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Abstract. When modelling complex biological systems it is often de-
sirable to combine a number of distinct sub-models to form a larger
composite model. We describe an XML based language that can be used
to specify composite models and a lightweight computational framework
that executes these models. The language supports specification of struc-
ture and implementation details for composite models, along with the
interfaces provided by each sub-model. The framework executes each
sub-model in its native environment, allowing extensive reuse of existing
models. It uses mathematical and computational connectors and trans-
lators to unify the models computationally. Unlike other suggested ap-
proaches for model integration, our approach does not impose one mod-
eling scheme, composition algorithm or underlying middleware frame-
work. We demonstrate our approach by constructing a composite model
describing part of the glucose homeostasis system.

1 Introduction

Recent years have seen the proliferation of mathematical models used to describe
biological phenomena. Among others, models have been proposed for describ-
ing metabolic processes, signalling pathways, transport processes and various
electro-physiological systems. While many detailed models describing various
biological aspects have been suggested, very few models describe a complete
physiological system, organism or organ, across scales. Such large scale models
can, theoretically, be created by integrating together existing detailed models
describing sub-aspects of the desired system[12], but the lack of suitable tools
for model integration in Systems Biology has made this task, so far, nearly im-
possible. This paper describes such a tool. In presenting this tool, we use the
structured view of models and modelling activity of the meta-model suggested
by Finkelstein et. al. in [1].

Models exist in a great variety of schemes and formats including differential
equations, stochastic and process algebra models, each of which have their at-
tendant facilities and tool support. However, it is possible to view each model
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as a specification for possible computations. Each model can be executed by a
software tool, or an engine. Using the model and a set of inputs, or context the
engine provides a set of outputs, or an interpretation. By mapping the outputs
of one model into the inputs of another, we can construct a composite model.
Repeatedly composing such models together can produce composite models that
are arbitrarily large and complex. The basic building blocks of such models,
which can not be further decomposed are known as elementary models. Elemen-
tary models are constructed in a modelling environment such as Mathematica
or XPPAUT.

1.1 The Composite Model Description Language

We have developed an XML based language, the Composite Model Description
Language (CMDL), that allows the description of composite and elementary
models, so that they can be used within our framework. CMDL also enables the
specification of composite models themselves.

For all models, A CMDL file can be used to describe the functionality and
the interfaces provided by the model. CMDL allows each sub-model to have
multiple interfaces to capture models that have more than one functionality,
for example: an ODE model can be solved to plot its dynamical variables versus
time, or analyzed to find its bifurcation points. CMDL also can be used to provide
attribution annotation and to link the behaviour of a model to the biological
phenomena, or aspects it represents, to allow for more convenient collation and
reuse. Thus, CMDL is MIRIAM[25] compliant. As suggested in the MIRIAM
proposal, we use existing ontologies to minimise ambiguity.

For composite models, A CMDL description also specifies the model archi-
tecture and implementation details: What sub-models are used, how they are
connected together, and in what order they should be executed.

CMDL has been designed to provide biological, mathematical and computa-
tional information about a model and to make that information easily accessible
to all parties.

1.2 The Computational Framework

We have also developed a lightweight computational framework that enables
the execution of composite models specified in CMDL. Individual models are
executed on their native tools and are integrated by the framework. Usually
they need not be modified in order to be used by the framework. The frame-
work utalizes translators to take account of inevitable differences in input and
output formats, including differences in timescale. It uses smart connectors to
resolve any feedback present in the composite model structure. Each part of
the framework is generic and based on well defined interfaces, so it can easily
be replaced by user-defined algorithms and translations. Our framework uti-
lizes existing middleware infrastructure, such as dynamic link libraries or Web
Services[37] for communicating between the different components. We do not
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presume the existence of any specific infrastructure, and the framework can po-
tentially run on many different middleware infrastructures. At the moment we
support only the integration of ODE models, but the framework can be easily
extended to support the integration of models developed in other schemes by
the development of appropriate connectors.

This paper proceeds as follows. Firstly, we review the current state of the art
in model integration in Systems Biology. We then describe the Composite Model
Description Language and the model integration framework in more detail. We
conclude by describing a composite model of glucose homeostasis that we have
specified and executed using the framework.

2 Related Work

2.1 Approaches originating in Systems Biology

At the moment, there exists no component middleware specifically designed for
the integration of models in Systems Biology. While our proposal shares some
concepts with Cell-ML[9],[23], SBML[28],[29] and the Systems Biology Work-
bench (SBW)[31], it also differs from them in several crucial aspects.

CellML[9],[23] was designed with the view of enabling modellers in Systems
Biology to specify composite models composed of a number of sub-models.
CellML requires the definition of input and output variables for each model;
model composition is achieved by connecting inputs and outputs from separate
models. CellML, however, does not allow specification of how the composed
model should be executed, detailed descriptions of the model interfaces, or the
integration of models which are not ODE models, or which are specified in a
format other then CellML. Thus, while CellML may be quite adequate for the
conceptual representation of a composite model, composed of several ODE based
sub-models, it does not, currently, fulfil our need for a composite model descrip-
tion language, which is more generic, on the one hand, and implementation
oriented, on the other hand.

The other currently prominent modelling language for Systems Biology is
SBML - The Systems Biology Markup Language[28],[29]. It attempts to stan-
dardize the expression of ODE based models of cellular systems, concentrating
on chemical reactions. SBML is a rich language in this environment and has
good take up within the community. However SBML currently does not allow
for modularization, has no support for interface specification, and does not sup-
port linkage with models created in other tools and languages. Thus, SBML can
not be used to integrate existing, heterogeneous models. We view our proposal
as complementary to SBML. We use the SBML annotation scheme, and exist-
ing SBML models can be easily wrapped with a CMDL description in order to
facilitate their integration with other models.

SBW[31] is a generic middleware for the integration of software tools, used
in Systems Biology. It was not designed specifically to facilitate the integration
of models, and is actually a quite generic middleware architecture, similar to
CORBA[10].
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Several tools exist to support model construction and simulation specifically
in Systems Biology. E-Cell[17],[34],[33] is a whole-cell and multi-cell simulation
tool based on an object oriented approach . While it enables the creation of
models using a few different schemes, such as reaction-diffusion, S-System and
flux distribution analysis schemes, it does not support the integration of models
created in other tools. Also, currently only one connecting algorithm, which is
embedded in the software itself, is supported.

The XS-system[2] enables the construction of models of cellular networks
from a set of building blocks representing syntheses, degradations, reversible re-
actions and enzymatic reactions. The resulting model is represented as a set of
ODEs, specifying the rate equations for the various substances involved. Rep-
resentation using SDEs (stochastic Differential Equations), timed automata or
hybrid automata is also supported, but in a rather limited manner. The XS-
system is designed to support the construction of models from a pre-existing set
of existing, elementary, building blocks rather than allowing the user to integrate
models created in different tools.

BioSpice[5], [6] is a collaborative project of American universities and re-
search centres. It aims to build a comprehensive software environment that inte-
grates a suite of analytical, simulation and visualisation tools related to cellular
systems biology. At the moment, the tool suite focuses on individual model con-
struction and analysis and does not address model integration.

2.2 Approaches originating in Software Engineering

There are a number of frameworks aimed at integrating heterogeneous compo-
nents for simulation. The High Level Architecture (HLA) [21] is a general purpose
architecture for simulation reuse and interoperability, developed for the Defense
Modeling and Simulation Office (DMSO). HLA uses a central service to coordi-
nate a number of models via a standard time-step interface. However, there is no
explicit language to describe model connections and only the time-step interface
is supported.

Generic component frameworks, such as CORBA[10], COM[11], Java Beans[18],
and more recently, Web Services[37] include an Interface Definition Language
(IDL), such as IDL for CORBA and COM, and WSDL[38] for Web Services,
used to specify the functional interfaces exposed by the components. Process ex-
ecution languages, such as BPEL-WS[4] , enable a multiple component execution
to be specified. These frameworks do not, however, allow detailed annotation of
the nature of each component necessary both for heterogeneous model integra-
tion and understanding of biological models. They also have poor support for
specifying the architecture of the overall model.

The concept of interconnecting components exist in many Architectural De-
scription Languages (ADLs), for example Darwin[13], [14], [15] and Wright[39],
including the possibility of a rich set of component connectors. However, these
languages can not be used for specifying the biological aspects the models rep-
resent, or how the models should be executed.
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The Unified Modelling Language [35],[36] is a very comprehensive model
description language, designed mainly for modelling software systems. The main
focus is on modelling in detail the code itself and not the aspects, or phenomenon,
that the code relates to. It is also difficult, in UML, to present an overall view
of the different functionalities a certain model has, as opposed to a detailed
representation of its interfaces. UML is also not well suited for representing the
overall component architecture of a system — ADLs are better suited for this
purpose.

We focus on the integration of currently existing approaches and techniques
in Systems Biology, such as ontologies and model description languages, with
Software Engineering tools and techniques such as ADLs, IDLs, process execu-
tion languages and component frameworks. Through this integration we build a
framework for the representation and execution of composite models in Systems
Biology.

2.3 Approaches originating in other scientific fields

The General Coupling Framework, GCF[19] enables the creation of composite
models out of individual model components, developed in a variety of program-
ming languages. Like CMDL, GCF supports the description of the interfaces
of the individual components, as well as the architecture of the overall model.
Unlike CMDL, GCF focuses on the integration of software modules written in
programming languages such as C, Fortran or Java, and requires ’put’ and ’get’
calls to be placed into the individual modules source code before they can be
used within the framework. Currently GCF uses a time-stepping algorithm, em-
bedded within the architecture, in order to perform the simulation.

The Cape-Open standard[8] is a specification for a collection of middleware
interfaces, aimed at enabling the integration of models and modelling tools in
the chemical industry. The interfaces enable the integration of different Unit
Operations Modules, modelling the activity of a unit operation within a chemical
plant, and numerical solvers, within the same simulation environment, called
the Simulator Executive. There is no proposed standard for the specification of
composite models, and it is assumed each Simulator Executive would use its own
proprietary methods for that.

3 The Composite Model Description Language

The Composite Model Description Language (CMDL) is an XML schema for
model description files. For all models, the CMDL file contains a section describ-
ing the biological phenomenon described by the model, a section describing the
functionalities and interfaces provided by the model, and a section describing
some relevant meta-data. For composite models, the model description file also
includes a specification of how the model should be implemented: What sub-
models are included, how they should be connected together, what connectors
should be used, and in what order should they be executed.
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3.1 The Model Interface Description

The top level element in any CMDL file is the model element, which has an id
attribute. A model contains meta-data, phenomenon and functionality elements
as it’s immediate sub-nodes. A composite model would also contain sub-models
elements, which are used to specify the submodels used in the model.

Meta-data The Meta-Data section contains the attribution annotation, as re-
quired by the MIRIAM[25] standard proposal. It includes a citation of the refer-
ence description or scientific paper with which the model is associated, details of
the model creators, date and time of creation and a statement about the terms
of distribution. These details are specified using RDF, in the same manner as in
SBML[9],[23] models.

phenomenon The phenomena element links the model with the biology it rep-
resents. It is used to precisely specify what biological phenomena are described
by the model, in accordance with the MIRIAM[25] proposal. It is composed of a
list of phenomenon elements describing the biological processes depicted by the
model. Each phenomenon element contains a textual description, and possibly
one or more references to terms from the same or different ontologies, which to-
gether serve to define the phenomenon. We use the SBML annotation element[30]
to refer to these terms. For example, a model describing Insulin stimulus of hep-
atocytes and the resulting signalling cascade will include the phenomena ”De-
tection of hormone stimulus” (GO term 9720), and ”Insulin receptor signalling
pathway” (GO term 8286).

A phenomenon element also contains compartment and aspect elements.
They are used to specify where within the organism the mentioned phenomenon,
or process, occurs and the concrete measurables that the model describes. These
measurables are the main modelling results, to be compared to the results ob-
tained in experiments or by executing other models for validation purposes. They
usually correspond to the main variables imported and exported by the model.
Aspects specified by the sub-models, which may be of less interest for the overall
model, need not be listed.

While our concept of compartments is similar to that of SBML, and the
SBML species element can be viewed as a subtype of our aspect element, we
use compartment and aspect elements only for annotation and not for the ac-
tual specification of the model itself. Compartments and aspects may again be
specified by making references to terms in various relevant ontologies. For exam-
ple, the cytoplasm of a hepatocyte can be specified by the combination of terms
hepatocyte(CELL:OBO term 182), and cytoplasm (GO term 5737) .

functionalities The functionalities section serves to describe the interfaces pro-
vided by the model. It describes, given what inputs, what outputs are provided
by the model. The same model may be interpreted in many different ways, using
the same or different sets of inputs and engines, to give different predictions
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or results. For example, an ODE model can be run in a simulation, when pro-
vided with all the required parameter values, or analyzed for its null clines and
bifurcation points. Thus, a model may provide several different functionalities.
These functionalities may be specified at different levels of detail: At the highest
level, the broad functionality level specifies what predictions a model can make
(output aspects) based on what data (input aspects). This level of specification
provides a basic summary of model behaviour that may be useful to biologists
in particular.

The next level is the mathematical functionality level, which is used mainly
to specify the mathematical format of the model’s inputs and outputs. This is
done by assigning at least one variable to each aspect. A variable in CMDL
is used to provide, usually quantitative, information regarding an aspect. For
example, a variable may serve to describe the concentration of Calcium over
time or the frequency of Calcium oscillations. A variable can be of many different
types - It can be, for example, a scalar, a vector, tensor, a matrix, a probability
distribution or a time track - describing how the value of a dynamical variable
is changing with time. By assigning a variable of a certain type to an aspect,
we specify exactly how this aspect is described, mathematically, by the model.
MathML may be used to describe the precise format of a variable. For example,
We can use MathML to specify that Ca = F (t), where t0 < t < t1. A variable
should have units, unless the dimension it describes is ’dimensionless’ such as,
’the number of particles’ .

The mathematical functionality also includes a list of required parameters.
The difference between parameters and variables is that usually the value of
parameters remains fixed during the course of an interpretation of a model,
while the values of variables may change. Currently we use the SBML syntax
for specifying parameters. However, the parameter value may be specified in
a separate, auxiliary, parameter values file. The enables the framework to run
multiple instances, or copies, of the same model with different parameters.

A mathematical functionality may also specify the mathematical scheme in
which the model is implemented: For example, chemical reactions can be math-
ematically described either deterministically as a set of ODE’s or stochastically
using Gillepsi’s algorithm.

The mathematical functionality description level is useful both to biologists
and mathematicians using the model.

The most detailed level is the computational interface description. The com-
putational interface specifies the type of interface supported - for example Web
Services, DLL libraries or a simple output file, the name of the interface sup-
ported, and a reference to a file containing the actual interface specification. This
would be a WSDL file for Web Services, or a C/C++ header file in the case of
a DLL library. These files specify the precise data structures of the variables
involved. In the case of Web Services, the WSDL file also specifies the location
of the sub models to be used by using the WSDL ’binding’ element.

The interface referenced should be one which is currently supported by the
orchestrator and at least some existing connectors, in order for the model to be
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used within our framework. Information at this level is for use by the computer
scientists responsible for implementing a composite model using this model as
one of its components.

A broad functionality may contain several different mathematical function-
alities and each mathematical functionality may in turn contain several different
computational interfaces. Thus, the different functionalities for each model form
a tree hierarchy.

3.2 Specifying Composite Models

In order to execute a composite model we need to specify what model instances,
translators and connectors should be used. We then need to map out the con-
nections between these elements, specifying how the inputs required by each
model instance are satisfied. Finally, we need to specify in what order the model
instances and the connections should be invoked, and which specific computa-
tional interfaces should be called. Thus, in a manner similar to BPEL[4] we
provide a process description notation with many features reminiscent of an ex-
ecutable language. Like an executable programming language a CMDL model
is unambiguous, provided that all of the internal models it is composed of are
unambiguous. In other words, a CMDL model will always yield the same results
for a specific set of inputs, provided that the elementary models it is composed of
behave in this manner. The key difference between languages such as CMDL or
BPEL and programming languages used to describe executable internal processes
is that a CMDL or BPEL file also calls for the execution of internal processes, or
in our case elementary models, without specifying how these internal processes
or elementary models actually handle the data - this is assumed to be specified
by the modelling language in which the elementary model is specified.

While the CMDL specification is detailed enough to support execution of the
composite model by our framework, it is also designed to enable mathematicians
and biologists to gain a broad understanding of how the model is put together.

Specifying the Model Architecture The first thing to be specified is the
model components to be used. A model component is an instance of a sub-
model executing on an engine, similar to the instance of an object in object
oriented programming. Many instances can be created from the same submodel,
perhaps using different parameters for each, each forming its own component.
For example, in order to model a liver cell plate, comprised of many hepatocyte
cells, one model component can be used to model each cell. All of these model
components can be created from the same hepatocyte cell model, using the same
or different sets of parameters. Different parameters may be used, for example,
to reflect biological differences between periportal and periveneous cells.

Connections specify the topology of the network of models. Horizontal con-
nections specify the connections between the sub-models - which output variables
of which models are used as inputs for other models. Vertical connections map
the variables of the overall model into the variables of the different components
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it is composed of. For each variable mapping, we may specify a translation. This
can be a simple scaling of the variable, or a more complex transformation. For
horizontal connections which form a feedback loop, we also specify which smart
connector should be used to resolve the feedback.

3.3 Specifying the algorithm used to solve the model

The algorithm for executing a composite model is specifed using a ‘sequence’
construct, similar to that found in BPELWS[4]. The sequence element contains
a list of invocation elements. Each invocation element specifies either the invo-
cation of a specific mathematical functionality on one of the pre-declared model
components, or the invocation of a smart connector, used to solve several model
components which are interdependent on one another. Currently, the only flow
of control supported is a simple linear one. In the future we plan to support
additional flow control elements already supported by BPELWS, such as those
used to implement loops and branches.

4 Example of a Model Specification File

The appendix contains an example composite model specification file. The model
described is of the generation of calcium oscillations in liver hepatocytes as
a result of hormonal stimulation. The model depicted forms part of a more
comprehensive model of this process, which will be described later.

The model file first defines the phenomena depicted by the model - the
glucagon stimulated signalling cascade. The phenomena is defined both through
a textual definition and through references to terms in the relevant ontologies.
We also specify the compartments in which the phenomena of interest occurs -
the hepatocyte membrane and cytoplasm. The last part of the phenomena ele-
ment lists the actual aspects, or measurables, depicted by the model. In this case
these are the activation level of G-Protein and the concentration of intracellular
calcium.

The model is a composite model composed of two sub-models, listed within
the ’submodels’ tag. The first model describes the hormone binding to the G-
Protein receptor, resulting in the release of PhosphoLipase into the cell, and the
second model describes how PhosphoLipase causes Calcium oscillations.

The model has one functionality, predicting G-Protein activation levels and
cytoplasmic concentration of Calcium, as a function of the concentration of
Glucagon in the blood, over time. This functionality is specified in precise mathe-
matical terms in the ’mathematical functionality’ section: It provides timetracks
of Calcium concentration and G-Protein activation level, and requires a time-
track of Glucagon levels. The units of the variables involved are also specified.

As we can see in the ’implementation’ section, to implement this function-
ality, we create one instance of each sub-model, and then link together the two
instances, feeding the PhosphoLipase concentration from the G-protein receptor
model into the Calcium model, and feeding back the Calcium concentrations
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from the Calcium model into the G-protein model. The model instances are
linked together using a waveform relaxation connector. The sequence of execu-
tion steps for this functionality contains only one step - the execution of the
connector.

5 The Model Integration Framework

Models specified in the CMDL language are executed by the orchestrator. The
orchestrator serves mainly as a workflow co-ordination service. It executes the
composite model by launching and executing the elementary sub-models on
their respective engines, such as Xppaut and Mathematica, and passing data
between them as required. The orchestrator communicates with the various en-
gines through engine wrappers - pieces of software that expose the functionality
of the different engines in a standard manner. The orchestrator uses connectors to
solve together models which are interdependent on one another, and translators
to carry out necessary data transformations between the models. The orchestra-
tor is used in conjunction with a set of supporting information services, used to
store data required for model runs, such as parameter values, as well as results
obtained from model execution and, in the future, the CMDL files themselves.
A separate paper about these information services is in preparation.

5.1 The core computational elements

The Engine Wrappers Individual instances of elementary models are exe-
cuted by the software tools, or engines, in which they were originally developed.
Accommodation of specific modelling tools within our framework is done through
wrappers. Wrappers expose the functionality of the modelling tool in a standard
way to the rest of the framework. Wrappers expose interfaces used to launch
new model components and enable access to and the execution of computa-
tional interfaces of components already launched. Internally, the wrappers use
the proprietary command set of the modelling tool in question to provide these
operations. We currently have available wrappers for Mathematica[24], Xppaut
[40], and for a C++ library used to numerically integrate differential equations
using the numerical recipes[27] library.

The Orchestrator At the core of the framework is an orchestrator, which
is used for executing composite models. The orchestrator serves mainly as a
coordinator or process execution service. It reads the details of the composite
model from the composite model specification file and then launches the sub-
models and executes them according to the instructions provided in the file. The
orchestrator maintains the global (composite) model variables, and passes them
as inputs to the sub-models as required.

The composite model file may also specify the use of connectors and transla-
tors. These are called by the orchestrator in order to link together models, where
the outputs of one model can not be linked to the inputs of the other model in
a straightforward manner.
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Connectors A connector serves to numerically integrate two models where such
an integration is not trivial. For example, integrating two or more ODE models
which are interdependent and which were implemented on different tools, as in
our case studies. Several different connectors can be used to achieve the same
task. For example, for integrating ODE models, one can use either a connector
implementing a wave form relaxation algorithm[22] or a step wise integrator as
described by [34].

The wave form relaxation algorithm uses a ‘seed’ function to guess the solu-
tion to one model and then iterates between solving each model, refining the over-
all solution to convergence. A step wise integrator runs all the models at once,
performing the numerical integration using a method such as Euler’s method or
RangKutta. Each of these algorithms requires a different mathematical interface
(see section 3.1).

The different connectors are best suited for use in different scenarios: A wave-
form connector typically executes at most a few dozen calls on each model, but
each call is computationally intensive, as a complete simulation is performed, and
requires the transfer of substantial amounts of data. A stepwise integration algo-
rithm may make millions of calls on each model, but each call is computationally
quick and requires the transfer of only a few values. Given these characteristics,
a waveform connector may be more suitable for connecting together models re-
siding on different, remote machines, while a stepwise integrator may prove to
be more efficient when all models reside on the same machine.

Connectors may also be used in order to integrate together models developed
in different schemes. For example, a connector can be built in order to connect
together a Discrete Event (DEVS) model with an ODE model. Such a connector
may generate events for the DEVS model when certain variables in the ODE
model cross certain thresholds. It may also modify the values of certain parame-
ters in the ODE equations when certain events occur. Such a connector may be
used to link a DEVS model of an intracellular signalling system with an ODE
model depicting gap-junctions and the flow of different chemical species through
it. Similarly, connectors can be devised for stochastic models, based on suitable
mathematical algorithms.

In addition to connectors, translators are used to take account of inevitable
differences in input and output formats, such as differences in the units used by
different models for the same variable, differences in timescale, or differences in
the data structures used by the different model implementations.

The aim of this free-form approach is to allow each model component to be
based on the most natural and appropriate scheme, rather than forcing each
model into a unified system such as ODEs or discrete events.

To conclude, our framework is modular not only in the deconstruction of
models, but in the components of the framework itself. Users of the framework
are free to select from an existing range of connectors and translators or build
their own, in order to achieve greater efficiency or the ability to integrate new
types of models.



12

Underlying infrastructure Our computational framework does not presume
any specific underlying middleware infrastructure. Currently, the engine wrap-
pers we have built expose their interfaces either through dll library calls, or
through web services[37]. Thus an orchestrator, or a connector, can both com-
municate efficiently with modelling tools residing on the local machine, and with
modelling tools residing on other machines, perhaps in remote locations. Future
engine wrappers may expose their functionality through other component mid-
dleware infrastructures, such as COM, CORBA[10] or SBW[31] .

5.2 supporting services

The computational framework is supported by a number of information services
that provide information about each model used during the integration and then
collect the results during a model run. Parameters required for the interpreta-
tion of a model are obtained from the context service, which serves as a central
repository for parameter values to be used in biological modeling. The results,
or interpretations, of the models are stored by the interpretation service. We en-
vision a central model repository, such as ’BioModels.net’[7] being used to store
existing models. One should be able to systematically search the repository in
order to find desired sub-models required for the creation of a new composite
model. We have implemented prototype versions of the context and interpreta-
tion services. Their functionality is exposed both via web services, to support
communication with the rest of the framework, and through a web based user in-
terface, which enables users to manually query the services for parameter values,
or the results of previous model runs. The context and interpretation services
will be described in greater detail in a future publication.

5.3 Example

Figure 1 shows a view of our model integration framework, which is used to
execute composite models, specified in CMDL. In the figure we can see the two
sub-models of the model depicted in section 4, executing on their respective tools,
Xppaut and Mathemtatica. Since the two models are interdependent, they are
integrated by means of a connector. The orchestrator is responsible for launching
the models and the connector, for passing to them the necessary input values
and model parameters, and for collecting the results and storing them on the
interpretation service.

6 Using CMDL to model glucose homeostasis

We are part of a research project at University College London whose aim is to
produce a physiological model of the liver which is integrated across scales[41]. As
part of the project, we have recently used CMDL, along with our model execution
framework, in order to specify and execute a composite model describing glucose
homeostasis[42]. Glucose is the readily available fuel, or source of energy, which is
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being supplied by the blood to all cells in the body. Glucose is stored in the liver,
in the form of glycogen. Glycogen buildup and release in the liver is controlled
by two hormones, Insulin and Glucagon, secreted by the Pancreas.

Our model is able to predict glucose levels in the blood, as a function of
the dietary regime, and various other parameters, such as the affinity of liver
cells receptors to Insulin. We have used new and existing models to create our
composite model of glucose homeostasis. Currently our model includes basic
models of hormone secretion by the Pancreas and glucose transport in the blood
stream, along with a quite detailed model of glucose release or intake by the liver,
as a function of current glucose and hormone levels in the blood. This detailed
model is in turn composed of 5 sub-models, describing the membrane receptors,
the second messengers responses within the cell, and the actual build-up and
breakdown of glycogen. The model and the sub-models it is composed of will be
described in detail in a subsequent publication.

As these models are interdependent on each other and form a feedback loop,
we have used a waveform relaxation connector in order to solve them together.
The models also use different units and different time scales. We have thus
used two simple scaling translators when connecting the models. One is used for
adjusting the time scales between the different models, and the other is used to
scale the other, time dependent variables.

By replacing some of the model components with simpler or more elaborate
models, we try to determine how sensitive is glucose homeostasis to details in
the description of the different sub-systems involved, specifically the receptor
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mechanisms and second messenger cascades in liver hepatocytes. We are trying to
ascertain whether a good approximation of glucose homeostasis can be achieved
by using relatively simple models of those sub-systems, or whether a detailed,
mechanistic model of them is required. By removing or changing some of the
model components, we try to ascertain what is the role of the different control
mechanisms, such as hormonal control and direct glucose control, in maintaining
glucose homeostasis.

7 Conclusions

We have presented CMDL, an XML Composite Model Description Language.
CMDL integrates elements from ontologies, mathematical description languages
such as MathML, interface description languages such as WSDL[38], Architec-
ture Description languages and process execution languages, in order to provide
a full description and specification of composite models in Systems Biology, mov-
ing from a broad description of the phenomenon depicted by the model and the
functionalities provided by it, through an architectural description of the imple-
mentation, down to the precise details required for model execution. While we
have borrowed heavily from well known techniques used to describe these dif-
ferent levels, we are currently unaware of any other attempt to integrate them
together in a similar manner.

We have also presented a lightweight computational framework that is able
to execute composite models specified in CMDL. It enables the integration of
models, executing on a variety of different tools, and potentially executing on
different machines in different locations. Unlike some other currently existing
frameworks, our framework does not assume a specific model integration algo-
rithm. Different connectors and translators can be used to connect the models
together, and model composers can select the connector or translator which is
most suitable to the task at hand and to the available facilities and model execut-
ing tools. The same overall composite model architecture can be implemented in
radically different ways - the sub-models can be integrated using a C++ frame-
work, with all models running on the same machine, or be integrated using Web
Services, with different models running on distributed machines.

We have used our framework to implement a composite model of glucose
homeostasis, composed of several existing models. These models run on a variety
of different time scales, use different units for the variables involved, and are
interdependent on one another. To tackle those issues, we have used a variety of
connectors and translators. This model is now being actively used for scientific
exploration.

One of our principal aims was to build a model integration framework which
is easy to use. Unlike other suggested frameworks, such as SBW[31] or GCF[19],
our framework does not require the writing of any program code on behalf of the
modellers. We are currently building graphical user interface tools that can be
used to specify and display the composite model specification files. Even without
these tools, only about two days of work were required to write the CMDL files
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for the composite glucose homeostasis model, and launch the integrated model,
by a person who was not familiar before-hand with XML or CMDL.

While up until now we have used our framework mainly to integrate ODE
models, with the provision of suitable connectors and translators, our framework
can be used to integrate discrete event, and perhaps process algebra models, as
well.
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8 Appendix - the Hepatocyte Glucagon G-Protein
Calcium model encoded in CMDL

<?xml version="1.0" encoding="UTF-8"?>

<model id="Glucagon_GProtein_Calcium"
xmlns="http://www.cs.ucl.ac.uk/biobeacon/CMSL1.0#">

<rdf:RDF xmlns:bqs="http://www.cellml.org/bqs/1.0#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#">
<!-- Meta Data goes here - Format is the same as in SBML/BIOMODELS models -->
<!-- ... -->

</rdf:RDF>
<phenomenon xmlns:sbml="http://www.sbml.org/sbml/level2">

<phenomena id="Glucagon_Stimulated_Sig_Cascade" metaid="ph1">
<!-- The main phenomena describe by the model -->
<description>

GLucagon hormonal stimulation of hepatocytes, and the
resulting internal signaling cascade

</description>
<annotation>

<!-- Link the phenomena to detection of Hormone Stimulus as listed in the Gene
Ontology -->

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="#ph1">

<dc:isVersionOf>
<rdf:Bag>

<!-- Detection of Hormone Stimulus -->
<rdf:li

rdf:resource="http://www.geneontology.org/#GO009720" />
</rdf:Bag>

</dc:isVersionOf>
</rdf:Description>

</rdf:RDF>
</annotation>
<!-- Now list the compartments in which the above mentioned phenomena, described

by the model, occurs-->
<!-- First the Hepatocyte membrane, which we link to the Open Biomedical Ontologies term

hepatocyte and to the Gene Ontology term membrane -->
<sbml:compartment id="Hepatocyte_Membrane"

metaid="Hepatocyte_Membrane">
<annotation>

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description

rdf:about="#Hepatocyte_Membrane">
<dc:isPartOf>

<rdf:Bag>
<!-- hepatocyte -->
<rdf:li

rdf:resource="http://obo.sourceforge.net/#OBO:0000182" />
</rdf:Bag>

</dc:isPartOf>
<dc:isVersionOf>

<rdf:Bag>
<!-- membrane -->
<rdf:li

rdf:resource="http://www.geneontology.org/#GO:0005886" />
</rdf:Bag>
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</dc:isVersionOf>
</rdf:Description>

</rdf:RDF>
</annotation>

</sbml:compartment>
<!-- Next the hepatocyte cytoplasm, linked to the Open Biomedical Ontolgies term hepatocyte and
to the Gene Ontology cytoplasm -->
<sbml:compartment id="Hepatocyte_Cytoplasm"

metaid="Hepatocyte_Cytoplasm">
<annotation>

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description

rdf:about="#Hepatocyte_Cytoplasm">
<dc:isPartOf>

<rdf:Bag>
<!-- hepatocyte -->
<rdf:li

rdf:resource="http://obo.sourceforge.net/#OBO:0000182" />
</rdf:Bag>

</dc:isPartOf>
<dc:isVersionOf>

<rdf:Bag>
<!-- cytoplasm -->
<rdf:li

rdf:resource="http://www.geneontology.org/#GO:0005737" />
</rdf:Bag>

</dc:isVersionOf>
</rdf:Description>

</rdf:RDF>
</annotation>

</sbml:compartment>
<!-- Now we list the aspects, the concrete measurables depicted by the model and which are
part of the depicted phenomena -->
<!-- First is G-Protein activation level, again linked to the corresponding term in the
Gene Ontology -->
<aspect id="G_Protein_Activation_Level"

metaid="G_Protein_Activation_Level">
<aspect_id>9234675</aspect_id>
<annotation>

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description

rdf:about="#G_Protein_Activation_Level">
<dc:isVersionOf>

<rdf:Bag>
<!-- G-Protein Activation -->
<rdf:li

rdf:resource="http://www.geneontology.org/#GO:0004930" />
</rdf:Bag>

</dc:isVersionOf>
<dc:isVersionOf>

<rdf:Bag>
<!-- Activation level -->
<rdf:li

rdf:resource="http://www.measurableproperties.org/#Activation_Level" />
</rdf:Bag>

</dc:isVersionOf>
</rdf:Description>

</rdf:RDF>
</annotation>
<text_definition>

Activation level of hepatocyte G Protein
</text_definition>
<description>

The activation level of a G Protein activated by external hormone stimuli.
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</description>
</aspect>
<!-- Another aspect described by the model is the concentration of

intracellular calcium. This time we define the term through a
reference to the term ’Calcium’ in the CHEBI ontology. -->

<sbml:specie id="Intracellular_Calcium"
name="Intracellular Calcium Concentration"
metaid="Instracellular_Calcium"
compartment="Hepatocyte_Cytoplasm">
<aspect_id>9234675</aspect_id>
<annotation>

<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description

rdf:about="#Instracellular_Calcium">
<dc:isVersionOf>

<rdf:Bag>
<!-- Calcium -->
<rdf:li

rdf:resource="http://www.ebi.ac.uk/#CHEBI:22984" />
</rdf:Bag>

</dc:isVersionOf>
<dc:relation>

<rdf:Bag>
<!-- Concentration -->
<rdf:li

rdf:resource="http://www.measurableproperties.org/#Concentration" />
</rdf:Bag>

</dc:relation>
</rdf:Description>

</rdf:RDF>
</annotation>
<text_definition>

The concentration of intracellular Calcium in Hepatocytes
</text_definition>
<description>

Calcium acts as an important second messenger.
Changes in concentration and specifically
oscillations occur as a result of hormonal stimulus, and
in turn affect enzymatic activity within the cell

</description>
</sbml:specie>

</phenomena>
</phenomenon>

<!-- The list of submodels of which this model is composed -->
<submodels>

<submodel description_file="./G_Protein.xml"
name="GProtein_activation" />

<submodel description_file="./Calcium_cAMP.xml"
name="PieceWise_Linear_Model_of_Calcium_Oscillations" />

</submodels>

<!-- This model has only one functionality, or possible usage. It can be used to
predict G-Protein activation levels and intracellular Calcium concentrations as a
function of blood Glucagon levels -->
<functionality

name="G_Protein activation and Calcium levels as a function of hormone stimulus">
<UsingAspects>

<!-- One may refer here to aspects already defined in the phenomenon section, and
also define additional aspects. Aspects can be defined simply by referring to the

aspect id in the parameter and aspect repository. -->
<aspect id="Blood_Glucagon_Levels">

<aspect_id>875446</aspect_id>
</aspect>

</UsingAspects>
<ProvidingAspects>
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<aspect_ref id="Intracellular_Calcium_Level" />
<aspect_ref id="G_Protein" />

</ProvidingAspects>

<!-- Here we list the functionalities of the submodels this model uses in order to implement
its own functionality -->

<using>
<functionality

functionality="G_Protein activation level as a function of Hormone Stimuli and Calcium"
model="G_Protein" />

<functionality
functionality="Calcium concentration as a function of G_Protein activation level"
model="PieceWise_Linear_Model_of_Calcium_Oscillations" />

</using>

<!-- The mathematical functionality term defines the functionality in precise mathematical terms.
We specify that the output of the model contains timetrack (Function depicting how a
variable changes through time) of G-Protein activation levels and of Calcium concentrations.
The input is a timetrack of blood hormone levels -->
<mathematical_functionality

name="G_Protein activation level and Calcium level vs. time as a function of
hormone stimulation">

<!-- We may specify the scheme that the model is implemented in - in this case,
Ordinary Differential Equations -->

<scheme composite="yes" type="differential_equations" />

<!-- Here we define units that will be used later on. The specification
is similar to that of CellML -->

<units name="milli_mole_per_liter">
<unit prefix="milli" units="mole" />
<unit exponent="-1" units="litre" />

</units>

<!-- The variable type that appears here applies to all variables within
this mathematical functionality, unless a variable

is explicitely declared to be of another type. Thus
we specify here that all the variables are of type
timetrack -->

<variable>
<type name="timetrack" />

</variable>

<!-- List of output and input variables. Note that each variable
is linked to the aspect it describes. -->
<outputVars>

<variable initial_value="0.0" id="G_Protein_Level"
units="pure_number">
<aspect_ref id="G_Protein" />

</variable>
<variable initial_value="0.0" id="Calcium_Level"

units="milli_mole_per_liter">
<aspect_ref id="Intracellular_Calcium_Level" />

</variable>
</outputVars>
<inputVars>

<variable initial_value="0.0" id="Hormone_Level"
units="milli_mole_per_liter" />

</inputVars>

<!-- Parameters are similar to input variables, the main difference being
that their value remains fixed through out the course of the simulation -->
<parameters>

<parameter units="milli_mole_per_liter" id="IP3_ER"
name="IP3 concentration threshhold in Endoplasmic Reticulum">
<aspect_id>9865543</aspect_id>
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<type name="scalar" />
</parameter>
<parameter units="milli_mole_per_liter"

id="Resting_GProtein"
name="Resting concentration of inactive G-protein">
<aspect_id>8754433</aspect_id>
<type name="range" />

</parameter>
</parameters>

<!-- Here the description of the interface provided by the
mathematical functionality ends, and we proceed to
describe how this functionality is actually implemented.
The orchestrator reads the ’implementation’ section
and executes it in order to execute the model -->
<implementation>

<!-- The model instances/components participating in the computation -->
<!-- In this simple example we have one component per model,
but one may specify mulitple components launched for the same model.
For example, one may specify a composite multi-cellular model using
multiple instances of the same cellular model -->
<component model="GProtein_activation"

id="G_Protein_Component" />
<component

model="PieceWise_Linear_Model_of_Calcium_Oscillations"
id="Calcium_Component" />

<!-- Next we map out the connections between the models. We first specify
which components are connected to each other, and which functionalities
and interfaces of each component are being used. Then
we actually map output variables into input variables -->
<!-- This connection is a ’horizontal’ connection, it links
sub-models on the same level -->

<CMSL_connection id="GProtein_Calcium_Coupling"
type="horizontal">
<map_components>

<mapped_component
functionality="G_Protein and PLC activation level as a function of Calcium"
mathematical_functionality="G_Protein and PLC activation levels vs. time
as a function of Calcium"
component="G_Protein_Component" id="G_Protein" />

<mapped_component
functionality="Calcium levels as a function of PLC activity levels"
mathematical_functionality="Calcium levels as a function of PLC activity levels vs. time"
component="Calcium_Component" id="Calcium" />

<map_variable>
<source mapped_component="G_Protein"

variable="PhosphoLipase" />
<dest mapped_component="Calcium"

variable="PhosphoLipase" />
</map_variable>
<map_variable>

<source mapped_component="Calcium"
variable="Calcium_Concentration" />

<dest mapped_component="G_Protein"
variable="Calcium_Level" />

<translator>
<scaling default_value="100.0"

name="Glucose_scaling" />
</translator>

</map_variable>
</map_components>

</CMSL_connection>
<!-- This is a ’vertical’ connections, wiring of the submodels variables to
the ’global’ model variables -->
<CMSL_connection type="vertical">
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<map_components>
<mapped_component

functionality="G_Protein activation level as a function of Calcium"
component="G_Protein_Component" id="G_Protein" />

<mapped_component id="Self" />
<map_variable>

<source mapped_component="G_Protein"
variable="G_Protein" />

<dest mapped_component="Self"
variable="G_Protein" />

</map_variable>
</map_components>

</CMSL_connection>
<CMSL_connection type="vertical">

<map_components>
<mapped_component

functionality="Calcium_Level as a function of GProtein activation"
id="Calcium" component="Calcium_Component" />

<mapped_component id="Self" />
<map_variable>

<source mapped_component="Calcium"
variable="Calcium_Concentration" />

<dest mapped_component="Self"
variable="Calcium_Level" />

</map_variable>
</map_components>

</CMSL_connection>

<!-- Now we specify what connector we use to actually implement the connection
between the two models. In this case we use a waveform relaxation connector -->

<CMSL_connector id="GProtein_Calcium_Coupling">
<integration_method name="Waveform_relaxation" />
<implement_connection

connection="GProtein_Calcium_Coupling" />
</CMSL_connector>

<!-- This is the specification of the algorithm the orchestrator has to follow in order
to execute this functionality. -->

<sequence>
<invoke name="step1">

<CMSL_connector
connector="GProtein_Calcium_Coupling" />

</invoke>
</sequence>

</implementation>

<!-- The last section in the mathematical functionality definition is the computational interface
section. It describes the precise data format of the model’s inputs and outputs -->
<computational_interfaces>

<implementation id="imp1">
<engine name="C++_Orchestrator" version="0.1" />
<!-- Here we specify additional data that the orchestrator may require in order

to execute the invocations, such as the computational interfaces to be used by the
connector -->

<engine name="C++_Orchestrator" version="0.1" />
<invoke step="step1">

<CMSL_connector
name="GProtein_Calcium_Coupling">
<use_interface mapped_component="G_Protein"

id="G_Protein_Interface" />
<use_interface mapped_component="Calcium"

id="Calcium_cAMP_Interface" />
</CMSL_connector>

</invoke>

</implementation>

<!-- Here we define the computational interface for the (top level) model. In this case it is
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simply an output file -->
<computational_interface id="G_Protein_Calcium_LZ"

type="output_file">
<subtype id="TimeTrack_Interface" implemention="imp1"/>

</computational_interface>

</computational_interfaces>
</mathematical_functionality>

</functionality>
</model>


