
Software Engineering Management: strategic choices in
a new decade

Barbara Farbey & Anthony Finkelstein
University College London,

Department of Computer Science,
Gower St. London WC1E 6BT, UK
{b.farbey|a.finkelstein}@ucl.ac.uk

1. ABSTRACT

This paper discusses the strategic choices faced by software
engineering managers and sketches a framework for
analysing those choices. It draws attention to the idea of a
software supply network which is novel in the context of
software engineering and has significant implications for
economics of software development.

2. INTRODUCTION

The late 1990s saw a proliferation of technical and
organisational advances in software engineering and in its
application. For the software engineering manager these
advances provide both a range of opportunities and a
considerable challenge in defining a software strategy. That
strategy must now include:
- linking the software organisation's work to corporate

strategic priorities
- understanding the market for the software

organisation's products, its nature and composition
- defining the distinctive capabilities of his/her own

software organisation vis a vis outside software houses
and commercial off-the-shelf packages

- understanding the nature of the networks of supply that
feed software production.

This is a more complex picture than it was in the early 90s.
The fundamental issues regarding alignment with corporate
strategy and achieving value for money have not changed.
But the context and the options have changed, and the
issues have broadened to include questions of purchasing
and supply. At the very least, management needs a guide to
the new options and issues and how they fit together. This
paper assembles a framework for the development of such
a guide. The framework places particular emphasis on the
impact of software strategy on requirements management.

3. DEVELOPMENT OF THE FRAMEWORK

The framework is built in three stages. The first stage
identifies the strategic purpose of the system, its intended
market, the type of system and the level of system
requirements. Together these form the "strategic context"

for development or acquisition. Working through this part
of the framework locates the proposed system within a
strategic "space".

Associated with any specific location are a number of
issues. These include anticipated strategic outcomes, the
nature of the costs, benefits and risks, potential
organisational advantages and disadvantages, options for
requirements management and for managing the systems
effort within the organisation. The framework thus has
two dimensions, strategic purpose and issues, which we
show as a matrix. Each cell in the matrix is, from the
manager's point of view, a potential issue to be resolved.

The next step in the argument is to set out the
contemporary options with respect to the systems
development and acquisition process. Following Fine [4]
the guiding principle here is that for optimal results,
development and acquisition choices must be made
together - as Fine has it "3-D concurrent design". We are
arguing additionally here that 3-D concurrent design
should be done within a strategic location which affects
the logic of the choices, and extend the matrix
appropriately.

The third part of the framework emphasises the new
thinking in supply chain management and organisational
design. This special focus is interesting because there is
now enough experience with outsourcing and COTS, and
with the new ways of doing business, to address questions
of inter-organisational relationships, contract design and
supply network composition in the context of software
engineering management.

The last step is to glue the matrices together. The final
matrix serves two purposes. First it is a map for managers
to address the options and issues systematically, whilst
maintaining sight of the whole "terrain". Second, it is a
research framework which we will ourselves use to
research and develop guidelines for managers to help
them address the issues.

4 . THE NEW SYSTEMS DEVELOPMENT AND
ACQUISITION CONTEXT

Corporate Strategy
In terms of strategic purpose there are fundamentally three
positions which the system(s) under consideration will be
required to address. These positions are defined with
respect to the current technological frontier.

First, the organisation may be lagging behind its
competitors. The purpose of the proposed system(s) is to
catch up.

Second, the organisation may be technologically in
contention, but want to shift the balance of resources. For
example as the larger, well-established firms move into e-
commerce, they come to strike a strategic balance between
all the diverse channels open to them.

Third, the organisation may be attempting to change the
rules of the game using new technology. Nowadays that
usually means information and communications
technology, but it could be a different way of organising, as
in the new supply chain management. The questions are on
two levels: first, how can we use systems to help achieve a
competitive breakthrough and second, can better software
management of itself produce a radical breakthrough -
reducing costs and time to market.

The first question is therefore is about how a proposed
system chimes with strategic purpose. This will affect the
view taken on the costs of the system, the range of benefits
expected and the attitude to risk. Strategic purpose will
affect decisions as to what can be safely outsourced and
what may have to stay in-house. Requirements too will be
affected. One can speculate, for example, that the
requirements of a system intended to support a strategic
breakthrough will be volatile - because they are "new".
This would imply a significant meta-requirement for
flexibility. The first three rows of Table 1 summarise these
considerations.

Table 1

Policy Implications: corporate strategic purpose
Economic Organisa

tional
Strategic Technical

C
os

ts

B
en

ef
it

R
is

ks

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

e
s C

om
pe

tit
iv

e
ad

va
nt

ag
e

C
o-

op
er

at
iv

e
ad

va
nt

ag
e

R
eq

ui
re

m
en

ts
M

an
ag

em
en

t

Catch-
up
Re-
positio
ning
Break
through

System type
The extensive use of software systems notably includes
different genres of system, for example embedded
systems, information systems, distributed systems and
groups of systems in product families. Individual systems
have for many years been set in the context of a systems
strategy, but for product lines, as Clements and Northrop
[1] point out, "... the evolution of a single product must be
considered within a broader context i.e. the evolution of a
product line as a whole" (my emphasis). It is the "broader
context" which requires new strategic thinking.

Market Structure
The stereotypical textbook system of the early 1990s was
a single, standalone system built for a single, known
customer. Many systems still are. But system today may
also be built for:
- a very small number of known customers
- for a mass market, for example COTS or web sites
- or, in the case of "future legacy" systems as it were,

like banking systems, for future unknown customers
and technological conditions.

Table 2

Policy Implications: System Type, Market Structure,
Level of Requirement

Economic Organi
sationa
l

Strategic Techn
ical

C
os

ts

B
en

ef
its

R
is

ks

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es

C
om

pe
tit

iv
e

ad
va

nt
ag

e

C
o-

op
er

at
iv

e
ad

va
nt

ag
e

R
eq

ui
re

m
en

ts
M

an
ag

em
en

t

Single,
standalone
system

Product
family
Re-use

Single,
known
customer
Very small
no. of
known
customers
Mass
market
Unknown,
future
customers

Institutional
, high level

Strategic
level
System
level

The level of requirement
Not all requirements arise from the fact of the system.
Some are strategic requirements of the organisation. Others
may come from standard industry institutions or legal
regulation. Industries operate in different ways and these
ways will be reflected in the requirements for any system
serving the industry. King [8], for example, is researching
"high-level requirements". These are requirements that
flow from the organisational and institutional settings of a
system, rather than directly from the application of the
system itself.

Corporate strategic requirements may also be outside the
immediate functional demands of the system, adding
strategic value, rather than functional value. The tracking
systems whereby customers can follow the progress of a
parcel, for example, are not essential to the progress of the
parcel itself, but essential to the competitiveness of the
organisation. The distinction is important because
attempting to change a high-level or strategic requirement
will have severe implications for costs and risks. One can
suggest therefore a division of requirements into
- Industry, institutional, or "high level", requirements
- Strategic requirements
- System level requirements.

Table 2 summarises the system type, market structure and
requirement level considerations.

5. PROCESS MODELS

There are a variety of models for system development. We
mention these without expansion as they will be familiar to
software engineers: waterfall, spiral, prototyping, extreme
programming and "synch. and stabilise" [2]. As with the
other options, they raise financial, organisational and
possibly strategic issues and the corresponding matrix is
shown in Table 3

Table 3

Policy Implications: process models
Economic Organis

ational
Strategic Technica

l

C
os

ts

B
en

ef
its

R
is

ks

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

e
s C

om
pe

tit
iv

e
ad

va
nt

ag
e

C
o-

op
er

at
iv

e
ad

va
nt

ag
e

R
eq

ui
re

m
en

ts
M

an
ag

em
en

t

Waterfall

Spiral

Prototyping

Extreme
programming
"Synch. and
stabilise"

6 . POLICY OPTIONS FOR SOFTWARE
ACQUISITION

The 1990s saw a variety of developments in the
procurement possibilities for software.

Outsourcing
The outsourcing movement was, and is, a complex one.
Outsourcing has not always been successful and is still
evolving [10]. Nevertheless, it represents a distinct option
for contemporary software engineering managers and, as
its most critical feature for this discussion, means co-
operation between two organisations, partly embodied in a
formal contract.

COTS
The concept of purchasing readymade software has also
become commonplace with the development of
commercial off the shelf system (COTS). COTS are
significant in software acquisition because they offer a
different relationship between vendor and purchaser from
that of an outsourcing contract. At the extreme, a shrink-
wrapped package for example, the relationship is a spot
contract. A typical outsourcing contract is relational,
extending over a period and involving some form of
partnering. From the point of view of the purchasing
organisation, moving to COTS implies a different form of
internal organisation, moving from "being a developer and
producer of systems, to being a consumer and integrator
instead" [15].

ASPs
A second, related development in that it utilises pre-
developed software is the advent of software Application
Service Providers (ASPs). Significant issues that arise
with ASPs for the consumer organisation, however, are
those to do with how the systems are financed: from the
capital or the revenue budget. The timing of expenditure
is different too. ASPs are essentially rented systems. The
cost is spread out over the life of the system in use, not
largely up-front as it is with other types of acquisition [5].

Open Source
With the success of Linux a third development is perhaps
at hand, namely the serious, industry-strength use of
"free", open-source software, exemplified also by
Netscape Navigator [6].

In the face of these choices the software engineering
manager needs to construct a strategy for software
acquisition. Table 4 summarises the various types of
acquisition. In practice each row is not "pure". There is a
variety of outsourcing types, just as there are various
degrees of "off the shelf". Moreover, the reality is likely to
include a combination of all these methods and the
combination is itself a management issue. But the matrix

as tabled will at least act as a starting point for further
detailed discussion in the organisation.

Table 4

Policy Implications: acquisition methods
Economic Organisational Strategic Techni

cal

C
os

ts

B
en

ef
its

R
is

ks

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

e
s C

om
pe

tit
iv

e
ad

va
nt

ag
e

C
o-

op
er

at
iv

e
ad

va
nt

ag
e

R
eq

ui
re

m
en

ts
M

an
ag

em
en

t

In-house
developme
nt
Outsourced
developme
nt
COTS

ASPs

Open
source
Legacy
upgrade
Combinatio
n

As before the issues form the columns of the Table.
However, the major implication of the new methods of
acquisition is that all of them entail relationships beyond
the user/ consumer organisation. There are thus very
significant issues relating to the nature of these
relationships, their conduct and value. Two key groups of
issues concern relationship management, both formal and
informal, and questions of organisational learning in
networks. These are taken up in the next section.

7. INTER-ORGANIZATIONAL RELATIONSHIPS
Inter-organisational systems, and hence inter-organisational
relationships, have been on the Information Systems
research agenda since the advent of EDI in the 1980s [13].
Outsourcing gave an added urgency and impetus to the
research, particularly perhaps because many organisations
found the outsourcing relationship difficult to manage, with
the vendor organisation often able to hold the whip hand
[11] as quoted in Lacity and Hirschheim [10].

We surmise that the management aspects of COTS,
evaluation and the relationships with suppliers will provide
an added twist. Open source acquisition will also throw the
spotlight on relationships, if only because one side, the
suppliers, are not providing the software for money, but for
some other form of reward.

But Information Systems outsourcing is only a part of the
story. In recent years there has been considerable
development of new arrangements and forms including
joint ventures, alliances, imaginative partnering
arrangements and supply chain management [9, 12]. In
partnerships, of what ever form, there is a range of choices

as to how work is organised across the constituent
organisations.

With the commoditisation of software systems in the
shape of COTS, and the continuing move to re-use via
components and kernels, software engineers do not
necessarily develop large software systems themselves.
Instead they assemble, compose and glue components
together. The software manager has, in principle, the same
kinds of choices as his counterparts in other areas of the
organisation. There is a supply chain, or a supply net, in
software development, albeit it is likely to be a short one.
The next step in the paper therefore, is to spell out the
choices.

Types of contract
A basic distinction is discussed by Kay [7] when he
expands on the distinction between spot contracts,
classical contracts and relational contracts. Spot contracts,
like those for some COTS, or as Kay remarks a "lettuce
from a green grocer", are short term, based on standard
terms and take place at market prices.
Classical and relational contracts are different from spot
contracts in that they are longer term. Classical contracts
in Kay's definition are explicit. Kay gives the example of
a property lease. They are formal, legal and binding.
Outsourcing contracts are based on legal contracts.

Relational contracts are implicit. They may have a partial
basis in law, but the dominant element is trust. Marriage is
the example given by Kay. Early outsourcing contracts
were often relational, although as Lacity and Hirschheim
point out [10], this did not always lead to happy results for
the consumer organisation.

Supply network composition
A principal finding in previous research on the supply
chain is that "In a fast clockspeed world, advantage arises
from the concurrent design of products, processes and
capabilities." [4, italics in the original], [3]. "Clockspeed"
is Fine's term for the rate of evolution of products,
processes and organisations. He is particularly interested
in fast clockspeed industries, those that evolve very
quickly and in which products or processes have short
lives.

We have looked in the course of the paper at product and
process. Outsourcing can usefully be seen as a
redistribution of capabilities [14]. COTS could be seen as
embedded capabilities. In either case, but more
particularly in outsourcing within a network of suppliers,
there is a question as to where the capabilities lie and how
to make optimal use of them. However, because capability
takes time to develop, it may be that it is not necessarily
an independent choice - independent that is of the choice
of a supply network. With respect to capability we suggest
not a new row, but a new emphasis on capabilities,

organisational learning and indeed knowledge
management, within the column on co-operative advantage.
Table 5 summarises these ideas.

Table 5

Policy Implications: Inter-organisational relationships
Economic Organis

ational
Strategic Tech

nical

C
os

ts

B
en

ef
its

R
is

ks

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es

C
om

pe
tit

iv
e

ad
va

nt
ag

e

C
o-

op
er

at
iv

e
ad

va
nt

ag
e:

or
ga

ni
sa

tio
na

l
le

ar
ni

ng
R

eq
ui

re
m

en
ts

M
an

ag
em

en
t

Supply
network
composition
Contract type

Distribution of
expertise/
capability

8. GLUING IT ALL TOGETHER

We believe that the idea that product, process and
capability must all be designed together can now, and
should now, be applied to software engineering. One way
to do this is to swallow the matrix whole, working through
it systematically, and it surely has to be iteratively, forming
a holistic picture of product, process and capability across
the possible networks and designing them accordingly.
Table 6 therefore shows a summary version of the options,
for ease of navigation

Table 6

Context, options and issues - summary
ISSUES Economic Organisational Strategic Tech

nical

C
os

ts

B
en

ef
its

R
is

ks

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

e
s C

om
pe

tit
iv

e
ad

va
nt

ag
e

C
o-

op
er

at
iv

e
ad

va
nt

ag
e:

or
ga

ni
sa

tio
na

l l
ea

rn
in

g

R
eq

ui
re

m
en

ts
M

an
ag

em
en

t

CONTEXT
Strategic
purpose
System type
Market
structure
Level at which
requirements
are specified
OPTIONS
Process models
Acquisition
options
Contract type
Supply network
composition
Distribution of
expertise

9. CONCLUSION

This paper has attempted to define the terrain in which the
software engineering manager makes choices about the
way software is developed. It has sketched the context, the
policy options and the areas which will be at issue as the
choices are made. These are brought together in tabular
form, providing a framework for decisions. The paper has
also highlighted areas of the terrain, the idea of a software
supply network, which will be unfamiliar because the
choices are relatively new.

The framework makes a start in assisting managers to do
concurrent design by drawing together the relevant issues
and allowing them to be addressed systematically.
However, we have as yet no practical experience to report.
That comes next.

REFERENCES:

1. Clements P., and Northrop L.M., 1999) A framework for software
product line practice, SEI Interactive, 2, 3, On-line at
<http://interactive.sei.cmu.edu/Features/1999/September/Backgrou
nd/Background.sep99.htm>

2. Cusumano, M.A. and Selby, R.W. How Microsoft Builds Software,
Communications of the ACM, 40, 6, (1997) 53-61

3. Farbey, B. and Finkelstein, A. Exploiting supply chain business
architecture", Position paper, Edser-1 (1999). On-line at
<http://www.cs.virginia.edu/~sullivan/edser1/>

4. Fine, C.H. Clockspeed: winning industry control in the age of
temporary advantage. (1998) Perseus Books, Reading, Mass.

5 . Gillan, C., Graham, S., Levitt, M., McArthur, J., Murray, S.,
Turner, V., Villars, R. and Whanlen, M.M. The ASPs' impact on
the IT Industry: an IDC wide opinion. International Data
Corporation. 20323 (permission needed for quote) (1999) On-line
at <http://www.idc.com>

6 . Hecker, F. Setting Up Shop: The Business of Open-Source
Software, IEEE Software, 16, 1, (January/February 1999)

7. Kay, J. Foundations of Corporate Success: how business strategies
add value, (1993) Oxford University Press, Oxford, Chapter 4

8 . King, J.L. (on-line at current site to June 2000)
<http://www.ics.uci.edu/~king/research.html>

9 . Lorange P. and Roos J. Strategic Alliances: Formation,
Implementation and Evolution, .(1993)Blackwell, Oxford

10. Lacity, M. and Hirschheim, R. Information Technology
Outsourcing, in Rethinking Information Systems, Currie, W. and
Galliers, R. eds., (1999) Oxford University Press, Oxford, Chapter
14

11. Lacity, M. and Willcocks. L. An empirical Investigation of
Information Systems Outsourcing: Findings from Experience,
Oxford University Working Paper (1996)

12. Lamming, R. Beyond partnership: strategies for innovation and
lean supply, (1993) London: Prentice Hall

13. Reekers, N and Smithson, S. The Impact of Electronic Data
Interchange on Inter-organisational Relationships: Integrating
Theoretical Perspectives, HICSS-28 Minitrack, "Measuring the
Effectiveness/ Impact of Emerging Technologies", Jan 3-6, 1995

14. Scarbrough, H) The External Acquisition of Information Systems
Knowledge in Willcocks L.P. and Lacity M. (eds.) Strategic
Sourcing of Information Systems: Perspectives and Practices,
(1998) Wiley, Chichester, Chapter 4

15. SEI (1998), Carnegie Mellon University, COTS BASED
S Y S T E M S i n i t i a t i v e . O n - l i n e a t
<http://www.sei.cmu.edu/cbs/practices.html>

