilities.3 The full 
automation of the interaction process between 
providers and consumers is a peculiarity of the 
Web service channel. Beyond electronic data 
transfer, automation extends to all aspects of 
business interaction.2 The negotiation of terms 
and conditions for service delivery and the 
management of service-level agreements are just 
some examples. Since their early definition, 
composition has been a central concept for Web 
services.12 

In the Web service model, the provider of a new 
Web service WS drives the composition of 
internal and external capabilities in order to 
produce a new capability. Both internal and 
external capabilities are modelled as Web services 
that act as components for WS. Similarly, WS can 
be used as component for other Web services.  

The fact that a capability is available internally 
or needs to be acquired externally reflects on the 
business as well as technical design of the service. 
The Web service model enforces the separation 
between a service component and the related 
service provider. Different providers can be 
selected for the same capability under different 
circumstances.  

From a business as well as a technology 
perspective, Web services enable dynamic 
integration for service providers. The explicit 
management of the interaction processes 
associated to the delivery of a service is a 
fundamental aspect of Web services.  

INTERACTION PROCESSES 
The decupling of service logic and service 

provider is closely related to the most noticeable 
feature of the Web service model: process-
oriented interfaces.  

In traditional component models, function 
signatures often represent the only information on 
the interaction requirements of a component. 
While the invocation of a function can trigger 
complex interaction processes, interaction logic is 
not formally exposed. In the Web service model, 
the interaction processes associated to a Web 
service are explicitly formalized and exposed. 
WSCL1 (Web Service Choreography Interface) 
and BPEL4WS4 (Business Process Execution 
Language for Web Services) are examples of 
languages for the formalization of interaction 
processes associated to Web services. 

 An immediate benefit of process-oriented 
interfaces is that they open new possibilities for 
static as well as dynamic composition of services. 
As an example, the interaction protocols between 
individual Web services can be automatically 
negotiated and adapted.11 Workflow provides an 
established framework for handling the 
interaction processes of individual Web services, 
as well as the orchestration of needs intrinsic in 
business solutions based on the composition of 
multiple Web services. 

  
WORKFLOW 

Workflow is a broad term that encompasses 
models, methodologies, and technologies related 
to the modelling and management of business 



processes. A business process captures the 
operational logic for the coordination of resources 
towards the achievement of a business objective. 
Workflow processes represent an embodiment of 
a business processes.5 

Resources are modelled as independent units 
that have the capability to perform specific tasks. 
While resources may be capable of autonomous 
behaviour, the tasks specified in a workflow are 
performed only upon request. The coordination 
logic in the workflow model is based on an 
orchestration approach. A single logical entity is 
in charge of maintaining the state of the process, 
and to request the resources to perform tasks.  

 

 
 
Table 1. Basic formalisation for a workflow process. 
N is a set of identifiers for data items. V is a set of 
values for data items. R is a set of resources. T is a 
set of task definitions.  
 
 
Basic Formalisation 

A basic formalisation for workflow processes is 
presented in Table 1. The atomic element in the 
specification of a workflow process (Tab. 1) is the 
task. A task is defined by a name t that indicates 
the activity required to a resource, as well as a 
name r that indicates the resource that has to 
perform the activity. The specification for a task 
includes indications on the information that is 
supplied to a resource, and on the information that 
the resource will produce as a result of the 
activity. Such information flow is modelled with a 
function σ that links parameter names (N) to their 
value (V). The flow logic for the process is 
expressed by the sequence, choice, concurrent, 
and loop operators.  

The execution logic of a workflow process can 
be summarised by the rules in Table 2. The 
notation X α→ Y indicates the progress of a 
process from the stage X to the stage Y. The stage 
of a process is defined by the information base of 
the process at a give time (Ω), and the description 
of the part of the process that remains to be 
executed (W). The progress of a process can also 
generate management data, as well as other types 
control information (α).  

The execution of a task (step) relies on a 
function (w) to extract form Ω the information 
required by the resource. In the same way, a 
function (v) feeds into Ω new information 
generated by the resource. Only one resource is 
involved in each task (r∈R). A function ϕ defines 
the management information produced by the 
execution of the task. Management information 
depends on the task, as well as on the resource 
and data involved in the execution of the task 
itself.  

 

 
 
Table 2. These rules specify the progress logic for a 
workflow process. The symbol τ indicates that no 
management information is produced. The function µ 
combines the management information generated by the 
progress of the two branches of the process. The function∇ 
aligns different versions of an information base. 
 

The execution of a loop is handled by sequential 
repetitions of the process in the body of the loop 
(loop). A sequence (seq1/2) implies the complete 
execution of the first process before any progress 
can happen for the second process. Conditional 
branching (choice) implies the evaluation of a 
condition, and the subsequent execution of the 
selected process. Concurrent processes (comp 
1/2/3) progress independently, unless otherwise 
constrained by their internal logic. 

A comprehensive definition of the theoretical 
framework underpinning workflow can be derived 
from the work of authors such as C.A.R. Hoare 
and R. Milner.7, 8  
 
Workflow Management 

Workflow management systems (WfMSs) 
provide the link between theory and practice for 



workflow.6 The WfMC (Workflow Management 
Coalition - www.wfmc.org) defines a WfMS as a 
system enabling definition, creation, and 
execution of workflow processes. A WfMS 
includes software components to store and 
interpret process definitions, create and execute 
process instances, and control their interaction 
with process participants and applications. 
Additionally, a WfMS offers administrative and 
audit functions on the system overall and for 
individual process instances. A detailed 
description of the standard reference architecture 
for WfMSs can be found in 5. 

The list of commercial products for workflow 
management is almost endless. From IBM to 
SAP, Microsoft, BEA, HP and Oracle, the offer of 
virtually every major software manufacturer 
includes complete solutions or at least technology 
components for workflow management. Products 
differentiate in anything from performance to 
graphical interfaces, richness in the set of adapters 
and connectors for legacy applications, and 
domain-specific libraries of process definitions. 
As a reference, the Workflow and Reengineering 
International Association (www.waria.org), 
publishes a comprehensive directory of workflow-
related products.  
 
SERVICE-ORIENTED WORKFLOW 

Traditional workflow adopts a very basic model 
for the resources involved in a business process. 
A resource is an entity that can execute a task. 
Data can be provided to and generated by the 
resource during the execution of the task. Task 
execution is beyond the scope of the process, and 
of the workflow management system. 

 

 
Figure 1. In traditional workflow, the process of 
invoicing a customer includes all the necessary 
steps to the generation and delivery of the invoice.  

 
Figure 2. In a workflow that leverages Web services, 
invoicing of a customer simply requires identifying and 
composing the relevant services.  
 

As an example of traditional workflow, Figure 1 
captures part of an invoicing process. The process 
first requires an Accountant to prepare the 
invoice. As soon as the invoice is completed, the 
accountant archives the related information. At 
the same time, the invoice is printed on the 
appropriate forms. When the required data are 
archived and the document printed, the invoice is 
posted to the customer. In the example, the Mailer 
can be a person that collects the document from a 
known printer, and performs the basic activities 
required for posting a letter.  

Partially due to the resource model adopted, 
traditional workflow enforces concentration and 
atomisation of process logic. Atomisation refers 
to the limited knowledge by the resource about 
the related process logic. In the invoicing 
example, the Accountant has no explicit 
knowledge that archiving follows invariably 
invoice preparation. Concentration refers to the 
fact that the process contains the coordination 
logic related to all the resources. Coordination 
takes the form of strict orchestration, whereby a 
central entity assigns tasks to the appropriate 
resources at the appropriate stage in the execution 
of a process. While not incompatible with Web 
services, traditional workflow leverages only a 
fraction of the potential deriving from service-
oriented engineering of resources.  

Figure 2 captures part of an invoicing process 
that is equivalent to the one in Figure 1 but that is 
based on Web services. Accounting and mailing 
(which now also includes printing) capabilities are 
modelled as Web services. Each Web service 
exposes the interaction process associated to the 
delivery of the service itself. The preparation and 



mailing of an invoice now derive from the 
cooperation of the providers for the accounting 
and mailing services. In the invoicing process, a 
single step is present indicating the appropriate 
services and the objective of their cooperation. 

 The overall operational knowledge that needs 
to be specified has not changed. Archiving still 
follows preparation, and posting will not be done 
before the archiving is complete. Still, modelling 
resources as Web services offers to the designer 
of a business process a more modular and realistic 
view of the business resources involved in the 
process.  

 
THE DySCo WORKFLOW 

The way in which Web services have developed 
and evolved is such that different degrees of 
integration have been achieved with different 
types of pre-existing technology. In the case of 
workflow, integration came almost immediately 
for the communication layer. Individual functions 
of traditional business objects were transformed 
into basic Web services. Each Web service would 
cover the equivalent of a traditional task; hence 
very limited changes were required to models and 
technology of existing WfMSs. DySCo takes the 
integration between workflow and Web services 
one step further  

DySCo (Dynamic Service Composer) is the 
result of a two-year project involving University 
College London (UK), University of St. 
Petersburg (Russia), University of Ferrara (Italy), 
University of Hamburg (Germany), and Hewlett-
Packard (UK and USA). The objective of DySCo 
was the development of a conceptual and 
technology framework supporting the dynamic 
composition of Web services. The Web services 
considered in DySCo are business-level services, 
similar to those represented in Figure 2.   

The main aspect of composition targeted by 
DySCo is the dynamic reconfiguration of the 
interaction processes between providers of service 
components. Extending the example in Figure 2, 
two new providers could replace the mailing 
provider: one covering the printing and one 
covering the actual mailing. The business logic of 
composition does not change: first printing and 
then mailing. The coordination logic for the 
providers does instead change. The provider of 
the accounting service needs to coordinate with 
two distinct providers.  

In addition to a service-oriented extension to the 
workflow model, DySCo supports automatic re-
factoring of the coordination logic for providers 
of service components.9 

Composition Model 
The composition model proposed in DySCo 

retains the overall structure of traditional 
workflow (Table 1/2), with exception of the task. 
In DySCo the focus shifts from activity to 
interaction. Resources become roles, and the task 
becomes an interaction step. In an interaction 
step, sets of roles interact in order to achieve a 
given objective.  

In traditional workflow, the task description 
contains sufficient information for the resource to 
understand precisely the activity to perform. In an 
interactive step, the step description contains 
sufficient information for the roles involved to 
understand precisely the way in which they have 
to interact with each other. As in traditional 
workflow, information from the overall state of 
the process may be provided as input for the 
execution of an interactive step. An interactive 
step may also produce output information that 
contributes to the state of the overall process. 
 Given the set R of role names and the set S of 
names of interactive steps, the entry for the task in 
the process grammar of Table 1 becomes: 
 
sr(σ)   interactive step  ( σ : N → V    r ⊆R     s ∈S ) 

 
The entry (step) for the process evolution rule in 

of Table 2 is replaced by: 
 

(int-step)  Ω::sr(σ) — ϕ (s, v, σ´) → Ωvσ´::ε 
 

where  σ´= ρ (s, r, Ωwσ)    r ⊆R     v ⊆ r 
 

The involvement of multiple roles in an 
interactive step affects both the output function 
ρ and the tracking function ϕ for the step. The 
output function takes into consideration the 
contributions from all the roles involved in the 
step. The tracking function can give different 
perspectives on the execution of the interactive 
step depending on the subset v of roles defined by 
an observer. The granularity as well as the 
complexity of the interaction can vary for 
different steps. Still, interactive steps maintain the 
atomicity property typical of tasks in traditional 
workflow. 

The use of roles enforces a level of indirection 
between capabilities and capability providers. In 
particular, the interaction between the multiple 
roles in an interaction step is independent from 
the providers that will cover each role. Similarly 
to resource names in traditional workflow, role 
names are used consistently across different steps 



in one process. The equivalent of a task in 
traditional workflow can be obtained with an 
interactive step that specifies only one role. 
Similar conditions can also be recreated if one 
provider covers all the roles in an interactive step. 
 
Coordination Model 

The coordination model adopted in DySCo 
operates at role level, and is entirely based on 
peer-to-peer interaction. The approach is to derive 
from a DySCo process D a set of traditional 
workflow processes {Pj}, such that the result of 
the union of all the Pj is equivalent to D. 
Equivalence can be defined formally using the 
classic notion of bisimulation8, which defines two 
processes equivalent if they exhibit identical 
observable behaviour. 

Given a DySCo process D and the set R of all 
the roles involved in D, let us consider P(R) the set 
of all the possible subsets of R. Let us also 
consider C(P(R)) the set of all the subsets of P(R), 
such that c ∈ C(P(R))  implies that the union of all 
the sets in c is equal to R. Given a set c = {cj} ∈ 
C(P(R)) the coordination model defines a set W = 
{Wj} of traditional workflow processes such that 
there is a one-to-one relation between the 
elements of c and W. Each process Wj contains 
the orchestration logic for the Web services of the 
provider covering the roles in the corresponding 
cj, as well as the interaction and synchronisation 
logic with other providers. The interaction logic in 
Wj refers to the exchange of service-level 
information between providers. Synchronisation 
logic refers to the signalling between providers 
required in order to align the global flow of 
execution.  

The coordination model preserves the level of 
indirection introduced by the composition model 
between a capability (captured by a role) and the 
Web services that implement the capability.  

 
Implementation Framework 

The implementation framework developed for 
DySCo includes development tools (Figure 3), as 
well as execution infrastructure to support the 
complete lifecycle of a composite Web service. 

The composition logic for a Web service can be 
specified using a graphical environment based on 
an extension of the design system iGrafx. The 
information is encoded using XML, and can be 
easily exported to other modelling tools. The 
graphical notation for processes derives from the 
reference standard specified by the WfMC.  

 
 

 
 
Figure 3. Two components of the DySCo implementation 
framework. From the top down, the first image captures 
the design environment for DySCo processes. The 
second image captures the tool for projection 
generation. The view on the projection generator shows 
the creation of role groups.  
 

The design environment covers processes as 
well as steps. In addition to the flow operators in 
the basic workflow model, specific design 
patterns allow the use of higher-level constructs. 
Multiple branching and conditional loops are 
examples of such constructs. The use of sub 
processes is also possible. Concerning interactive 
steps, the interaction logic for the roles is based 
on an abstract execution environment, defined by 
DySCo. The abstract execution environment 
includes a virtual repositories shared by sets of the 
roles, as well as direct role-to-role interaction. 
The specification of the steps is also based on 
workflow.  



Libraries can be created for processes as well as 
steps. As an example of library for interactive 
steps, a library including all the currently 
specified PIPs (Partner Interaction Processes) 
specified in the RosettaNet standard is available 
in DySCo.10 

The projection generation environment (Figure 
3) supports the automatic generation of the 
coordination logic for different configurations of 
role groups. The tool can automatically identify 
the roles involved in the specification of 
composite Web service. It is then possible to 
specify a number of group names, and the 
association between roles and groups. Once all the 
roles have been assigned to at least one group, the 
tool generates for each group the workflow 
processes describing the related coordination 
logic. The activity can be repeated for different 
role groups. As specified in the DySCo 
coordination model, the projection generator adds 
synchronisation operations to the service logic 
required to the roles in a group. The formal 
framework on which DySCo is based makes 
possible formal proofs of equivalence between a 
set of projection and the process from which they 
derive. 

The execution infrastructure for DySCo has 
been developed on top of HP Process Manager 
(HPPM). HPPM is compliant with the WfMC 
standards; hence, DySCo can be ported to any 
other WfMC-compliant system. The infrastructure 
includes facilities for the deployment, execution, 
and management of composite Web services. The 
infrastructure also supports the publication and 
retrieval of Web-service offers through UDDI 
registries.  
 
VALIDATION 

Standardisation efforts such as WSCI1 and 
BPEL4WS4 are indicators that Web services are 
moving towards workflow. The results achieved 
in DySCo demonstrate that the space for 
integration between workflow and Web services 
can go beyond basic communication level. 

Specific validation of the concepts proposed in 
DySCo comes from standardisation organisations 
such as RosettaNet (www.rosettanet.org) and 
ebXML (www.ebxml.org). A case study 
developed in cooperation with RosettaNet 
demonstrates the advantages of explicit modelling 
of interaction processes for service providers.10 A 
simplified version of the role-based specification 
of the interaction processes is at the bases of the 
CPP/A (Collaboration Protocol Profile/ 
Agreement) proposed by ebXML. 

CONCLUSIONS 
As Web services become the reference model 

for business resources, workflow can provide a 
powerful framework for composing individual 
Web services into complete solutions. Web 
services are moving towards workflow. Workflow 
should also evolve to leverage Web services.   
 
References 
1. A. Arkin et al., “Web Service Choreography 

Interface,” SUN Online Documentation, 2002. 
2. E. Cerami “Web Services Essentials” O’Rielly and 

Associates, 2002. 
3. M. Clark et al., “Web Services Business Strategies 

and Architectures,” Expert Press, 2002. 
4. F. Curbera et al., “Business Process Execution 

Language for Web Services,” IBM Online 
Documentation, 2002. 

5. L. Fisher (Ed.), “Workflow Handbook” Workflow 
Management Coalition and Future Strategy Inc., 
2002. 

6. D. Georgakopoulos, M.F. Hornick, and A.P. Sheth, 
“An Overview of Workflow Management: From 
Process Modeling to Workflow Automation 
Infrastructure,” Distributed and Parallel 
Databases, Kluwer Academic, Vol. 3 No. 2, 1995, 
pp. 119-153. 

7. C.A.R. Hoare, “Communicating Sequential 
Processes,” Communication of the ACM, Vol. 21 
No. 8, 1978. 

8. R. Milner, “Communication and Concurrency,” 
Prentice-Hall, 1989. 

9. O. Nierstrasz, and T.D. Meijler, “Requirements for 
a Composition Language,” Object-Based Models 
and Languages for Concurrent Systems, LNCS 924, 
Springer Verlag, 1995. 

10. G. Piccinelli, A. Finkelstein, and E. Stammers, 
“Automated Engineering of e-Business Processes: 
the RosettaNet Case Study,” Proc. Int’l Conf. 
Systemic, Cybernetics, and Informatics (SCI02), 
Orlando, Florida, 2002. 

11. G. Piccinelli, W. Emmerich, C. Zirpins, and K. 
Schütt, “Web Service Interfaces for Inter-
Organisational Business Processes: an 
Infrastructure for Automated Reconciliation,” Proc. 
Int’l Conf. Enterprise Distributed Object 
Computing (EDOC 02), IEEE, 2002, pp. 285-292. 

12. W3C “Web Service Activity”, W3C Online 
Documentation, www.w3.org/2002/ws 

 
 
 
 
 
 


