Inconsistency Handling in Multi-Per spective Specifications

Anthony Finkelstein
Dov Gabbay
Anthony Hunter
Jeff Kramer
Bashar Nuseibeh

Proceedings of Fourth European Software Engineering Conference (ESEC ‘93),
13-17th September 1993, Garmisch, Germany, Soringer-Verlag (to appear).

Also
Technical Report Number: DoC 93/2
Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen’'s Gate, London, SW7 2BZ, UK
Emalil: {acwf, dg, abh, jk, ban} @doc.ic.ac.uk

Inconsistency Handling in M ulti-Per spective Specifications
A. Finkelstein D. Gabbay A. Hunter J. Kramer B. Nuseibeh

Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen's Gate, London, SW7 2BZ, UK
Email: {acwf, dg, abh, jk, ban} @doc.ic.ac.uk

Abstract. The development of most large and complex systems necessarily
involves many people - each with their own perspectives on the system defined
by their knowledge, responsibilities, and commitments. To address this we have
advocated distributed development of specifications from multiple perspectives.
However, this leads to problems of identifying and handling inconsistencies
between such perspectives. Maintaining absolute consistency is not always
possible. Often this is not even desirable since this can unnecessarily constrain
the development process, and can lead to the loss of important information.
Indeed since the real-world forces us to work with inconsistencies, we should
formalise some of the usually informal or extra-logical ways of responding to
them. This is not necessarily done by eradicating inconsistencies but rather by
supplying logical rules specifying how we should act on them. To achieve this,
we combine two lines of existing research: the ViewPoints framework for
perspective development, interaction and organisation, and a logic-based
approach to inconsistency handling. This paper presents our technique for
inconsistency handling in the ViewPoints framework by using simple examples.

1 Introduction

The development of most large and complex systems necessarily involves many people
- each with their own perspectives on the system defined by their knowledge,
responsibilities, and commitments. Inevitably, the different perspectives of those involved
in the process intersect - giving rise to the possibility of inconsistency between
perspectives and to a need for co-ordination. These intersections, however, are far from
obvious because the knowledge from each perspective is expressed in different ways.
Furthermore, because development may be carried out concurrently by those involved,
different perspectives may be at different stages of elaboration and may be subject to
different development strategies.

The problem of co-ordinating these different perspectivesis partly ‘organisational’ and
partly ‘technical’. The organisational aspect requires that support is provided for ordering
activities, interacting by passing information and resolving conflicts. The main technical
aspect centres around the consistency relationship between these perspectives, given as
partial specifications. Indeed checking consistency between perspectives and the handling
of inconsistency creates many interesting and difficult research problems.

We do not believe that it is possible, in general, to maintain absolute consistency
between perspectives at all times. Indeed, it is often not even desirable to enforce
consistency, particularly when this constrains the specification unnecessarily or entails
loss of design freedom by enforcing an early resolution [21]. Thus, there is a requirement
for some form of inconsistency handling techniques in which inconsistency is tolerated
and used to trigger further actions[15, 16].

In section 2 we provide a brief background to the ViewPoints framework, and in
section 3 we provide an overview of inconsistency handling in this setting. In the
subsequent sections, we illustrate and discuss the identification and handling of
inconsistency using simple specification examples.

2 Background to the ViewPoints Framework

Theintegration of methods, notations and tools has generally been addressed by the use
of a common data model, usually supported by a common, centralised database [33, 1].
This has some advantages in providing a uniform basis for consistency checking.
Multiple views can still be supported by the provision of mappings to and from the data
model. However, we believe that the general use of centralised data repositories is a
mistake for the long term. General data models are difficult to design and tend to be even
more difficult to modify and extend when new tools are to be integrated [34, 29]. Thisis
anal ogous to the search for some universal formalism. Therefore, although the approaches
based on common data models have enabled us to make good progress in the provision of
current CASE tools, we believe that such data models are too tightly integrated. Such
inherent logical centralisation will be one of the major restrictions in the provision of
tools that integrate more methods and notations, cover a larger part of the life-cycle and
support use by large teams of software engineers.

To address this we have developed a novel framework that supports the use of multiple
distributed perspectives in software and systems development [11, 13]. The primary
building blocks used in this framework are “ViewPoints’ (Fig. 1), combining the notion
of a“participant” in the development process, and the idea of a“view” or “perspective”
that the participant maintains. A ViewPoint template is a ViewPoint in which only the
representation style and work plan have been elaborated. A ViewPoint is thus created by
instantiating a template, thereby producing a ViewPoint specification for a particular
domain.

(Representation Style)C Work Plan)

(Domain) CSpecification) (Work Record)

Fig. 1. A ViewPoint encapsulates representation, development and specification knowledge
in its five “slots’. The representation style defines the notation deployed by the ViewPoint.
The work plan describes the development actions, strategy and process used by the ViewPoint.
The specification slot delineates the ViewPoint's domain in the chosen representation style,
while the work record contains a development history of the specification.

The framework has been implemented [25] to allow the construction of partial
specificationsin avariety of formalisms. A work record of the development, including the
development history and rationale for each specification, is also recorded. A typical
systems engineering project would deploy a number of ViewPoints described and
developed using avariety of different languages. ViewPoints are bound together by inter-
ViewPoint relations that specify dependencies and mappings between system components
(Fig. 2). It is intended that ViewPoints be managed by maintaining local consistency
within each ViewPoint and partial consistency between different ViewPoints.

4)
(eror e (eron)

- J

Fig. 2. A system specification in the ViewPoints framework is a configuration or collection
of ViewPoints integrated together by one-to-one inter-ViewPoint rules. We can layer
configurations of ViewPoints to reduce problems of scale [20], and use hypertext-like tools to
navigate around large ViewPoint networks [18].

Thus, in contrast to the traditional approaches, the ViewPoints approach to
specification development is inherently distributed. ViewPoints are loosely coupled,
locally managed and potentially distributed objects, with integration achieved via one-to-
one inter-ViewPoint relationships defined as inter-ViewPoint rules in the work plans of
templates from which the ViewPoints are instantiated [26].

One of the drawbacks of distributed development and specifications is the problem of
consistency. It is generally more difficult to check and maintain consistency in a
distributed environment. Furthermore, we believe that we should re-examine our attitude
to consistency, and make more provision for inconsistency. Inconsistency isinevitable as
part of the development process. Forcing consistency tends to restrict the development
process and stifle novelty and invention. Hence, consistency should only be checked
between particular parts or views of a design or specification and at particular stages rather
than enforced as a matter of course. Addressing the problems of inconsistency raises many
questions including: What exactly does consistency checking across multiple partial
specifications mean? When should consistency be checked? How do we handle
inconsistency?

3 Inconsistency Handling in the ViewPoints Framework

Given that inconsistency is often viewed as a logical concept, we believe that it is
appropriate that inconsistency handling should be based on logic. The problem of
inconsistency handling in the ViewPoints framework can then be viewed as being
equivalent to inconsistency handling in distributed logical databases. For this we need to
define rewrites from specification information, and inter-ViewPoint information, in a
ViewPoint to a set of logical formulae. However, before describing how we rewrite,
identify and handle inconsistency in this kind of data, we briefly discuss the general
problems of inconsistency in logic. We use this as a means of motivating our approach.

Classical logic, and intuitionistic logic, take the view that anything follows from an
inconsistency. Effectively, when an inconsistency occurs in a database, it becomes
unusable. This has prompted the logic community to study such logics as relevant [2] and
paraconsistent logics [8] that allow reasoning with inconsistent information. These isolate
inconsistency by various means, but do not offer strategies for dealing with the
inconsistency. Therefore there still remains the question of what do we do when we have
two contradictory items of information in a database. Do we choose one of them? How do
we make the choice? Do we leave them in and find away “around” them?

Other logics, such as certain non-monotonic logics (for areview see [6]), resolve some
forms of inconsistency, but do not allow the representation of certain forms of
inconsistent data, or give no answer when present. There are also attempts at
paraconsistent non-monotonic logics [7, 28, 32], but these again do not answer all the
questions of handling inconsistency.

The logic programming and deductive database communities have focused on aternative
approaches to issues of inconsistencies in data. These include integrity constraints (for
example [31]) and truth maintenance systems [9]. For these, any attempt to introduce
inconsistency in the database causes rejection of input, or amendment of the database.
Therefore these also do not constitute solutions for the ViewPoints framework since
neither allow us to represent and reason with inconsistent information nor allow us to
formalise the desired actions that should result from inconsistency.

These approaches constitute a significant shortfall in the ability required to handle
inconsistency in formal knowledge representation. In [15, 16] an attempt was made to
shift the view of inconsistency from being necessarily “bad” to being acceptable, or even
desirable, if we know how to deal with it. Moreover, when handling inconsistenciesin a
database, it is advantageous to analyse them within the larger context of the environment
of the database and its use. When viewed locally, an inconsistency may seem undesirable,
but within the larger environment surrounding the data, an inconsistency could be
desirable and useful, if we know appropriate actions to handle it. Dealing with
inconsistencies is not necessarily done by restoring consistency but by supplying rules
telling one how to act when the inconsistency arises.

To appreciate our view we need to formally consider both the data in the database, and
the use of the database in the environment. The latter is usually not formalised, though
for many database applications there are informal procedures, or conventions, that are
assumed by the user. If we formalise the link between the database and the environment, it
allows us to handle inconsistency in data in terms of these procedures and conventions.
Furthermore, it also allows us to consider the inconsistencies resulting from
contradictions between the data and the use of the data. For example, it is not uncommon
for inconsistencies to occur in accounting systems. Consider the use of credit cardsin a
department store, where an inconsistency may occur on some account. In this case the
store may take one of a series of actions such as writing off the amount owed, or leaving
the discrepancies indefinitely, or invoking legal action. Another exampleisin government
tax databases where inconsistencies in ataxpayer’ srecords are “desirable” (at least from the
tax ingpectors point of view!), and are used to invoke an investigation of that taxpayer.

In our approach we capture in a logical language the link between the data and the
usage of the data. In particular we analyse inconsistencies in terms of a pair of logical
formulae (D, E) where D is a database of logical formulae representing some of the
information in one or more ViewPoints, and E is alogical representation of some of the
implicit assumptions and integrity constraints used in controlling and co-ordinating the
use of a set of ViewPoints. We can view E as the environment in which the database
operates and should include some information on inter-ViewPoint relations. We further
assume that for the purposes of this paper the information expressed in E is consistent -
that is, we use E as the reference against which consistency is checked. Using (D, E) we
undertake partial or full consistency checking, and attempt to elucidate the “sources’ of
inconsistency in the database.

We handle inconsistencies in (D, E), by adopting a meta-language approach that
captures the required actions to be undertaken when discovering an inconsistency, where
the choice of actions is dependent on the larger context. Using a meta-language allows
handling of a database in an environment by encoding rules of the form:

INCONSISTENCY IN (D, E) SYSTEM implies ACTION IN (D, E) SYSTEM

These rules may be physically distributed among the various ViewPoints under
development, and invoked by the ViewPoint that initiates the consistency checking. Some
of the actions in these rules may make explicit internal database actions such as invoking
atruth maintenance system, while others may require external actions such as 'seek further
information from the user' or invoke external tools. To support this formalisation of data
handling, we need to consider the nature of the external and internal actions that result
from inconsistencies in the context of multi-author specifications - in particular for the
ViewPoints framework.

Fig. 3 schematically summarises the stages of rewriting, identification, and handling of
inconsistency when checking two ViewPoints in the framework. To check the consistency
of specifications in two ViewPoints, partial specification knowledge in each is translated
into classical logic. Together with the inter-ViewPoint rules in each ViewPoint - which
are also translated into logic - inconsistencies between the two ViewPoints may be
identified. Meta-level rules are then invoked which prescribe how to act on the identified

inconsistencies.
C : ?check consistency :)
¢ Translation

Logical representation of ViewPoints and inter-ViewPoint
specification information

4)

ViewPoint 2
Knowledge

ViewPoint 1
Knowledge

Identification of inconsistency

Y

(Inconsistent Data)
+

@evel inconsistency ha@
| I

Vo

-

\

Action(s)

\

J

Fig. 3. Inter-ViewPoint communication and inconsistency handling in the ViewPoints
framework. Selected ViewPoint knowledge in each of the communicating ViewPoints is
translated into logical formulae and used to detect and identify inconsistencies. The meta-level
rules may then be used to act upon these inconsistencies.

Note that we are not claiming that classical logic is a universal formalism into which any
two representations may be translated. Rather, we argue that for any two partial
specifications a common logical representation may be found and used to detect and
identify inconsistencies.

4 A Simple Example

To demonstrate our approach, we will use asimplified library example specified using
asubset of the formalisms deployed by the requirements analysis method CORE [24]. The
two formalisms we use are what we call agent hierarchies (Fig. 4) and action tables (Fig.
5a, b, ¢). An agent hierarchy decomposes a problem domain into information processing
entities or roles called “agents’®. Agents may be “direct”, if they process information, or
“indirect”, if they only generate or receive information without processing it. For each
direct agent in the hierarchy, we construct an action table showing the actions performed
by that agent, the input data required for the actions to occur and the output data produced
by those actions. The destination and source agents to and from which the data flows are
also shown (action tables may thus be regarded as a standard form of data flow diagrams).
An arc drawn between two lines in an action diagram indicates the conjunction of the two
terms preceding the joining lines.

4)
Library World
Borrowers Staff Library Catalogue
Librarian Clerk
- J

Fig. 4. An agent hierarchy decomposing the library problem domain into its constituent
agents. Shaded boxes indicate indirect agents which require no further decomposition or
analysis.

SOURCE INPUT ACTION OUTPUT DESTINATION

Borrower ¢— book —+——check-in +—— book ——— Clerk
\card card

Library —— book BaN check-out 4—— book —> Borrower

Fig. 5a. An action table elaborating the agent “Borrower”. In ViewPoints terminology, the
action table is part of a ViewPoint specification where the ViewPoint domain is “Borrower”.

1 CORE uses the term “viewpoint” as part of its terminology, so we have renamed it “agent” to avoid the
clash in nomenclature.

SOURCE INPUT ACTION OUTPUT DESTINATION

/ S;\L&:ﬂt?{:se__ Catalogue
Borrower\ book check-in Z— book —— Librarian
\ \ Ve card Y
card —kcheck-out<— book —~~ Borrower
\ Szfjaatizse_ Catalogue

Fig. 5b. An action table elaborating the agent “Clerk”. In ViewPoints terminology, the
action table is part of a ViewPoint specification where the ViewPoint domain is “Clerk”.

SOURCE INPUT ACTION OUTPUT DESTINATION

Clerk book shelve —— book —1+—— Library

Fig. 5¢c. An action table elaborating the agent “Librarian”. In ViewPoints terminology, the
action table is part of a ViewPoint specification where the ViewPoint domain is “Librarian”.

In ViewPoints terminology, figures 4 and 5 are contained in the specification slots of
the different ViewPoints of the overall system specification. Thus, the specification
shown in Fig. 5¢c for example, would appear in the ViewPoint outlined schematically in
Fig. 6. Note that the domain of the ViewPoint is “Librarian” which indicates the
delineation of the action table in the specification slot.

DOMAIN SPECIFICATION

Librarian Source Input Action Output Destination
STYLE »[book »[shelve] » | book >
Action tables notation

definition

WORK PLAN WORK RECORD

Definition of how to construct Development history, rationale and state of

action tables conforming to ViewPoint specification

the defined style

Fig. 6. A schematic outline of a ViewPoint containing the specification shown in Fig. 5c.

The agent hierarchy and action table formalisms are related in a number of ways (as
specified by the CORE method designer). Two such relations are described informally by
the follwing rules.

Rule 1 (between an agent hierarchy and actions tables): Any “source” or
“destination” in an action table, must appear as a leaf agent in the agent hierarchy.

Rule 2 (between action tables): The output (Z) produced by an action table for an
agent (X) to a destination (Y), must be consumed as an input (Z) from a source (X)
by the action table for the original destination (Y).

We stress that both the library example and the formalisms used to describe it have
been greatly simplified to illustrate our consistency handling mechanism. The library
world in fact involves many more transactions and may require richer formalisms to
describe it. This can be done by defining the desired formalism in the appropriate
ViewPoint style slot.

5 Identification of Inconsistency

To undertake a partial consistency check between two or more ViewPoints, we form a
logical database (D, E), where D contains formulae representing the partial specifications
in these ViewPoints, and E contains formulae representing environmental information
such as the definitions for the inter-ViewPoint relations. For the remainder of this paper
we assume the language for (D, E) isfirst-order classical logic.

We start by looking at the action tables in Fig. 5. For these we consider the pre-
conditions and post-conditions to an action. We use the function pre(X, Y) to denote X is
asource and Y isa'conjunction’ of inputs that are consumed by some action. Similarly,
post(Y, X) denotes that X is the destination of the 'conjunction’ of outputs, Y, produced
by some action. Now we denote the part of the action table associated with an action B as
follows:

table(A, P, B, Q)

where, A isan agent name (the ViewPoint domain),
Pisa'conjunction’ of pre-conditions for action B, and
Qisa'conjunction’ of post-conditions for action B.

Note that for this definition we are using ‘conjunction’ as a function symbol within
first-order classical logic.

We can now represent each table in Fig. 5 using the above predicates. First we consider
the information in Fig. 5a.

(2) table(borrower, pre(borrower, book), check_in, post(book, clerk)).
(2) table(borrower, pre(borrower, card) & pre(library, book), check_out,
post(book&card, borrower)).

Similarly, we represent the information in Fig. 5b as,

3) table(clerk, pre(borrower, book), check_in,
post(database_update, catalogue) & post(book, library)).
(4) table(clerk, pre(borrower, book&card), check_out,
post(book&card, borrower) & post(database_update, catalogue)).

Finally we represent the information in Fig. 5¢ as,

(5) table(library, pre(clerk, book), shelve, post(book, library)).

Obviously there arggnany ways we could present the information in figures 5a-5c in
logic. However, it is sttqmhtforward to define a rewrite that can take any such table and
return logical facts of the gave form. We can also capture the inter-ViewPoint relations
inclass een action tables) is represented by,

(6) forall A, B, C; e(A, _, _, post(Cq, Bq) & .. & post(Cpyy, By
there exist Ej, Fj such that [table(B;, pre(Eq, F1) & .. & pre(Ep, Fp), _,)
and A= Ej and Ci = Fj 1l
wherel<i<mandl<j<n

where the underscore symbol ' ' denotes that we are not interested in this part of the
argument for thisrule, and that it can be instantiated without restriction.

The formulae (1) - (5) are elements in D, and the formula (6) is an element in E. Since
we have represented the information in D as a set of classical logic facts, we can use the
Closed World Assumption [30] to capture the facts that do not hold in each ViewPoint
specification. The Closed World Assumption (CWA) essentially captures the notion that
if afact A isnot amember of alist of factsthen = A (not A) holds. So for example, using
the CWA with the borrower domain we can say that the following arbitrary formula does
not hold,

@) table(borrower, pre(borrower, book), check_in, post(card, clerk)).
In other words we can infer the following,
(8) -table(borrower, pre(borrower, book), check_in, post(card, clerk)).
Using this assumption we can identify ViewPoints that are inadequately specified. We
show this for the relation between the borrower and the clerk. Suppose that formula (3)

was hot represented, then by the CWA we would have the following,

(9) -table(clerk, pre(borrower, book), check_in,
post(database_update, catalogue) & post(book, library)).

Using a classical logic theorem prover with the CWA, we can easily show that (D, E)
isinconsistent and that the formulae (1), (6) and (9) cause the inconsistency - since (1) and
(6) give,

- table(clerk, pre(borrower, book), check_in, X, Y)

where X and Y can be instantiated with any term in the language, whereas the CWA
gives,

table(clerk, pre(borrower, book), check_in, X, Y)
for any terms X, Y in the language.We address the handling of this situation in section 6.

In a similar fashion, we can represent the agent hierarchy by the following set of
logical facts,

-10-

(20) tree(library_world, borrower)
(11) tree(library_world, staff)

(12) tree(library_world, library)
(13) tree(library_world, catalogue)
(14) tree(staff, librarian)

(15) tree(staff, clerk)

with the first argument to the predicate 'tree’ representing a parent in the [ijent hierarchy,
and the second argument representing its child. To t axioms of
reflexivity, transitivity, anti-symmetry, up-linearity, and leaf. Recall th
(up-linearity) for all X, Y, Z, [tree(X, Z) and tree(Y, Z) tree(X, Y) or tree(Y, X)]

(leaf) for all X, Y [tree(X, Y) and - (there exists a Z such that tree(Y, Z)) leaf(Y)]

These axioms then allow us to capture the appropriate reasoning with the hierarchy so
that from (11), (15) and the transitivity axiom for example we can infer the following,

(16) tree(library_world. clerk).

Another inter-ViewPol
formali

relation (rule 1 between ViewPoints deploying different

(17) for all A; [[table (A1,) & .. &pre(Am,), _]

(18) for all B [[table(gpost(_, B1) & .. & post(_, Bj,))]
there exists X such that [leaf(X) and X = B;]]
wherel<ism

As before, formulae (10) - (15) plus the axioms of reflexivity, transitivity,
antisymmetry, leaf and up-linearity are elementsin D, while (17) and (18) are elementsin
E. Remember that we are assuming that rules 1 and 2, expressed in logic as (6), (17) and
(18) above, are correctly defined by the method designer.

Now suppose that formula (3) had not been inserted in the relevant ViewPoint, and
again using the CWA together with a classical logic theorem prover, we can see how
insufficient information in (D, E) leads to inconsisigncy.

We now turn our attention to the situation wherejie have too much information in a
pair of partial specifications. Suppose in ViewPjiiht 1, we have the following
information,

(19) reference_book(childrens_dictionary)
(20) for all X, reference_book(X) -lendable(

and suppose in ViewPoint 2, we hav ation,

(21) childrens_book(childrens_dictionary)
(22) for all X, childrens_book(X) lendable(X)

-11 -

Taking the formulae in (19) - (22) as elements in D, we have an inconsistency in (D,
E) resulting from too much information. Such a situation is common in developing
specifications, though the causes are diverse. We address the handling of this situation in
the next section.

To summarise, in this section we have advocated the use of classical logic together
with the CWA to provide a systematic and well-understood way of finding inconsistency
in specifications. It will not be possible to provide a universal and meaningful rewrite
from any software engineering formalism into classical logic. However, for partia
consistency checking it is often possible to compare some of the specification
information, plus other information such as inter-ViewPoint relations, for two, or maybe
more, ViewPoints.

6 Acting on Inconsistency

For the meta-level inconsistency handling we use an action-based meta-language [16]
based on linear-time temporal logic. We use a first-order form where we allow
quantification over formulae (Note that we are not using a second-order logic - rather we
are treating object-level formulae as objects in the semantic domain of the meta-level.).
Furthermore, we use the usual interpretation over the natural numbers - each number
denotes a point in time. Using this interpretation we can define operators such as LAST"
and NEXTN where LASTM A holds at timet if A holds at t-n, and NEXT" A holds at time t
if A holds at t+n.

Using temporal logic, we can specify how the databases should evolve over time. In
this way, we can view the meta-level handling of inconsistent ViewPoint specificationsin
terms of satisfying temporal logic specifications. So if during the course of a consistency
check between two ViewPoints an inconsistency is identified, then one or more of the
meta-level action rules will be fired. Furthermore, since we use temporal logic, we can
record how we have handled the ViewPoints in the past.

The meta-level axioms specify how to act according to the context of the
inconsistency. This context will include the history behind the inconsistent data being put
into the ViewPoint specification - as recorded in the ViewPoint work record - and the
history of previous actions to handle the inconsistency. The meta-level axioms will also
include implicit and explicit background information on the nature of certain kinds of
inconsistencies, and how to deal with them.

To illustrate the use of actions at the meta-level, we now return to the examples
introduced in section 5. For handling the inconsistency resulting from formulae (1), (6)
and (9), a simplifi lution would be to incorporate the kind of meta-level axiom (23)
into our frameworlq-or this we provide the following informal definitions of the key
predicates

« data(vpl, A;) hgelis if the formulae in the database A, are alogical rewrite of selected

information in Point vpl.
* union(A,, A,) false holds if the union of the databases A, and A, implies
inconsistency.

* inconsistency_source(union(l,, A,), S) holdsif Sisaminimal inconsistent subset of
the union of A; and A,

« likely_spelling_problem(S) holds if the cause of the inconsistency is likely to result
from typographical errorsin S. Since we are using a temporal language at the meta-

-12 -

level, we can also include conditions in our rule that we haven’t checked this problem
at previous points S in time. This means that our history affects our actions.

o tell_user(“isthere a spell problem?’, S) if the message together with the datain Sis
outputted to the user. In software process modelling terminology, thisis equivalent to
atool invocation say, such as a spell-checker or other tool [12].

Essentialy, this rule captures the action that if Sis the source of the inconsistency and
that the likely reason that Sis inconsistent is a typographical error, then we tell the user
of the problem. We assume that the user can usually deal with this kind of problem once
informed. However, we should include further meta-level axioms that provide alternative
actions, in case the user cannot deal with the inconsistency on this basis. Indeed, it is
likely that for handling inconsistency between different formalisms such asin (1), (6) and
(9), there will be a varjgty of possible actions. This meta-level axiom also has the
condition that this actiorjs blocked if likely _spelling_problem(S) has been identified in
either of the two previouglwo steps. This is to stop the same rule firing if the user wants
to ignore the problem fo

(23) data(vpl, Aq) and
and union(Aq, AS
and inconsistenc rce(union(dq, A,), S)

_spelling_problem(S)
NEXT tell_user(“is there a spell problem?”, S).

In a similar fashion, we can define appropriate meta-level axioms for handling the
inconsistency resulting from formulae (9), (10), (17) and (18) in the above examples.

For handling the problem of too much information occurring in formulae, such as for
example (18) - (21), a simplified solution would be to incorporate the kind of meta-level
axiom (24) into our framework, where likely_conflict_between_specs problem(A,, A,)
holds if the inconsistencygrises from just information in the specification. In other words

this inconsistency does nfillarise because the method or tools have been used incorrectly,
but rather, it arises from tj incorrectly specifying system.

(24) data(vpl, Aq)

and union(Aq, A)) Ise
and likely_config etween_specs_problem(Aq, A))
NEXT tell_user(“is there a conflict between specifications?”, (A1, A))).

These definitions for the meta-level axioms have skipped over many difficult technical
problems, including the general problems of decidability and complexity of such axioms,
and the more specific problems of say defining the predicates “inconsistency source”,
“likely_spelling_problem”, and “likely_conflict_between_specs problem”. Also, we have
skipped over the many ways that this approach builds on a variety of existing work by
various authors in database updates, integrity constraints, database management systems
and meta-level reasoning. Nevertheless, we have illustrated how a sufficiently rich meta-
level logic can be used to formally capture intuitive ways of handling inconsistencies in

-13-

our (D, E) databases. Moreover, such meta-level axioms may also be used to describe,
guide and manage the multi-ViewPoint development process in this setting. The
advantage over traditional approaches to process modelling [12] however, is that our
technique allows very fine-grain modelling - at alevel of granularity much closer to the
representations deployed by the various ViewPoints [27].

7 Viability of Inconsistency Handling

Since the proposed system uses temporal logic, it is based on a well-devel oped
theoretical basis. It is straightforward to show that this meta-level language inherits
desirable properties of first-order until-since (US) temporal logic such as a complete and
sound proof theory, and of semi-decidability. This temporal logic is sufficiently general
for our purposes. Assuming that time corresponds to a linear sequence of natural numbers,
we have all the usual temporal operators including NEXTN, LASTN, SOMETIME_
IN_THE_FUTURE, SOMETIME_IN_THE_PAST, and ALWAYS. Similarly, if we assume time
corresponds to alinear sequence of real numbers, we have many of these operators.

Furthermore for some sufficiently general subsets of US temporal logic there are viable
model building algorithms, such that if the meta-level specification is consistent then the
algorithm is guaranteed to find a model of the specification [4]. Using these properties we
execute temporal logic specifications to generate a model [14]. This has led to the
approach of Executable Temporal Logics - which have been implemented and applied in a
variety of applications [5, 10, 22]. In the approach of executable temporal logics we view
temporal logic specifications as programs. The model generated by executing the program
is then the output from the program.

Though we have not yet implemented the described inconsistency handling for the
ViewPoints framework, some of the components required have been implemented.
Currently we have an implementation of the ViewPoints framework without the logic-
based inconsistency handling technique described in this paper. Called The Viewer [25], it
provides tool support for the construction of ViewPoint specifications in a variety of
formalisms such as those in figures 4 and 5. Tool support for in-ViewPoint consistency
checking is also provided. We also have an implementation of first-order executable
temporal logic, and we have a first-order theorem prover for consistency checking [17].
We now need to implement the rewrites from the ViewPoints formalism to classical logic
and to axiomatise meta-level actions for handling inconsistency.

Finaly, in a distributed development setting, issues relating to inter-ViewPoint
communication, co-ordination and synchronisation become even more significant. In [26],
we proposed a preliminary model for such communication and investigated protocols and
mechanisms for exchanging data between ViewPoints. However, the application of such
protocols with the inconsistency handling techniques described here, is beyond the scope
of this paper.

8 Discussion and Related Work

System specification from multiple perspectives using many different specification
languages has become an area of considerable interest. Recent work by Zave & Jackson
[37] proposes the composition of partial specifications as a conjunction of their assertions
in aform of classical logic. A set of partial specifications is then consistent if and only if
the conjunction of their assertionsis satisfiable. Zave & Jackson’s work complements our
approach, but it does appear to differ in that they assume they can use classical logic as an
underlying universal formalism. Also they do not consider the handling of inconsistent
specifications.

- 14 -

Other authors have also considered multi-perspective or multi-language specifications,
but again do not consider the handling of inconsistencies. In [36], specification level
interoperability between specifications or programs written in different languages or
running on different kinds of processors is described. The interoperability described relies
on remote procedure calls and ways that interoperating programs manipul ate shared typed
data. The work serves as a basis for “the disciplined and orderly marshaling of
interoperable components’ to eradicate inconsistencies in the overall system specification
or program. Wile [35] on the other hand uses a common syntactic framework defined in
terms of grammars and transformations between these grammars. He highlights the
difficulties of consistency checking in a multi-language framework, which suggests that,
again, the handling of inconsistencies, once detected, has not been addressed in his work.

Traditionally, multiparadigm languages, which deploy a common multiparadigm base
language, have been used to combine many partial program fragments [19], while more
recently the use of a single, common canonical representation for integrating so-called
“multi-view” systems has been proposed [23]. Both these approaches to integration do not
support the notion of transient inconsistencies.

One approach that has addressed handling certain kinds of inconsistency isthat of Balzer
[3]. Here, the notion of relaxing constraints and tolerating inconsistencies is discussed,
and a simple technique that allows inconsistencies to be managed and tolerated is
presented. Inconsistent data is marked by guards (“pollution markers’) that have two uses:
(1) to identify the inconsistent data to code segments or human agents that may then help
resolve the inconsistency, and (2) to screen the inconsistent data from other segments that
are sensitive to the inconsistencies. Our approach goes a further by explicitly specifying
the actions that may be performed in order to handle the inconsistencies.

In conclusion, the work presented in this paper outlines how we may address important
issues of inconsistency handling in multi-perspective specifications. We have only
sketched how this may be done. Nevertheless, in this process we have raised a series of
new and important research questions.

Acknowledgements

We wish to thank the anonymous reviewers for their constructive comments. This work
was partly funded by the CEC ESPRIT BRA project DRUMS Il and the DTI Advanced
Technology Programme (ATP) of the Eureka Software Factory (ESF).

References

1. A. Alderson (1991), “Meta-CASE technology”, Proc. of European Symposium on
Software Development Environments and CASE Technology, Konigswinter, June
1991, LNCS 509, Endres & Weber (eds.), 81-91, Springer-Verlag.

2. A.R. Anderson & N.D. Belnap (1976), The Logic of Entailment, Princeton
University Press.

3. B.Balzer (1991), “Tolerating Inconsistency”, Proc. of 13th International Conference
on Software Engineering (ICSE-13), 13-17th May 1991, Austin Texas, 158-165.

4. H. Barringer, M. Fisher, D. Gabbay, G. Gough & R. Owens (1989), “MetateM: A
framework for programming in temporal logic”, REX Workshop on Stepwise
Refinement of Distributed Systems, LNCS 430, Springer-Verlag.

-15-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

H. Barringer, M. Fisher, D. Gabbay & A. Hunter (1991), “Meta-reasoning in
executable temporal logic”, Proc. of the 2nd International Conference on the
Principles of Knowledge Representation and Reasoning, 453-460, Morgan
Kaufmann.

J. Bell (1990), “Non-monotonic reasoning, non-monotonic logics, and reasoning
about change”, Artificial Intelligence Review, 4, 79-108.

H. Blair & V. Subrahmanian (1989), “Paraconsistent logic programming”,
Theoretical Computer Science, 68, 135-154.

N.C. da Costa (1974), “On the theory of inconsistent formal systems’, Notre Dame
Journal of Formal Logic, 15, 497-510.

J. Doyle (1979), “A truth maintenance system”, Artificial Intelligence, 12, 231-272.
M. Finger, P. McBrien & R. Owens (1991), “Databases and executable temporal
logic”, Proc. of ESPRIT conference 1991.

A. Finkelstein, J. Kramer & M. Goedicke (1990), “ViewPoint Oriented Software
Development”, Proc. of International Workshop on Software Engineering and its
Applications, Toulouse, France, December 1990.

A. Finkelstein, J. Kramer & M. Hales (1992), “Process Modelling: a critical
analysis’, Integrated Software Engineering with Reuse, P. Walton & N. Maiden
(eds.), Chapman and Hall and UNICOM, 137-148.

A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein & M. Goedicke (1992),
“ViewPoints: A Framework for Integrating Multiple Perspectives in System
Development”, International Journal of Software Engineering and Knowledge
Engineering, 2(1):31-58, March 1992.

D. Gabbay (1989), “Declarative Past and Imperative Future: Executable temporal
logic for interactive systems’, Proc. of Colloquium on Temporal Logic in
Soecification, B. Baniegbal, H. Barringer & A. Pnueli (eds.), LNCS 398, Springer-
Verlag.

D. Gabbay & A. Hunter (1991), “Making inconsistency respectable: Part 17,
Fundamentals of Artificial Intelligence Research, Ph. Jorrand & J. Kelemen (eds.),
LNCS 535, Springer-Verlag.

D. Gabbay & A. Hunter (1992), “Making inconsistency respectable: Part 27,
Technical report, Department of Computing, Imperial College, London, 1992.

D. Gabbay & H. Ohlbach (1992), “ Quantifier Elimination in Second Order Predicate
Logic”, Proc. of the 3rd International Conference on the Principles of Knowledge
Representation and Reasoning, 453-460, Morgan Kaufmann.

P. Graubmann (1992), “The HyperView Tool Standard Methods’, REX Technical
report REX-WP3-S E-021-V1.0, Siemens, Munich, Germany, January '92.

B. Hailpern (ed.) (1986) “Special issue on multiparadigm languages and
environments”’, |IEEE Software, 3(1):10-77, Special issue on multiparadigm
languages and environments, January 1986.

J. Kramer & A. Finkelstein (1991), “A Configurable Framework for Method and
Tool Integration”, Proc. of European Symposium on Software Development
Environments and CASE Technology, Konigswinter, Germany, June 1991, LNCS
509, 233-257, Springer-Verlag.

J. Kramer (1991), “CASE Support for the Software Process. A Research
Viewpoint”, Proc. of 3rd European Software Engineering Conference (ESEC 91),
Milan, Italy, October 1991, LNCS 550, A. van Lamsweerde (ed.), 499-503,
Springer-Verlag.

-16-

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

J. Krogstie, P. McBrien, R. Owens & A. Selvit (1991), “Information systems
development using a combination of process and rule-based approaches’, Proc. of the
International Conference on Advanced Information Systems Engineering, LNCS,
Springer-Verlag.

S. Meyers & S.P. Reiss (1991) “A System for Multiparadigm Development of
Software Systems”, Proc. of 6th International Workshop on Software Specification
and Design, Como, Italy, 202-209, 25-26th October 1991, IEEE CS Press.

G. Mullery (1985), “Acquisition - Environment”, Distributed Systems. Methods and
Tools for Specification, M. Paul & H. Siegert (eds.), LNCS 190, Springer-Verlag.
B. Nuseibeh & A. Finkelstein (1992), “ViewPoints: A Vehicle for Method and Tool
Integration”, Proc. of Fifth International Workshop on CASE (CASE ‘92), 6-10th
July 1992, Montreal Canada, 50-60, |EEE CS Press.

B. Nuseibeh, J. Kramer & A. Finkelstein (1993), “Expressing the Relationships
Between Multiple Views in Requirements Specification”, (to appear in) Proc. of
International Conference on Software Engineering (ICSE-15), Baltimore, Maryland,
USA, 17-21st May 1993, IEEE CS Press.

B. Nuseibeh, A. Finkelstein & J. Kramer (1993), “Fine-Grain Process Modelling”,
Technical report, Department of Computing, Imperial College, London, 1993.

T. Pequeno & A. Buchsbaum (1991), “The logic of epistemic inconsistency”, Proc.
of the 2nd International Conference on the Principles of Knowledge Representation
and Reasoning, 453-460, Morgan Kaufmann.

J. Pocock (1991), “VSF and its relationship to Open Systems and Standard
Repositories”, Proc. of European Symposium on Software Development
Environments and CASE Technology, Konigswinter, June 1991, LNCS 509,
Endres & Weber (eds.), Springer-Verlag, 53-68.

R. Reiter (1978), “On Closed World Databases’, Logic & Databases, H. Gallaire &
J. Minker (eds.), Plenum Press.

F. Sadri & R. Kowalski (1986), “An application of general theorem proving to
database integrity”, Technical report, Department of Computing, Imperial College,
London.

G. Wagner (1991), “Ex contradictione nihil sequitur”, Proc. of the 12th International
Joint Conference on Artificial Intelligence, Morgan Kaufmann.

A.l. Wasserman & P.A. Pircher (1987) “A Graphical, Extensible Integrated
Environment for Software Development”, Proc. of 2nd Symposium on Practical
Software Development Environments, SIGPlan Notices, 22(1):131-142, January
1987, ACM Press.

A.l. Wasserman (1990) “Integration in Software Engineering Environments’, Proc.
of International Workshop on Environments, Chinon, France, September 1989,
LNCS 457, F. Long (ed.), 137-149, Springer-Verlag, 1990.

D.S. Wile (1991) “Integrating syntaxes and their associated semantics”,
USC/Information Sciences Institute Technical Report, 1991.

J.C. Wileden, A.L. Wolf, W.R. Rosenblatt & P.L. Tarr (1991) “ Specification-level
interoperability”, Communications of the ACM, 34(5):72-87, May 1991.

P. Zave & M. Jackson, “Conjunction as Composition”, (to appear in) Transactions
on Software Engineering and Methodology, ACM Press, 1993.

-17 -

