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Abstract

Mathematical and computational modelling are emerging as important techniques for studying the behaviour of complex biological systems.
We argue that two advances are necessary to properly leverage these techniques: firstly, the ability to integrate models developed and executed on
separate tools, without the need for substantial translation and secondly, a comprehensive system for storing and man-ageing not only the models
themselves but also the parameters and tools used to execute those models and the results they produce. A framework for modelling with these
features is described here. We have developed of a suite of XML-based services used for the storing and analysis of models, model parameters
and results, and tools for model integration. We present these here, and evaluate their effectiveness using a worked example based on part of the
hepatocyte glycogenolysis system.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Modelling physiology is in many ways similar to the mod-
elling of process systems so there is much that chemical engi-
neers can contribute. As with process systems, one of the major
challenges in computational physiology is to efficiently inte-
grate existing computational models which describe phenom-
ena associated with a variety of spatial and temporal scales.
Such models can be deterministic, stochastic, qualitative, or
in many other forms. An important part of this challenge is
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the storage, collation, and retrieval of models, along with their
integration.

Our work (The UCL Beacon Project, 2002–2007) is part
of the UK Department of Trade and Industry sponsored Bea-
con program, focused on harnessing genomics. We aim to
build in-silico models that represent aspects of behaviour of
the human liver, an epithelial organ. The methodology and
modelling system should then be extendable to other epithe-
lial organs. In building a fully integrated model of the liver,
existing models of various components must be used along
with newly devised models. Our approach is therefore to
develop a system for the orchestration and integration of mod-
els. Not only will this system permit the development of inte-
grated models which could not otherwise be constructed, it
will also support the development of these models in a man-
ner which increases the computational efficiency and relia-
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Fig. 1. Crossing scales in biological modelling.

bility of those models, and reduces the time taken for such
development.

The framework we have developed supports two key aspects
of biological modelling: model integration across different
scales, and the interconnection of the distinct components in
biological systems. Interconnections are largely based on sig-
nalling i.e. the transport and reaction of chemicals between
distinct components that drive the physiological system. Using
this framework we aim in the project to develop a simulation
environment in which a wide variety of models are integrated
and exploited within a common domain of interest. These mod-
els may be at different levels of abstraction, may deploy different
representations, and may focus on different interacting phenom-
ena. Validation may give rise to model variants that will require
management.

Our project will result in a system to integrate models address-
ing phenomena from the level of individual gene and cell features
through tissue and organ models. Models at every level of the
structure will be integrated, validated, and exploited using a
plethora of mathematical, computational and experimental tech-
niques. Fig. 1 shows the hierarchy of levels of signalling activity
in many physiological systems.

One of the fundamental issues in model integration is how to
handle the intrinsic inter-relationships between different models
in an efficient way. Individual models are built up in an iso-
lated biological environment relative to the real physiology and
the purpose of linking different models is to recover the phys-
iological conditions in terms of the context the models cover.
Our computational framework for linking biological models will
take account of the intrinsic couplings existing among the mod-
els, while allowing the flexibility that comes from being able to
‘plug’ in different choices of model, and link models which take
different approaches to modelling, or which apply to different
scales of consideration.

In this paper, we shall review existing work on computa-
tional infrastructure for systems biology, argue that two areas of
software engineering (information management and encapsula-
tion) should in particular be brought to bear upon the problem
and describe a series of software modules we have authored
that together constitute a complete computational environment
for systems biology. In particular, the system supports the inte-
gration of models built in very different software environments
while leaving the authoring and execution of the component
models within those environments. We provide evidence for
the effectiveness of our technique using an example model of
part of the response of the liver to adrenaline, where one of
the component models is built in Mathematica, and another in
X-Phase-Plane-Auto (XPPAUT).

2. The state of the art

Much current modelling work in biology does not take into
account the potential plethora of different models nor how to
‘orchestrate’ them. Integration mechanisms are at the program
code level. A good example is the work on the heart carried out
by Denis Noble and his team (Noble, 2002). Other groups are
also attempting to take a more considered approach to model
integration, and we review some related work here.

2.1. Model management and process engineering

Model management has been a topic of interest in process
design for many years. Vazquez-Roman, King, and Banares-
Alcantara (1996) developed a knowledge-based modelling sup-
port system which aimed to maintain the evolution of the model,
support the development of understanding of the processes that
are being modelled, and improve co-operation between mod-
ellers. More recently, Bayer and Marquardt (2004) discussed
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the many open issues of information modelling and presented
a conceptual framework for supporting the development and
integration of information models. The CAPE OPEN standard
(Belaud, Pons, & Braunschweig, 2002) defines rules and inter-
faces that allow computer aided process engineering compo-
nents to interoperate helping to facilitate the implementation
of standard interfaces between commercial tools used in the
process industry. Engineering modelling approaches have been
applied to hepatocyte cultures in artificial liver systems (Sharma,
Ierapetritou, & Yarmush, 2005).

2.2. Approaches originating in systems biology

In recent years, several attempts have been made to create
schemes, or frameworks, that would enable the exchange and
integration of models in systems biology. Broadly, these can be
divided into three categories: modelling languages, modelling
frameworks or tools, and tool integration frameworks, which
provide some support for model integration.

2.2.1. Systems biology modelling languages
Systems biology has seen the development of several XML-

based modelling languages designed to enable the representation
and manipulation of biological models. The best known of
these are Lloyd, Halstead, Nielsen, and Bullivant (2004) and
Hucka, Finney, Sauro, Bolouri, and Doyle (2003). Both support
mainly the representation of ODE-based models, and seem to
be designed mainly for modelling biochemical reactions at the
cellular level. In both languages, the mathematical details of the
model are specified using MathML.

SBML has seen considerable success in standardising the
representation and exchange of models, but is not focussed on
integration and does not allow the modular approach to mod-
elling we describe in Section 4. CellML also has a substantial
body of models represented, and in addition provides the means
to specify input and output variables for each model, allowing
models to be linked together. However, all the models linked
must be specified in CellML. Thus, neither CellML nor SBML
allow for the integration of heterogeneous models developed in
different languages and tools.

These languages are associated with attempts to handle the
management and use of collections of models written in them:
Hunter, Robbins, and Noble (2002) aims to collect together mod-
els in CellML, categorise them and associate them with a small
amount of static metadata. The Systems Biology Workbench
Project (Hucka, Finney, Sauro, Bolouri, and Doyle, 2002), see
below, is based around SBML.

2.2.2. Modelling frameworks
The E-Cell project (Tomita, Hashimoto, Takahashi, &

Shimizu, 1999) is a whole cell and multicell simulation tool in
which the various biological entities being modelled are rep-
resented as objects. It provides the means to quickly create
models in several schemes, such as diffusion–reaction, S-System
and flux distribution analysis. However, it does not support
the integration of models created in other tools. The scope of
E-Cell is somewhat narrower than that proposed here, con-

centrating mainly on simulations of intra-cellular bio-chemical
processes.

2.2.2.1. The virtual cell. Loew and Schaff (2001) is a graph-
ical tool for creating and running Spatial PDE simulations of
reaction–diffusion processes within cells. The Graphic User
Interface enables the user to define the biological compartments
involved in the modelled process, and then link them to actual
cell images, in order to produce the required spatial data. The
user is then able to define the chemical species and the reactions
involved in the process, and their location in the various com-
partments. The tool automatically generates the relevant set of
ODE’s or PDE’s for the model, and solves them, using a numer-
ical solver. Support for importing and exporting Cell-ML and
SBML models are planned.

2.2.2.2. The XS-system. Antoniotti, Policriti, Ugel, and Mishra,
(2003) enables the construction of models from a set of build-
ing blocks corresponding to chemical reactions. This paradigm
allows the speedy and intuitive creation of a variety of chemical
networks, with the resulting model represented as a set of ODE’s,
specifying the rate equations for the various substances involved.
A representation of SDE’s (stochastic differential equations),
timed automata or hybrid automata is also supported.

Where models are composed of sub-models, which may
themselves be quite complex, the ‘building blocks’ used within
the XS-System are fairly simple and limited in scope, and inten-
tionally so: the developers of the XS system suggest to think of
their system as the RISC (reduced instruction set computer) of
systems biology.

2.2.3. Tool integration frameworks
BioSpice (Kumar & Feidler, 2003) is a collaborative project

of American universities and research centres, financed by
DARPA, whose aim is to create a tool-set for modelling dynamic
cellular network functions. The collaboration aims to build a
comprehensive software environment that integrates a suite of
analytical, simulation and visualisation tools related to cellular
systems biology. While the project aims to support many types
of spatio-temporal models, multi-scale modelling and model
analysis as well as simulation, it is unclear yet what systematic
approach BioSpice would take in order to achieve the integration
of heterogeneous models.

The Systems Biology Workbench (SBW) (Hucka et al., 2002)
is a generic middleware for the integration of software tools, used
quite often in systems biology. While it has facilitated the inte-
gration of many different tools and utilities, it was not designed
specifically to facilitate the integration of models, and can be
viewed as a generic middleware architecture, similar, for exam-
ple, to CORBA (Vinoski, 1997).

2.3. Simulation frameworks

Several frameworks have been designed specifically to enable
the simulation of heterogeneous components independent of sci-
entific domain.
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The high level architecture (HLA), (Kuhl, Weatherly, &
Dahmann, 2000), is a general purpose architecture for simu-
lation reuse and interoperability.

In HLA, a central service is responsible for advancing the
simulation time in discrete time steps. Each component then
advances its own simulation by this discrete time step, and
updates the other components of the current values obtained.

The dynamic information architecture system (Campbell &
Hummel, 1998) is aimed at supporting mainly discrete event
simulations involving a large collection of heterogeneous enti-
ties, while also incorporating spatial data, such as the agents’
location. In DIAS models carry the implementation of the
object’s behaviour, and communicate only with entity objects,
which have a global scope, never directly with other models. We
note that both in DIAS and in HLA only one algorithm (single
time stepping) can be used to computationally integrate models
together, while our suggested architecture enables researchers to
combine models together using a variety of different algorithms
and tools. Also, both DIAS and HLA do not facilitate any form
of analysis of the models after simulation.

2.4. Data repositories

As well as model orchestration approaches there is significant
work in the cataloguing of biological information in databases.

Most of the information management effort in systems biol-
ogy in recent years has concentrated on creating database repos-
itories for the large volume of genome and proteome data
accumulated in the last decade. There are several such reposito-
ries including those maintained by the European Bioinformatics
Institute (EBI) and the National Center for Biotechnology Infor-
mation (NCBI). Tools such as Zdobnov, Lopez, Apweiler, and
Etzold (2002) and Schuler, Epstein, Ohkawa, and Kans (1996)
offer consolidated access to these databases. These are invalu-
able for model validation and, as models approach the level of
accuracy necessary for predictive purposes this usefulness will
increase—and it will be necessary to link these to model man-
agement systems.

Extensive databases such as Kanehisa, Goto, Ogata, Sato, and
Fujibuchi (2000) and Joshi-Tope, Gillespie, and Vastrik (2005)
that contain information on the processes and entities that link
the genome with cellular biology—gene and gene products,
chemical compounds and reactions, pathways and networks.
There is no information about reaction rates or about the exper-
iments through which the information was obtained, except for
paper citations in free text.

Comprehensive enzyme databases such as Schomburg,
Chang, Hofmann, Ebeling, and Schomburg (2002) and The EMP
Project (1999) list the reactions each enzyme is involved with, as
well as numerical data such as reaction rates. They also provide
the relevant paper citations. BRENDA (Schomburg et al., 2002)
also contains organism specific information such as the source
tissue and localisation.

Other databases include MEDLINE for papers
www.ncbi.nlm.nih.gov/PubMed/, the National Biotechnology
Service Information for gene sequences www.ncbi.nlm.nih.gov,
the GenomeNet Database Service (www.genome.ad.jp) for

genomic information and BioCyc (www.biocyc.org) for
pathway/genome information.

None of these databases covers all of the data that was
required to create and parametrise our model of hormone-
stimulated hepatocyte glycogenolysis. More importantly, none
of them was created with the aim of serving as a systematic
database for the different parameter values to be used in mod-
elling, and obtained either through experimentation or previous
modelling. Even when numerical values are available, details
about the precise experimental conditions or modelling assump-
tions under which these values were obtained is missing.

3. Metamodelling

In order to understand biological modelling, we have mod-
elled the elements involved in model construction and validation,
thus elucidating a biological metamodel. This comprehensive
“metamodel” (Finkelstein et al., 2004), underpins the develop-
ment of the tools presented in this paper so it is reviewed here.

The metamodel representation developed by the project
shown in Fig. 2 uses an ‘entity-relationship’ (ER) modelling
approach (first presented in Chen (1976)) and presents an entity
class (of objects). The lines between boxes represent relation-
ships which are associations between entity classes, see Fig. 2.
Each entity class may have attributes. Each relationship has a
cardinality that represents the number of entity instances that
can be tied together by an instance of the relationship.

At the centre of the metamodel is the biological model itself.
A model represents an aspect, the biological phenomena which
is under study in the presence of a number of assumptions. The
model is based in a particular scheme, the modelling paradigm
that has been used, for example ordinary differential equations.
Each scheme may have a number of views that show the content
of the model, for example the presentation of the equations. Each
scheme may also have constraints, that limit the model’s ability
to interact with other models.

A model is analysed or interpreted by an engine, such as a
simulation tool, and in the presence of a context, extra data that
parameterises the model. This analysis yields an interpretation,
the results of a model. At the bottom of the diagram are the
biological observations that provide the aspect for the model
and validate model interpretations. Observations also provide
the ground, the data upon which context information is based.
This will be discussed in greater detail in Section 6.4. Finally,
models can be composed to give rise to compound models, which
will be discussed in greater detail in Section 4.

We have used this metamodel to organise our understanding
of the biological modelling problem, in particular the integration
of biological models which may be of many types of mathemat-
ical and computational formulation.

4. Modularity

We construct biological models by connecting together exist-
ing smaller models of individual phenomena. This approach has
many advantages – if the component models are well under-
stood and have been individually well-tested then much of this

http://www.ncbi.nlm.nih.gov/PubMed/
http://www.ncbi.nlm.nih.gov/
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Fig. 2. Metamodel entity relationship diagram. The ERD diagram convention is described in Chen (1976). The relationships depicted here are described in detail
in Finkelstein et al. (2004), and are summarised in the text. Note that our choice of terms deliberately abstracts many common modelling concerns, emphasising a
generalised approach. Each box corresponds to an entity of concern in the modelling process, each line a relationship between them. The 1, . . ., n notation is used to
indicate cardinality—so that An →1 B indicates that several entities A have a relationship with a single entity B.

confidence should carry over to the larger model. It also has
disadvantages – there may be subtle incompatibilities between
models which invalidate their integration. Our approach to build-
ing software to support model integration has been to try to
leverage one of the oldest software engineering paradigms: mod-
ularity. In this section we briefly review the well-established
advantages of a modular approach.

One way to make a complex system more manageable is to
break it down into modules. Considering a system as a number
of separate modules has a number of advantages:

(1) Modularity aids understanding by presenting a system in
distinct functional chunks.

(2) A different group of scientists can work on each module,
distributing the effort and the expertise.

(3) Modifications can be made to one module without affecting
the others. If desired, a module can be entirely replaced.

(4) Modules may be reused as part of other projects; a library
of models-as-modules may be gradually accumulated.

Modularity may also be a means to address the significant
challenge of modelling across scales. Modules could repre-
sent the same system at different scales and be integrated to
provide the behaviour of the whole system. Our framework
addresses these advantages directly by providing tools for con-
structing models as modules and allowing them to be used
together.

One rigorous use of modules is termed the “component-
based” approach. Such systems have three further features:

• Interfaces. Components communicate with each other only
through well-defined function calls.

• Encapsulation. Components do not depend on the inner
implementation of other components, and may influence other
components behaviour only through the provided interfaces.

• Language and tool independence. Different components
can be encoded in different languages, environments and
tools.

Component technology is used extensively in software engi-
neering, and has facilitated the composition, development, man-
agement and maintenance of large software systems. Experience
with large software systems shows that the use of components
may bring additional benefits: the ability to make use of third
party proprietary code and the possibility of running modules in
distributed environments, as in high performance parallel com-
puting architectures.

5. The need for information management

Another important and well-established software engineer-
ing paradigm has regard to the careful management of the
information pertaining to an endevour—the field of information
management. At the moment, there is little standard practise in
how data is recorded for use in biological modelling. Parameters
are collected from the literature and recorded in an ad hoc fash-
ion using notebooks or small-scale computing solutions. The
tools used to execute models are installed and configured in
many different variations, again often with little documentation.
Results obtained from models are harvested for publications but
not always made available in a standard form to others, or associ-
ated with detailed information about the tools and settings used
to obtain those results, in conflict with the scientific doctrine of
repeatability.
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Fig. 3. Model integration framework. An overview of the principles of our integration framework—a connector to assist in creating consistent results for multiple
models, wrappers to provide consistent access signatures for models, services to provide necessary information, an orchestrator to bring it all together, and an
execution environment to expose these facilities to the user.

In general, there is a dearth of metadata, descriptive informa-
tion about the data itself. What experimental results gave rise
to a parameter value? What version of a simulation tool was
used to generate a particular graph? What researchers chose one
particular model structure over another and why? How has this
model developed from its original conception (version control)?
All of this information is useful in understanding existing work
and taking it forward. The need for information management
is discussed in greater depth in Finkelstein et al. (2004). A set
of minimum standards for the metadata required to properly
annotate a biological model has been defined (Novére, Finney,
Hucka, & Bhalla, 2005).

Most biological modelling requires the selection of appro-
priate parameter values. Yet many authors do not emphasise
the challenge of this area of modelling. One methodology for
parameter determination is to find a least squares fit to data.
Sometimes a proportion of values are taken from experiments.
Projects with a lot of time and money will have enough on-
site experimentation to parameterise their models—this is a rare
but increasingly popular approach. In order for systems biol-
ogy to be able to make good on its claim to be a child of
the molecular biology revolution, it must be possible to obtain
useful parameters by using data from existing published exper-
iments. Modellers who follow this approach typically manage
the information about where they have obtained such parame-
ters either as comments to the model definition files or in their
notebooks.

As well as allowing composite model execution, our frame-
work aims to provide structure to manage the data used in
systems biology. We encourage, but do not compel, a more disci-
plined and careful approach to parameter management. We shall
make our management protocols clear in the remainder of the
paper.

6. Integration framework

Fig. 3 shows an overview of our model integration frame-
work, intended to facilitate a modular approach to systems
biology modelling, with an emphasis on information manage-
ment. Note that in Fig. 3, there are only two models. This
is a simplified view, appropriate to the example model used
later in this paper, see Appendix A.1. A composite model
can possess much more complex topology consisting of many
models and connectors—our framework has been used to sup-
port a seven-element composite model, discussed briefly in
Appendix A.2.

At the core of the framework is an orchestrator, which reads
the details of the composite model specification and mediates
the communication between the sub-models, (by analysing the
composite model specification and creating a computational
representation of the input–output matrix, see Appendix B)
and the deployment of these models on the appropriate model
execution environments (by instantiating environment wrapper
objects)—each environment is wrapped to translate the input
and output for each model into an interchange format that
can be manipulated by the orchestrator. The models are inte-
grated by means of a connector which will be described in
Section 6.2.

The framework is supported by a number of services that pro-
vide information about each model used during the integration
and collect the results during a model run. This is a service-based
architecture, familiar to computer scientists, and will allow us to
harness existing work in web services (Christensen, Curbera, &
Meredith, 2001). These services effectively provide databases
for the information needed in the modelling process. A “context
service” stores parameters, an “origin service” stores experi-
ments and papers, an “interpretation service” stores results, a
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“model service” stores models, and an “engine service” pro-
vides execution environments to interpret the models.

We emphasise that our framework is modular not only in
its management of component models, but in other components
of the framework: connectors, services, and wrappers. Users of
the framework are free to build their own components. In this
section we shall discuss briefly in turn the principles underlying
each of the concrete pieces of software which together constitute
our modelling framework. More detail regarding each of these
components can be found in three associated papers—in this
paper we hope to give an overview of how the components fit
together. Details of the numerical (“waveform relaxation”) algo-
rithm used in the connector are given in Appendix B. Details of
the XML formats used to describe model metadata and specify
composite model linkages are given in Margoninski, Saffrey,
Hetherington, Finkelstein, and Warner (in press). Details of the
information management structure are given in Saffrey et al.
(2006).

6.1. Modelling environment wrappers and information
interchange formats

Mathematicians and biologists use a variety of tools to
write their models including Mathematica, XPPAUT, MATLAB,
Gepasi and SBML. Much effort has gone into translating model
descriptions from one environment to another, or into establish-
ing common standards for model description, see Section 2.2.1.
We advocate an alternative approach: that of permitting existing
modelling environments to talk to one another, through stan-
dard run-time interfaces. Thus, each modeller can work in the
environment they are used to.

In addition, we avoid the error-prone step of model transla-
tion. Of course, this functionality should be supported by generic
middleware systems. However, to enable this functionality, it
is necessary to specify standard “function signatures” for the
ways that models can be accessed (such as the standard rates-
out-values-in interface for ODE models, which we call a “rate
calculator” interface) We currently use C++ pure-virtual classes
to define these interfaces, but are planning in the future to make
use of web services such as SOAP (Box, Ehnebuske, Kakivaya,
& Layman, 2000) and XML-RPC (Winer, 1998–2003). Defi-
nition of standard interfaces also requires definition of standard
data models for the information to be passed. We term these stan-
dardised interfaces and data structures “information interchange
formats”, and in our example use one for functions of time,
defined as uneven-time-series with linear interpolation available
as an access method (Polytrack).

We have authored Mathematica and XPPAUT wrappers. The
Mathematica wrapper uses MATHLINK, the Mathematica API,
and, from the point of view of the modeller, looks exactly like
writing an ordinary Mathematica notebook for the model. The
modeller simply replaces an NDSolve call with a homologous
call to NDFramework, a function we have written to export a
Mathematica model for use with our framework. The XPPAUT
implementation patches the XPPAUT open source, and the mod-
eller need only add an additional line to the model definition file
specifying the variable names to be exported and imported from

the framework. These two modelling environments are very
different—XPPAUT is a more traditional ODE solution envi-
ronment, with models authored as model definition files with
parameters and model definition intermingled, while Mathemat-
ica is a sophisticated hybrid analytical/numerical mathemati-
cal investigation environment, whose “notebook” use-metaphor
creates a very free-form, asynchronous, step-by-step approach
to model definition. We believe that successfully wrapping these
two very different environments to permit easy interoperability
with a common call signature, both at run-time and in terms of
their interaction with the information management services, is a
significant demonstration of the effectiveness of our approach.
In particular, we achieve this without significant loss of expres-
siveness within the language of either environment.

6.2. Model integration connectors

A critical component of our framework is the idea of model
integration connectors, which allow two separate models to
be executed together. A connector is a means to solve sev-
eral models as one, and embeds mathematical or computational
techniques appropriate to the models in question. Part of the
functionality of a connector may be to perform a transforma-
tion between different modelling schemes. For example, it may
generate discrete events from continuous data received from
an ordinary differential equation (ODE) model and pass these
into a separate discrete event model. A connector may also
serve to numerically integrate two models of the same scheme,
where such an integration is not trivial. Connectors can be con-
ceived which would connect sub-models that are stochastic or
based on Bayesian network modelling. Connectors could also
be constructed to link heterogeneous models, for example a link
between a stochastic and an ODE model. One example of a
model connector can be found in Tomita et al. (1999). If the
models expose interfaces of the rates-of-change-given-current-
values form, then any ODE solving numerical algorithm can act
as a connector. The solution of models connected in this way is
considered in Takahashi, Kaizu, Hu, and Tomita (2004).

However, for some models this interface is not available or
its use may be inefficient. What if each model both expects as
input and produces as output a set of ‘timetracks’, (a Polytrack),
variable values as a function of time? It is this example we have
chosen to explore here, as it provides a nontrivial challenge for
wrappers, information interchange formats and connectors. One
way to integrate such models with Polytrack interfaces is via
waveform relaxation—the connector that we use for our exam-
ple (Burrage, 1995). Waveform relaxation is a method devised
in parallel computing for distributed execution. It is designed
to deliver efficiency improvements to systems with disparate
time-scales, but is also effective as a means to execute com-
posite models, designed and executed on different tools and in
distributed locations.

The algorithm, as applied to the simple case of two mod-
els used in our case study for this article, proceeds as follows.
Execution begins with either model. The inputs that are not yet
available from the other model are seeded with some suitable
start values. The model is then solved to produce a set of out-
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puts. These outputs are fed to the other model, which is solved
passing back its output values. This procedure repeats until con-
vergence. For a formal statement of the algorithm, see Appendix
B. Since the algorithm does not require any input or intervention
during the model execution, it can be applied to any simulation
tool, as long as it provides a Polytrack at the end of the simula-
tion. The standard function signatures defined by the framework
and implemented via the wrappers enabled the development of
a generic implementation of a waveform relaxation connector.
Note that for such an algorithm to be necessary, the models must
be cyclicly interdependent, as in our example.

Waveform relaxation has been shown to have good conver-
gence properties and to provide great efficiency benefits for
certain types of system. A full paper describing the application
of this technique in systems biology is in preparation.

6.3. Model service: model metadata files and composite
model specification

For each model, XML files associated with the model def-
inition specify the model’s inputs and outputs—its required
parameters and driving functions and its results. This includes a
specification of default parameter values. We also provide tools
to assist in the generation of these files for existing models.
The schema is given in Margoninski et al. (in press), and is
compliant with the standard laid out in Novére et al. (2005).
Note that while the model definition itself is contained in a
model definition file in the native language of the appropriate
model authoring and execution environment, stored in a stan-
dard location, attendent XML files store associated information.
This paradigm for the model database—a collection of mod-
els defined in native file format each associated with an XML
file linked to an XML database, is repeated for all the database
elements of the framework. This provides significant ease-of-
use advantages with respect to those systems which attempt to
mix metadata and model definition in a single file. (We believe
that while XML is an appropriate language for the specifica-
tion of rich, complex metadata, it is too cumbersome to be
used as the basis for storing and authoring models.) Not all
model dynamical variables or parameters need be exposed to
the framework—some may be left defined only in the native
model definition, permitting gradual adoption of the framework
approach by nervous modellers. Model metadata files include
information on the biological relevance and mathematical for-
malisation of the model interfaces, intended for human use, to
facilitate the process of ensuring models to be linked are com-
patible. These can make use of formal ontologies to ensure
consistent nomenclature. Model metadata files also include
information on the computational implementation of these
interfaces.

Information as to how models should be composed to produce
a composite model is stored in a composite model specification.
This file contains a list of models and how they are connected (the
model topology), and also the metadata information attendent
to the composite model—additional data required to execute
the composite model, and what is produced (the inputs and out-
puts). Thus, the composite model is a model like any other in the

system, and we anticipate that models may be recursively com-
posed (we are currently engaged in modifying the orchestrator
to support this.)

6.4. Context service

We provide a database which stores the appropriate parameter
data for models, and a variety of systems to make the database
accessible to both humans and computers.

Each parameter is, in brief, stored with the following infor-
mation:

• The ontological name of the parameter. An ontological name
is a name based on standard ontologies, such as the gene
ontology (Ashburner, Ball, Blake, & Botstein, 2000). This
name should provide a unique identification for a parameter
that can be recognised by other scientists.

• The name of the person who originally recorded the parame-
ter.

• The category of the parameter, such as a rate constant.
• The possible values for this parameter. There may be multiple

entries for a parameter value, each of which includes the value
itself, the origin of the parameter (paper, experiment, estimate
of a scientist or combination of these—see Section 6.5) and
the confidence in this value.

• Further notes about the parameter.

In our implementation, we use XML to encode the parame-
ters. This allowed us to make use of the wealth of tool support
for XML, as well as its core features of extensibility and flex-
ibility. We use a native XML database (Meier, 2002) to store
and search the parameters. Detailed information regarding the
formal specification as an XML schema is given in Saffrey et al.
(2006).

In addition to the database itself, we have implemented graph-
ical interfaces to this database that allow parameter metadata to
be entered, searched and selected for use in models. The tools
allow a complete set of parameters and their values needed for
a composite model execution to be saved into a parameter run
file. Functionality in the engine wrappers shown in Fig. 3 allows
these values to be automatically inserted into each of the various
sub-models at run time. Because the separation of parameters
and model definitions is not always supported by the modelling
environments being linked, several software layers must interact
to achieve this. The orchestrator must determine which compo-
nent model(s) the parameter applies to, reference the ontolog-
ical name used for the parameter using the information in the
component model CMSL files to determine the parameter’s syn-
tactic name for that model, and call the modelling environment
wrapper’s interface. The modelling environment wrapper must
then adjust the parameter value—in the Mathematica case by
scheduling an appropriate call to the Mathematica kernel to be
evaluated after the model itself is loaded, and in the XPPAUT
case by further dereferencing the parameter’s syntactic name
using the model definition file to find the numerical index for
the parameter, and then modifying the appropriate array. Other
tools understand the supported modelling languages and can
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read unannotated model definition files to automatically allow
the appropriate parameters to be added to the database and to
the model metadata files (Section 6.3).

6.5. Origin service: experiment and other provenance
management

The mathematical modelling of biology must support its
connection to the experiments which underpin it. One of the
most important aspects of this connection is the way in which
experimental information is used to provide values for model
parameters. It is surprising how often modelling papers fail to
report the way in which their parameter values were obtained or
how they are supported by experimental data—despite the fact
that it is the difficulty of obtaining good parameter values which
represents one of the biggest obstacles to the success of the
modelling endeavour. Our tools provide XML databases, with
appropriate schema (again given in Saffrey et al. (2006)), to sup-
port the archiving of lab experiments in a fashion which enables
easy interrogation by both modellers and by the framework. The
XML database scheme is consistent across the model, context,
result and provenance databases. Storing the data in an XML
environment allows us to query, link and present the data using
the wealth of tool and language support for XML including rich
query languages like X-query (Meier, 2002). Web-interfaces for
each of the database services have been constructed. This system
duplicates some of the functions of laboratory information man-
agement systems (such as ConturELN, Water eLab Notebook or
DOE2000) but is integrated with the rest of our framework and
tailored towards interdisciplinary results sharing. It is hoped in
future to test the use of our framework within a laboratory which
has already adopted a LIMS system.

6.6. Interpretation service

An interpretation service stores the results of a model run.
For an ODE model, results can be presented simply as plots
of variable values with respect to time but may also include
specific types of plot or further commentary. However, simple
storage and presentation of time series results is inadequate—an
interpretation service must support search over many collected
results, and complex analysis of these results. Each type of anal-
ysis is an interpretation of a model and should be appropriately
stored. Every interpretation should be linked back to its ori-
gins: the model itself and the parameters and configuration under
which it was run. This set of files should allow a model interpre-
tation to be regenerated, for example, at a different location by
different researchers. Our implementation of this service allows
this, in a process we describe as “end-to-end” information man-
agement. The framework stores all numerical data produced by
model runs in a consistent location, together with XML infor-
mation explaining how this information is laid out, so that it can
be searched and queried. This design choice – the use of native
output data formats associated with XML metadata – means that
the raw datafiles can be analysed by any bespoke model anal-
ysis tools individual modellers may have become used to for
their component models, provides space advantages, and ensures

that all model result data, even for models which have incom-
plete metadata descriptors, is archived in some form. This is an
essential element preventing unnecessary model re-execution,
while allowing gradual and easy adoption of the model metadata
system. This is a form of “grey boxing”, providing the correct
balance of the advantages of full encapsulation (“black boxing”)
with the necessity to store all information in some manner.

The interpretation service also compiles automatic “model
reports” bringing together in a clear fashion all model results,
parameter values and origins.

6.7. Orchestrator

At the centre of the framework is an orchestrator, which loads
the models, wrappers, and connectors, obtains information from
the services, and manages the sharing of data between wrapped
models. Key roles for the orchestrator includes interrogating the
various model metadata and definition files to obtain the con-
nection matrix for the WR algorithm (Appendix B), launching
the various execution environments, and exchanging data with
the run manager.

6.8. Execution interface

In addition to the web tools for interfacing with the database
services, an installable application allowing more complex use
patterns including the upload of new models to the system has
been created. Model authors typically use this interface to launch
runs of models on their local computer, and for this reason the
programme is called the model run manager (MRM).

Fig. 4 shows a screenshot of this tool in the context of param-
eters being selected for a model run.

6.9. Summary of software components in the framework

We have implemented the following software elements to
support this framework:

• Uneven-step interpolated timeseries interchange format—
Polytrack.

• Uniform model call structure base classes for wrappers and
connectors.

• Mathematica wrapper complying with our standard.
• XPPAUT wrapper complying with our standard.
• Implementation of waveform relaxation connector.
• XML-based parameter (context) database.
• XML-based experiment and paper (provenance) database.
• XML-based model result (interpretation) database.
• Web-based interface for managing our databases.
• Graphical interface allowing scheduling of model runs and

selection of parameters from database—MRM.
• Automatic report generation based on result database.
• Miriam-compliant XML model metadata description file—

model metadata format.
• Assistance for authoring model metadata files by analysis of

model definition files in supported formats (Mathematica and
XPPAUT).
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Fig. 4. Example of activity with the model run manager (MRM). Along the top of the window are tabs indicating each submodel within the composite model. (In
this case the seven-component example in Appendix A.2.) Below this are listed the model’s parameters and “configuration parameters”—in this case some initial
conditions. Highlighted is one of these parameters, the activity rate of a transmembrane glucose pump. Using the terms in the name (and in future we anticipate more
sophisticated searches) an entry for the parameter in the context database has been found, with a candidate value, some associated notes, and an origin for that value
which may be clicked on to find the appropriate paper or experiment. Options to set a global input function and to launch the model run are also indicated.

• XML description format for composite model specification—
CMSL.

• Runtime management software capable of martialing models,
engines, and parameters, and uploading results—orchestrator.

6.10. Example of use

We shall now further explain how the modelling process is
carried out using our framework. This scenario is similar to that
which occured during the development of our example model
(Appendix A.1). In our two-model scenario one model (A) has
been built by a user (UA) aware of the framework, and another
model (B) is to be connected to the first, but has been authored by
a modeller independent of the framework (UB). An experimental
colleague of UA, EA has provided relevant data for model A,
while the parameters for model B are obtained from a series of
published papers by EB (Fig. 5).

During the design process for model A, EA has uploaded a
number of experiments into the origin service using the web
interface. UA has created entries for each of the parameters of
A in the context service and appropriately linked these to EA’s
experiments.

In order to carry out the task of linking the models, mod-
eller UC must make certain modifications to both models to
ensure that the mathematical interfaces are compatible. To assist
in this task, he authors model metadata files for the two mod-
els, defining the biological and mathematical interfaces for
the models. Tool support assists in the addition of parame-
ter metadata to these files, interrogating the model definition

files to look for likely parameters, and the system will iden-
tify parameters in common between the models, to ensure that
these have consistent values. UC also specifies the computa-
tional engines the models will run on, and makes adjustments
necessary to the model definition files to ensure that these com-
ply with the restrictions necessary to be compatible with the
framework.

As model B’s parameters do not currently have entries in the
context service, UC selects the parameters he deems most impor-
tant and uploads these (using a component of the MRM which
examines the model metadata file) he also adds the relevant pub-
lications by EB to the origin service. Additional parameters may
be added to the service as necessary.

UC now creates a composite model definition file specifying
how the models should be connected together and their order of
execution. He launches the MRM and points it at this file, selects
appropriate parameter values for his first numerical experiments,
and begins the run. For the run-time flow of information, see
Section 7.

Examining the automatically produced model reports from
his run, he identifies parameters which require alteration and
creates appropriate entries in the context service, identifying
appropriate origins. After many runs, he may use XQuery to
search the interpretation service for results which have been
forgotten, determining the parameters resulting in each interpre-
tation. Tool support allows results to be examined in a number
of modelling environments, so that UA and UB can each view the
model results in their own, different, modelling environments,
using the user interface familiar to them.
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Fig. 5. The modelling framework components, and their interactions. Note that, as illustrated in the key, this diagram is based on the notations of UML, but is not a
formal UML diagram.

7. Run-time information flow

The user launches the model run manager (1) and points it
at a composite model definition file (2). The user also chooses
parameters, and the MRM builds from them a parameter run
file (3) pointing to values in the parameter database (4). The
MRM launches an orchestrator (5), which uses the CMDL file
(6), to find (7) metadata files for the individual models, and,
from them (8) the model definition files. It then instantiates (9)
models and their engines, based on (10) those definition files,

and a connector. The orchestrator also breaks down the PRF
(11) into individual model PRFs and uses these (12) to set the
parameters for the individual models.

The individual models are based (13) on wrapper classes,
which are in turn based (13) on a base model interface, as is the
connector. Each wrapper is associated with a run-time engine
(14). The connector and models exchange data (15) until the
results are consistent. The results are based on a Polytrack format
(16). The final results, in Polytrack format (17) are reported back
to the orchestrator, which records them as a result file format
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Fig. 6. The pathway by which adrenaline causes glycogen breakdown in hepatocytes.

(18). The orchestrator reports this file back to the MRM (19)
which builds an interpretation metadata file referencing (20) the
result file and the PRF file which made it.

8. Analysis of example

8.1. An example system

The system we have chosen to use to illustrate and test our
techniques is based on existing models of hormone-stimulated
hepatocyte glycogenolysis. This important physiological pro-
cess is the means by which energy, in the form of glucose, is
released from storage in the liver in humans and other animals.
It constitutes one part of the glucose homeostasis system by
which blood sugar levels are maintained within acceptable lim-
its. Fig. 6 shows a cartoon of the main features of the pathway
that controls this process. While we use a two-model exemplar
here, we have developed a much larger (seven component) model
of this system, which we will publish in due course.

Two pathways communicate the need for glycogen break-
down from the hormone receptors to the glycogenolytic enzyme,
glycogen phosphorylase. The first is more associated with the
response to glucagon, and acts through the production of cyclic
adenosine monophosphate (cAMP), which activates an enzyme
protein kinase A (PKA), which in turn triggers an enzyme-
activation cascade leading to the activation of glycogen phospho-
rylase. The second is more associated with short-term response
to adrenaline, and is the one modelled by our example in this
paper.

In this process, activation of the hormone receptor results
in the activation of a linked G-protein, which in turn results in
the activation of phospholipase C (PLC) which results in the
production of inositol trisphosphate (IP3). The IP3 moves from
the cell membrane, where the processes up to this point have
taken place, to the main part of the cell (the cytoplasm) where

it then triggers oscillatory movement of calcium ions between
the cytoplasm and the endoplasmic reticulum (ER), a cellular
sub-compartment which stores a high concentration of calcium
ions. During this oscillation, the higher average concentration of
calcium in the cytoplasm results in the triggering of the sequence
of enzyme activations leading to glycogenolysis.

Our case study uses the simple modular decomposition shown
in Fig. 7. The two component models were developed in, and
for the purposes of our experiment remain within, two very
different modelling environments—Mathematica and XPPAUT.
The first, ‘membrane’ module, representing the activation of a
G-protein coupled receptor by a hormone stimulus, was built
in Mathematica. Note that the G-protein coupled receptor is

Fig. 7. The two modules that constitute our example model, their outputs and
driving functions, and how the models interconnect.



974 J. Hetherington et al. / Computers and Chemical Engineering 31 (2007) 962–979

Fig. 8. Results for the example model.

an important feature in many signalling pathways; this is an
example of how a module could be re-used in a later model.
Phenomena represented in this model comprise ligand-receptor
binding, activation of G-protein, and release of Inositol Trispho-
sphate (IP3). This model is based on Nauroschat and an der
Heiden (1997) and Riccobene, Omann, and Linderman (1999),
model of G-protein linked receptor phenomena including desen-
sitisation. To these models we have added the known effect that
calcium increases receptor inactivation, as modelled in Kummer,
Olsen, Dixon, Green, and Bornberg (2000). The processes mod-
elled are: ligand-receptor binding and dissociation, receptor
sequestration and desequestration (and its dependence on recep-
tor phosphorylation state), receptor phosphorylation (and its
dependence on active G-protein and ligand-binding), G-protein
activation and inactivation (and its dependence on calcium and
phospholipase C), and the production of phospholipase C and
hence IP3 by active G-protein. These are expressed in Mathemat-
ica as a series of chemical steps, with the appropriate ODEs being
generated automatically by Mathematica’s symbolic engine.

The second module describes the signalling pathway acti-
vated by the IP3 released by the first model—the ‘cyto-
plasm’ module, which describes the effects of the signal
within the cell. This model of calcium oscillations is built in
XPPAUT (Ermentrout, 2000) and is based on a model by Hofer
(1999). It is a simplification of Hofer’s model, as discussed
in Hetherington, Warner, and Seymour (2005). The processes
involved include IP3-dependent calcium entry through the cell
membrane, calcium- and IP3-dependent release of calcium by
the endoplasmic reticulum (ER), and the ER and membrane cal-
cium pumps.

Thus, the chosen configuration of modules contains a feed-
back loop; the PLC levels provided by the membrane module
act as an input for the cytoplasm module. In return, the cal-
cium levels are provided as an input for the membrane module.

These are the quantities which are reported by each model and
passed to the other model by the connector. The next element of
the pathway—the action of calcium on glycogen phosphorylase
via phosphorylase kinase and phosphorylase phosphatase, is not
covered in this two model example, but is covered in detail in
our forthcoming larger model.

We present in Fig. 8 some results from this example. We
observe calcium oscillations, which occur as calcium moves
between the endoplasmic reticulum and cytosol, due to the phe-
nomenon known as calcium-induced-calcium release. However,
comparison with the results of the calcium oscillation model
without feedback to the receptor Fig. 9 shows that the feed-
back between the two models transiently alters the shape of the
oscillations, and we are preparing a paper on the scientific impli-
cations of this finding.

The scientific results obtained are encouraging, but the evi-
dence that our framework is of benefit, the subject matter of
this paper, occurs not in the scientific results themselves, which
can be recreated with a more traditional approach, but in the

Fig. 9. Typical calcium oscillation results from the simplified calcium oscilla-
tions model in the absence of feedback to the receptor module.
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prevention of mistakes in the development process. We do not
claim that the model we present here could not have been built
without our techniques, but rather, that with them, its construc-
tion is safer and conclusions based upon it are consequently more
robust. In order to provide evidence for this claim, we must con-
trast the way model information management and model inte-
gration work in our system with the way these issues have been
dealt with previously, and we do so in the following sections.

8.2. Integrated modelling

Building a model of two interconnected phenomena by com-
bining existing models implemented in their own environments
indeed provided advantages we had anticipated.

It was not necessary to translate the models into a common
language, which might have introduced errors. Modellers were
able to develop models in the environments they were used
to, meaning development and testing were significantly faster.
While it was necessary to modify the models slightly to allow for
their interaction, this work was done as a seamless development
from the original model implementation, in their original con-
text. Stand-alone validation of the modified component models
carried over directly to the compound model.

As the two modelling environments had very different typical
use patterns and approaches to model specification, parameter
definition, and very different APIs, the development of common
access forms for the framework was particularly challenging in
this case. Our policy of requiring minimal changes of the model
files (replacing NDSolve with NDFramework in the Mathemat-
ica case and specification of input and output variables in the
XPPAUT case) means that individual models may be imported
with alacrity. In our example, the equations for the Mathemat-
ica model are defined not as ODEs, but as a series of chemical
processes, with a Mathematica library providing the conversion
using Mathematica’s symbolic engine, according to the appro-
priate kinetics. Thus, we see that by using the Mathematica
engine to execute the model definition file as defined by the
modeller, we retain the full expressiveness of the Mathematica
language. Indeed, zero parameter values will result in Math-
ematica’s symbolic engine compiling away appropriate model
terms, with associated efficiency gains.

In addition, the approach allowed distributed development
of the test case, with separate developers responsible for each
component model. It is clear to us that the many well estab-
lished advantages of modularity within the software engineering
community carry over into biological modelling. However, a
more interesting and unexpected advantage of this approach
results from the nature of the biological domain—interacting
systems acting on different scales and at differing physical loca-
tions within the cell. By letting the biological system’s own
modular nature express itself within the breakdown into mod-
ules, each of the software engineering arguments for modularity
is made stronger—for example, division of labour for mod-
ellers is even more useful, as expertise is more specialised. In
addition, the weakly coupled clusters nature of the graph of
interactions of a typical biological system is perfectly suited to
modularity. In our example, the membrane-phenomena-in-one-

model, cytoplasmic-phenomena-in-the-other approach provided
an accidental separation of scales which fits well with the wave-
form relaxation algorithm.

However, there were significant difficulties with building
the wrappers which made the implementation of our approach
more difficult, the most important of which were undocumented
unpredictable behaviour in the Mathematica C++ API and inade-
quate functionality in the XPPAUT C++ API which necessitated
modification of the XPP source code.

8.3. Context management

Our parameter information, instead of residing haphazardly
in a variety of mathematician’s notebooks and model files, reside
in XML files on a parameter server, which can be easily exam-
ined using our tools.

This provides the first clear advantage of our approach, for the
provenance data associated with the parameter values is clearly
exposed to all members of the project. (Modellers’ model files
or notebooks can be hostile territory for biological colleagues.)
This resulted in an immediate response from biologists regard-
ing which parameter values were trustworthy and which were
questionable. Data from certain publication venues or obtained
experimentally with older, deprecated experimental techniques
or from inappropriate animal or cell models was known to be
of low quality. For example, much calcium oscillation data is
obtained from experiments in Xenopus oocytes, but this data is
not always appropriate for liver modelling.

Within our framework, biologists can easily review the
parameters and the evidence the modellers have found for
them, they can ensure that parameters are “well-audited”. The
distributed manner in which the parameter database can be
accessed and modified (from a variety of physical locations)
was particularly important in facilitating collaborative context
management. For example, it was suggested that the receptor
sequestration form of adaptation might not be important for
hepatocytes, so an alternative case with ks = 0 much lower was
investigated. Another example is a set of calcium oscillation
parameters obtained by our own literature search, independent
of the set obtained by matching our simplified model of calcium
oscillations to Hofer (1999). Since the “correctness” of these
alternative parameter sets is hard to determine support for main-
tenance of several alternative parameter sets has been extremely
useful.

We maintain a record of parameter values used for each run of
the orchestrated model, in the form of the “parameter run files”
(PRFs) generated by the context database immediately prior to
execution of the model. Of course, the existence of the ability to
save and load parameter sets is not new, but we emphasise that
we have achieved it across multiple modelling environments
and languages, each with its own way of handling parameters,
and where this separation is unsupported. The existence of the
parameter run file and context database encourages separation of
two concerns in model development: parameter selection on the
one hand, and the development of model equations on the other.
Existing biological model definition languages (SBML, CMSL,
XPPAUT, etc.) often force these concerns to be interwoven.
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Our “interpretation service” enables the association of par-
ticular parameter values with the conclusions of model analyses,
through the production of the automatic model reports. In our
two-model example, the end-to-end information management
meant that within the automated model reports, it was clear to
all team members when a parameter had been tuned away from
its literature-supported value to obtain interesting results (for
example, the case of exaggerated calcium feedback shown in
the results figure in Section 8.1.) In other test systems we have
found that automated detection and updating of shared parame-
ters (for example, the calcium pump rate shared between blood
and cell models in the seven-module example Appendix A.2)
further prevents time-wasting mistakes.

9. Conclusions

We have presented a model integration framework for sys-
tems biology, with an architecture based on an orchestrator,
wrappers, connectors, and information services. We have built
many software components which together constitute an imple-
mentation of this system. By the development of our two-model
example we have demonstrated some of the advantages of our
approach, which brings well-established benefits of modern soft-
ware engineering techniques to systems biology. Our aim is
multiscale modelling, where we link models based on different
areas of biological expertise. We find that a modular, composi-
tional approach is highly suited to this problem and that support-
ing interoperability between modelling environments permits
the composition of models developed by experts with their
own modelling environment preferences. Since multiscale mod-
elling requires teamwork between modellers and biologists from
very different areas, communication and information sharing
issues become much more challenging. Sophisticated informa-
tion management is thus particularly important in this area.

The framework supports sophisticated queries which will
enable one to associate patterns in model results with particular
experimental techniques—in future we expect this data-mining
approach to model analysis to prove fruitful. In our continuing
work, we are applying our framework to a larger test system—a
complete model of the glucose homeostasis system. We hope to
add support within our framework for managing the evolution
of models—version control for systems biology.
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Appendix A. A example model

A.1. Example model equations and typical parameter
values

We present here the equations, definitions of terms, and
default parameter sets for the two modules.

A.1.1. Receptor module
dRr

dt
= k−1LRu − L(t)k1Rr − ksRr + krRs (A.1)

dRs

dt
= kspLRp + GiK2sLRu + ks(LRu + Rr) − krRs (A.2)

dGi

dt
= −GiK23LRu

+ G∗

(
kh +

Ca[t]kGdeg,Cal

KGdeg,Cal + G∗
+

kGdeg,PLCPLC∗
KGdeg,PLC + G∗

)

(A.3)

G∗ = G0 − Gi (A.4)

d LRp

dt
= −kspLRp + kp(1 + (A0/(1 + B1G

−n1∗ )))
1 + B2LRuLR−n2

u
(A.5)

R0 = Rr + Rs + LRu + LRp (A.6)

d PLC∗
dt

= kPCG∗ −
kPC,degPLC∗

kPC,deg + PLC∗
(A.7)

P = kconvPLC∗ (A.8)

The quantities Rr, Rs, LRu and LRp, are respectively the free
receptor, sequestered receptor, ligand-bound receptor, and
phosphorylated, ligand-bound receptor. The quantities Gi and
G* are respectively the inactive and active G-proteins. PLC*
is the active phospholipase C, and P is inositol trisphosphate.
Most quantities are given as numbers-of-molecules per cell—an
unfortunate convention as they are extensive quantities which
are less likely to transfer between cells, but a convention we
have adopted from the papers on which these parts of the model
was based. The exceptions are the input functions L(t) and
C(t), (respectively, the concentration of the hormone in the
blood to which the receptor responds and the concentration of
calcium ions in the cytoplasm) P and PLC*, which are defined
in micromolar. Time is defined in seconds. There is insufficient
space in this methodological paper to go into the detailed
assumptions which have been used to obtain these equations,
but we present here without further justification the canonical
parameter values used in our test case, in the appropriate
units as defined above: k−1 = 101, k1 = 102, ks = 5.2 × 10−3,
ksp = ks, K2s = 2.0 × 10−8ks, kr = 4.0 × 10−3, K23 = 1 × 10−7,
kh = 2.0 × 10−1, kGdeg,Cal = 1.47 × 103, KGdeg,Cal = 3.54 × 101,
kGdeg,PLC = 2.19 × 103, KGdeg,PLC = 5.7, kp = 6.5 × 104,
A0 = 3.0, B1 = n1 = 1, B2 = 106, n2 = 1, R0 = 5.5 × 104, G0 = 105,
kPC = kPC,deg = 2.82 × 10−1, KPC,deg = 2.55 × 10−1, kconv = 102.
The origins of these parameter values will be discussed in
detail in a forthcoming paper. Note that the model is defined
in Mathematica not in terms of the above algebra, but in

the language of chemistry. So that, for example, A
A,k,M−→ B

represents a Michaelis–Menten enzyme reaction catalysed
by A with max rate k and Michaelis constant M, while
A

kfkr!2B represents a pair of reactions with mass-action kinetics
in equilibrium.
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Fig. 10. An example of the kind of larger composite model that can be built with the framework. This model has seven subcomponents, and multiple nested feedback
loops. It is a model of glucose homeostasis, in terms of the interaction between the liver and the pancreas, and will be described in a future publication.

A.1.2. Calcium module
We begin our definition of the calcium module by breaking

the rate equations for cytoplasmic calcium C and endoplasmic
reticulum calcium E into components:

dC

dt
= JER + JPM (A.9)

dE

dt
= −vJER (A.10)

where JER is the net rate of flow of calcium between the ER and
the cytosol, and JPM is the net rate of flow of calcium between

the cytosol and the external medium. These are separated into
positive and negative parts:

JX = JX,in − JX,out (A.11)

with X = (ER,PM).
We then use the above notation to define the model:

JER,in = kEC(E − C)(lEC + U(P(t), C)) (A.12)

JER,out = kEPΘn(C, cEP) (A.13)

JPM,in = S(t)kMC(lMC + Θn(P(t), pMC)) (A.14)
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JPM,out = kMPΘn(C, cMP) (A.15)

U(P, C) = Θn(P, pEC)Θn(C, cEC,+)(1 − Θn(C, cEC,−))

(A.16)

Here P(t) is the input function for this module, the concentration
of inositol trisphosphate. Θn(a, t) = 1/(1 + (t/a)n), the Hill func-
tion. The parameter values used are kMC = 0.08, kMP = 0.072,
kEC = 2.0, kEP18.0, cEC,+ = 0.26, cEC,− = 0.65, pEC = 0.45,
cEP = 0.12, pMC = 4.0, cMP = 0.26, lMC = 0.05, lEC = 0.02, v =
10.0, n = 8, with variables defined in micromolar and time in
seconds.

We may now emphasise how the first model takes C(t), one of
the variables of the second model, as an input driving function,
while the second model takes P(t), an output of the first model,
as one of its driving functions. This makes concrete the model
interdependence represented in Fig. 7. Note also the time-scale
differences—while receptor activation phenomena respond over
timescales as fast as a second calcium oscillations occur on
timescales around a minute, justifying on numerical efficiency
grounds the use of the waveform relaxation algorithm.

A.2. Larger example

We are conducting further tests on a larger example, with
seven component models, of a more significant portion of the
glucose homeostasis system, including the pancreatic hormones
insulin and glucagon. This model displays the ultradian oscilla-
tions sometimes observed in glucagon and pancreas (Simon &
Brandenberger, 2002), and will be the subject of a forthcoming
biologically focussed publication (Fig. 10).

Appendix B. Waveform relaxation algorithm

Take some time interval I = [t0, T] (T < ∞) and let F denote
a suitable function space consisting of real-valued functions
defined on I; by suitable we mean at least continuous, and
possibly continuously differentiable. Consider a set of N mod-
els indexed by i = 1, 2, . . ., N and defined as mappings Mi

from product spaces Fi :
∏si

j=0F to itself; here si is the num-
ber of functions f i

j required to define the ith model, and i = 0
corresponds to external forcing functions. The mappings M

define the time evolution of the underlying model dynamics;
for example in the case of ordinary differential equations they
are a time-integral operator. Then f i

j = Mi
j[g] takes as inputs

functions g ∈
∏N

i=0F
i and produces as an output a function

f i
j = (f i

0, f
i
1, j

i
2, . . . , f

i
si

) ∈ Mi. The input functions gi of the
ith model are either given as external driving functions or are
output functions of other models in the model set; the details
of the input/output structure are defined via the composition
matrix M

pq
rs , where p, q index the input and output model and r,

s the input and output function. Thus, M
pq
rs = 1 iff the relevant

input is obtained from the relevant output, and 0 otherwise, i.e.
gi

k =
∑

qsM
iq
k,sf

q
s .

We wish to obtain a solution set {fi} which satisfies the con-

sistency equation f i
j = Mi

j

[∑
qsM

iq
k,sf

q
s

]
for all i, j (which is

Fig. 11. The waveform relaxation has a tendency to non-uniform convergence,
with each successive iteration, (labelled with numbers) leaving the envelope of
the correct result after linear increments of time. The correct result curve (shown
dashed) rapidly falls to zero, while other curves “fly-off”, to values which are
attractors for the WR scheme but not for the complete model. Shown here is the
variable x from a simple test model x′ = −x − y, y′ = −y + x, with each variable’s
DE treated as one component model.

simply the condition that f is a fixed point of the map M and
hence a solution of the model as a dynamical system). The wave-
form relaxation algorithm takes a set of seed functions (g0)ik
and produces new iterates via (gn+1)ij = Mi

j

[∑
q,sM

iq
ks(gn)qs

]

for n = 0, 1, . . . If this iterative procedure converges, the result
will be a consistent solution. We define our convergence test as∑

i,j(||(fn)ij − (fn−1)ij||2/||(fn)ij||2 + ∈ ) < C where ||f || =
(∫ T

t0
f (t)2 dt

)1/2
denotes the L2 norm on F and epsilon is a

small quantity defined to stabilise the test when functions are
close to zero. In numerical applications, of course, the function
space F is replaced by some finite dimensional representation,
such as the space of a piecewise linear functions on I equipped
with a suitable norm (e.g. Euclidean), but the principle of wave-
form relaxation remains the same.

The algorithm has a tendency for non-uniform convergence
in t, such that the “time of fly-off” advances linearly with each
successive iteration, see Fig. 11.
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