
Edit, Compile, Debug – From Hacking to Distributed Engineering

Christian Nentwich, Wolfgang Emmerich and Anthony Finkelstein
Department of Computer Science

University College London, London WC1E 6BT

{c.nentwich,w.emmerich,a.finkelstein}@cs.ucl.ac.uk

1 Background

Specifying a system from different viewpoints, in het-
erogeneous design notations, and using a distributed
team, introduces several challenges that test the state
of the art in software engineering. One of these chal-
lenges is to check the consistency of such heterogeneous
notations, and to deal with the problem of inconsistency
throughout the lifecycle — including the management
of inconsistency between notations at the same stages
of the lifecycle, such as multiple UML models, and in-
consistency between stages, such as the consistency of
design and code.

We envisage a scenario where developers can execute
consistency checks at arbitrary stages of the lifecycle in
order to get feedback. Developers are presented with
reports on the current consistency status, and can de-
cide whether or not to take action. Because of the de-
synchronised nature of distributed software engineering,
we take a lightweight approach that does not require to-
tal consistency, but instead fetches specifications when
developers are prepared to evaluate consistency, and
points out inconsistencies without forcing changes.

Our most recent work is aimed at providing developers
with a range of choices for repairing documents, and
at addressing problems of scalability in checking dis-
tributed documents.

2 Consistency Checking

To support the kind of activity outlined above we have
developed xlinkit [2], a generic technology for check-
ing the consistency of distributed, heterogeneous docu-
ments. xlinkit is a fully implemented, working system
that has been used in several industrial case studies and
can be downloaded at http://www.xlinkit.com.

While xlinkit can be used in many application domains,
it is very suited to software engineering documents. In

[3] we describe the application of xlinkit to checking the
consistency of the design, implementation, and deploy-
ment descriptors of Enterprise JavaBeans (EJB)-based
systems.

Consistency is defined in xlinkit through a set of con-
straints, called consistency rules. A consistency rule
defines how elements in different documents are inter-
related. Figure 1 gives an example of a consistency rule
(using xlinkit’s XML rule syntax) that prescribes that
interfaces that inherit from “EJBObject” must be im-
plemented by a class that inherits from “EntityBean”
or “SessionBean”.

xlinkit returns as its output a set of links that connect
inconsistent elements in document. This is an improve-
ment on the boolean evaluation of first order formulae
because the links pinpoint precisely the combination of
elements that causes the inconsistency. Figure 2 shows
a link generated by evaluating the sample rule. In this
case, the link points to only one location, the interface
for which no corresponding class was found.

3 Consistency Management

Consistency management, the problem of detecting, as-
sessing and potentially resolving inconsistency, is a deli-
cate topic that is subject to a variety of influences, from
domain specific ways of accomplishing goals, down to
individual working preferences. Having provided a so-
phisticated system for detecting inconsistency, our goal
is to specify a very basic, rudimentary mechanism for
reporting inconsistencies and for making simple changes
in order to remove inconsistencies. Once such a basic
mechanism is in place, it can form the infrastructure for
a more elaborate consistency management or conflict
resolution process that can take into account informa-
tion such as workflow, or policies that set priorities for
different kinds of specifications to enable overriding.

On a very abstract level, we expect a consistency man-

1

<forall var="i" in="/java/interface[extends/@name=’EJBObject’]">

<exists var="c" in="/java/class[../package/@name=$i/../package/@name

and (implements/@name=’EntityBean’ or

implements/@name=’SessionBean’)]"/>

</forall>

Figure 1: Sample xlinkit consistency rule

<xlinkit:ConsistencyLink ruleid="javaejb_inter.xml#id(’r2’)">

<xlinkit:State>inconsistent</xlinkit:State>

<xlinkit:Locator

xlink:href="Job.java#/java/interface"/>

</xlinkit:LinkBase>

Figure 2: Sample consistency link

Edit

Check

Repair

Report

Figure 3: Consistency management process

agement process to look like Figure 3. Developers will
decide to assess the consistency of their documents,
make a check, get reports back, and either decide on
an action for “repairing” the documents, or defer the
decision and go back to editing. We have already ad-
dressed the checking process, and will concentrate on
report generation and repair in the next two sections.

4 Report Generation

xlinkit’s linking diagnostics, which connect inconsistent
elements in distributed specifications and deliver them
in the form of an XLink [1] linkbase, are powerful but
not particularly friendly for human consumption. We
have developed a report generation tool, Pulitzer, that
can read such linkbases and display marked up infor-
mation about the elements that the locators point to.

Using Pulitzer it is possible to provide reports similar
to traditional compiler error output — but at the inter-
viewpoint level! — in a variety of formats. Figure 4
shows an HTML report generated after checking an EJB
system.

5 Repair

When elements in distributed specifications have been
linked and identified as inconsistent, it should be possi-
ble to offer some simple repair choices to developers. As
an example, in our sample rule given above we have an
inconsistency because for some Java interface we did not
find a correct implementation. In this case, we could of-
fer the developer to automatically introduce a new Java
class that fulfills the requirements.

In general, it is straightforward to enumerate the repair
options available to developers. One case add elements
to specifications, delete elements, and change proper-
ties of elements. When adding or changing elements,
one can let developers enter values for the properties of
elements, search the specifications for existing values to
use, or fall back to defaults.

The challenging task is then not to enumerate repair
options but to prune them in order to leave only “sen-
sible” choices. In our sample rule, we could remove
the inconsistency by deleting the offending Java inter-
face — although in most cases this would be attacking
the symptom instead of the problem, and would not
be a sensible choice. We believe that the developers
responsible for establishing the constraints should be
able to determine which repair actions make no sense.
We are planning to analyse the formulae so as to come
up with an exhaustive list of actions and presenting a
simple interface for pruning them down.

Should this kind of pruning process still result in an
overwhelming number of repair choices, domain specific
heuristics can be used to cut them down further. For
example, it may be possible in a software engineering
setting to use a “differential” approach that compares
the consistency status of specifications before and after
the last consistency check, and uses this information to
determine more precisely which elements may have to

2

Figure 4: Sample report

be changed. Whether this approach works or not, by
providing an enumeration of the repair choices based on
formula analysis, we will establish a sound infrastruc-
ture on top of which such heuristics can be built.

6 Scalability

Scalability problems occur in various guises in consis-
tency management. A good system must be able to
scale as the number of documents and constraints in-
creases, and as the size of documents increases. It must
also be scalable in terms of user-friendliness, by provid-
ing mechanisms that simplify the expression of a large
number of constraints.

We are currently working to address the problems of
checking large documents and large numbers of doc-
uments through a variety of means: by providing in-
cremental checks, which analyse changes to documents
and minimize the number of constraints that have to be
rechecked; by implementing a distributed supervisor –
worker architecture that can deal with large amounts of
data; and by using the caching facilities of native XML
databases to lower the main memory requirements of
our service. Substantial progress has been made in these
areas.

We have also implemented a macro mechanism and a
predicate plugin mechanism for our formula language
that greatly facilitate the expression of a large number
of constraints. We are currently evaluating these fea-
tures in case studies.

7 Conclusion

We have outlined our current position with regard to
achieving a system for managing the consistency of dis-
tributed specifications. xlinkit takes a big step in this
direction by providing a solid base for checking the con-
sistency of distributed, heterogeneous documents.

We are now working to establish a simple method for
suggesting repair options to developers, without com-
promising our view of inconsistency as something that
cannot necessarily be eliminated. We are also evaluat-
ing our tools for dealing with scalability problems that
arise as documents sizes and the number of documents
grow.

References

[1] S. DeRose, E. Maler, and D. Orchard. XML Linking
Language (XLink) Version 1.0. W3C Recommen-
dation http://www.w3.org/TR/xlink/, World Wide
Web Consortium, June 2001.

[2] C. Nentwich, L. Capra, W. Emmerich, and
A. Finkelstein. xlinkit: a Consistency Checking and
Smart Link Generation Service. ACM Transactions
on Internet Technology, 2001. To appear.

[3] C. Nentwich, W. Emmerich, and A. Finkelstein.
Flexible Consistency Checking. Research note, Uni-
versity College London, Dept. of Computer Science,
2001. Submitted for Publication.

3

