
Monitoring Goals With Aspects

Andrew Dingwall-Smith
Department of Computer Science

University College London
Gower Street

London, WC1E 6BT, UK
A.Dingwall-Smith@cs.ucl.ac.uk

Anthony Finkelstein
Department of Computer Science

University College London
Gower Street

London, WC1E 6BT, UK
A.Finkelstein@cs.ucl.ac.uk

Abstract

Software systems are built based on assumptions about
the environment in which they will operate. Change in the
environment can therefore result in failures of the system
which cannot easily be anticipated.

Runtime requirements monitoring confirms, as a system
operates, that it is satisfying the requirements specified for
it. Requirements monitoring as part of the normal opera-
tion of a system allows unanticipated failures to be identi-
fied, and rectified through system evolution.

In this paper we describe our work in run-time moni-
toring of goal-oriented requirements specifications. This is
achieved by instrumenting the monitored system using As-
pectJ. The instrumentation aspects are automatically gen-
erated using a mapping from the requirements specification
to the system design. The instrumentation events are used
to build an instance of the domain object model of the sys-
tem, which is used to check for goal failures.

We also discuss monitoring soft goals; goals which do
not have formal criteria for satisfaction. We consider what
needs to be specified so that these goals can be monitored
and a determination of their satisfaction can be made by
the stakeholders in the system.

1. Introduction

Regardless of how effective the software engineering
process followed in the creation of a system, there is al-
ways the possibility that the implemented system may at
times fail to satisfy the initial requirements. This is a partic-
ular concern if the system is required to operate in dynamic
environments. The ability of a system to meet its goals is
dependent on both the system itself and the environment in
which it operates [6]. If changes in the environment cannot
be anticipated during the design process then the behaviour
of the system cannot be guaranteed to satisfy the require-
ments of the system.

Better design can only go so far in anticipating potential
environments before the time invested in the design out-
weighs the benefits obtained. The solution to this problem
is to plan for system evolution, updating the system after
deployment as the environment changes.

The aim of this work is to support system evolution by
providing facilities for monitoring, at run-time, whether the
behaviour of the system satisfies its requirements. This in-
dicates when further evolution of the system is necessary.
The monitors should also provide information which helps
to identify what changes need to be made to the system so
that its behaviour will satisfy the requirements.

The monitoring framework is intended to be as au-
tomated as possible. The monitors should be generated
from existing artifacts of the software engineering process.
Automating the monitoring process as much as possible
greatly increases the attractiveness of using requirements
monitoring, as it is not part of the normal software devel-
opment process.

The requirements of the systems we monitor are spec-
ified using goal oriented requirements engineering. We
describe this type of specification in section 2. Section 3
describes the architecture of the monitoring system. Sec-
tion 4 describes how the monitored system is instrumented
to emit events which can be monitored. Section 5 describes
how the instrumentation events are used to monitor for goal
failures. Section 6 describes how soft goals can be speci-
fied and monitored.

Throughout this paper, we use examples from a
case study of a peer-to-peer file sharing program called
‘Limewire’. This is a GPL[1] licensed program, written
in Java.

2. Requirements Specification

The monitoring system checks requirements specified as
goal oriented requirements. Such a specification expresses
what the system should achieve rather than how the system



should behave. As such, it is the most appropriate specifi-
cation to monitor since the concern is not how the system
behaves but whether it is behaving in a way that satisfies
the requirements, regardless of what the behaviour is.

Our requirements specifications are based on the KAOS
approach [2, 9]. In this approach, goals can be formally
specified using temporal logic. This formal definition is
used for the automatic generation of monitors.

KAOS goals are organised in a goal graph. Each goal is
decomposed into sub-goals using a combination of AND
and OR refinements. OR refinements give alternative
strategies for satisfying higher level goals. Ultimately, the
leaf goals are operationalised into requirements which can
be satisfied by a single agent. Some goals cannot be satis-
fied by the system and instead become assumptions which
need to be satisfied by agents in the environment.

The goal model is used to generate a domain object
model. Every object used in the definition of a goal is part
of the object model. There are four types of objects in the
KAOS object model. Agents are objects which are capable
of performing operations. Entities are objects which are in-
dependent of any agent but cannot perform any operations.
Relationships are objects which link a number of other ob-
jects. Events are objects which only exist in a single state.

2.1. Example Goal Specification

A simple example of a goal graph for downloading a file
is shown in figure 1. This is a client-server system in which
the files are downloaded over a public network. There are
three agents which are relevant here. The client and server
agents are part of the system while the network is part of
the environment. The top level goal is ‘AND’ refined into
three leaf sub-goals. The goals ‘RespondToRequest’ and
‘StoreFile’ are assigned to agents in the system and are
therefore requirements. The goal ‘ReliableTransmission’
is assigned to the ‘Network’ agent, which is an agent in the
environment, and therefore it is an assumption. The formal
definitions for these goals are given below:

Achieve[DownloadFile]
Definition When a server receives a request for a file from
a client and the file is available to be uploaded, the client
should eventually store the file.
Formal Definition
∀receivedRequest: ReceivedRequest, f ile : File
receivedRequest.occurs∧
receivedRequest. f ileName= f ile.name∧
U ploadAvailable(receivedRequest.receivedBy, f ile)⇒
♦StoredFile(receivedRequest.requestedBy, f ile)

Achieve[RespondToRequest]
Definition When a server receives a request for a file from
a client and the file is available to be uploaded, the server

should eventually send the file to the client.
Formal Definition
∀receivedRequest: ReceivedRequest,sentFile: SentFile
receivedRequest.occurs∧
receivedRequest. f ileName= f ile.name∧
U ploadAvailable(receivedRequest.receivedBy, f ile)⇒
♦sentFile.occurs∧
sentFile.sentFrom= receivedRequest.requestedFrom∧
sentFile.sentTo= receivedRequest.requestedBy∧
sentFile. f ile = f

Achieve[ReliableTransmission]
Definition When a file is sent by a server, the client it is
sent to should eventually receive the file.
Formal Definition
∀sentFile: SentFile, receivedFile: ReceivedFile
sentFile.occurs⇒
♦receivedFile.occurs∧
receivedFile.receivedBy= sentFile.sentTo∧
receivedFile. f ile = sentFile. f ile

Achieve[StoreFile]
Definition When a client receives a file, it should store the
file.
Formal Definition
∀receivedFile: ReceivedFile
receivedFile.occurs⇒
♦StoredFile(receivedFile.receivedBy, receivedFile. f ile)

The requirements in this system can be monitored us-
ing information from only a single agent. In fact, this will
always be the case, since goals only become requirements
when they are able to be assigned to a single agent.

The assumption cannot be monitored using information
from a single agent. The ‘Network’ agent itself cannot pro-
vide any information because it is part of the environment
and it is only possible to instrument the system. Monitoring
this assumption requires information from both the client
and the server. The ‘Server’ agent controls the ‘SentFile’
event while the ‘Client’ agent monitors the ‘ReceivedFile’
event. By combining the data from the client and the server,
the assumption can be monitored.

2.2. KAOS Object Model

The object model is derived from the goal model. Every
object and attribute used in the formal definition of a goal
is present in the object model. The objects used in the goal
specifications above are:

Event[ReceivedRequest]
Definition Occurs when a request for a file is received by a
client.
Has

requestedFrom : Server



Figure 1: Goal refinement for goal Achieve [Download File]

the server which received the request
requestedBy : Client

the client which sent the request

Event[SentFile]
Definition Occurs when a server has finished sending a file
to a client
Has

sentTo : Client
the client the file was sent to

sentBy : Server
the server which sent the file

file : File
the file which was sent

Event[ReceivedFile]
Definition Occurs when a client has received a file
Has

receivedBy : Client
the client which received the file

file : File
the file which was sent

Relationship[UploadAvailable]
Definition A server has a file available and the capacity to
upload it
Links

Serverrole sharedBycard 0:N
File role sharedcard 0:N

Relationship[StoredFile]
Definition A client is storing a file
Links

Client role storedBycard 0:N

File role storescard 0:N

Agent[Client]
Definition A client in a client-server system

Agent[Server]
Definition A server in a client-server system
Has

availableFiles : SetOf[File]
the files made available by this server

Entity [File]
Definition A file
Has

name : String
the name of the file

3. Monitoring System Overview

An overview of the monitoring system is shown in fig-
ure 2. In the general case, the system is made up of dis-
tributed components. These components are instrumented
to emits events. The events are described in terms of the
domain object model of the system. These events are used
to construct an instance of the domain model correspond-
ing to the current state of the system.

The domain model instance is an abstract representation
of the state of the system. It expresses the state of the sys-
tem in the same terms that are used in the requirements
specifications. Therefore it should be possible to check the
system is satisfying its requirements by analysing the do-
main model instance.

Goal checkers attach listeners to the parts of the model



Figure 2: Monitoring System Architecture

that they are interested in. These listeners send events to
the goal checkers when those parts of the model are mod-
ified by events from the monitored system. When a goal
checker receives an event from the domain model instance,
it checks whether the goal as a whole has been satisfied
or has failed. To do this, it may need to query the do-
main model for additional information on other parts of the
model.

An instrumentation approach is not the only possible ap-
proach to runtime monitoring. An alternative strategy is to
periodically sample the state of the monitored system and
to use this information to instantiate the domain model. An
example of this is [4] in which the Java virtual machine de-
bugging API is used to access the state of the system. How-
ever, the temporal logic specification of goals used does not
allow state changes to be missed, which is a risk with a
sampling method. Therefore, an instrumentation approach
is taken.

The implementation of this system can be split into two
distinct problems which need to be solved. The first prob-
lem is to instrument the system which is to be monitored.
Normally, instrumentation will not be part of the system de-
sign but will be added to existing systems. The instrumen-
tation should, as far as possible, be generated automatically
from existing artifacts.

The second problem is to generate the domain model
and goal checker from the domain object model and goal
specifications.

4. Instrumentation

Instrumentation is code which outputs events from a
program which can then be read by a monitor. It is ben-
eficial to keep instrumentation code separate from the rest
of the code so that the core code is easier to maintain and
the instrumentation can be modified independently. It also
helpful to be able to add instrumentation retrospectively so
that monitoring can be introduced after the system is built.
A Java program can be instrumented by source code modi-
fication or by byte code modification, which is the approach
used in [5, 8].

The monitoring system described here uses AspectJ to
insert instrumentation. AspectJ [7] is a general purpose,
aspect oriented extension to Java. Its purpose is to allow
cross cutting concerns to be separated. AspectJ requires
the source files of the program. It can be run either as a
preprocessor, generating new source code to be compiled
normally, or generate byte code directly.

AspectJ adds a new entity to the Java language, called
an aspect. An aspect is similar to a class, but represents a
modular unit of cross cutting concern. An aspect contains
pointcuts and advice. Advice is additional code which im-
plements the cross cutting concern. Pointcuts determine
where advice is executed.

A pointcut selects join points which match a given pat-
tern. A join point surrounds a point in the execution where
advice can be executed. For example, there is a join point
around each method call and each modification of an at-
tribute. Pointcuts may also have parameters, which are
bound when a matching join point is reached. Examples
of parameters are the object on which a method was called
and the parameters of that method.

Advice can be executed either before or after the code
within a join point. If it is executed after, it can be executed
always or only if no exception was thrown. Each advice is
related to a pointcut, and will execute at join points which
match that pointcut.

Figure 3 shows the process of generating instrumenta-
tion aspects. The UML design of the system to be moni-
tored is represented in XML using XMI. This allows indi-
vidual or sets of methods, parameters and attributes to be
referred to using XPaths. Then instrumentation aspects are
generated from the UML design and a mapping from the
domain model concepts to the UML design. The aspectJ
compiler takes these aspects and the original source files
for the system and outputs the instrumented system class
files.

4.1. Generating Instrumentation For Events

A mapping from the domain model to the design is re-
quired to generate the instrumentation. The first step of



Figure 3: Instrumentation Generation Process

this mapping is to relate domain concepts such as relation-
ships and events to corresponding types of AspectJ point-
cuts. This mapping is described in XML documents. In the
future it may be possible to generate these documents using
some sort of mapping tool but at present these documents
are written by hand.

Figure 4 shows the mapping of the events used in
the example in section 2.1 to an implementation of
these goals. The monitored program in this example is
Limewire, a peer-to-peer file sharing program, written in
Java. Limewire uses a client-server architecture to down-
load files, although each node can take on the role of both
a client and a server.

Each event in this mapping has a one or more ‘Occurs’
elements. An ‘Occurs’ element has a ‘method’ element
which contains an XPath to an ‘Operation’ element in the
XMI description of the system. This is the a point in the
execution of the system where the event occurs. The ‘posi-
tion’ attribute determines whether the event occurs before
or after the method call.

Each ‘Occurs’ element contains any number of ‘At-
tribute’ elements. These specify the value of the event’s
attributes. Each ‘Attribute’ element has an ‘instanceID-
Element’ attribute which identifies an instance variable
from which the value of the attribute should be extracted.
By default this XPath uses the element identified in the ‘Oc-
curs’ element as its context node. However, if the attribute
has a ‘context’ attribute with the value set to ‘class’ then the
‘Class’ element which contains the ‘Operation’ element is
used as the context node. The ‘Attribute’ element may also
have an ‘instanceID’ attribute which is a line of Java code
which used to extract a string value from the instance. If
this is nor present then the object’s ‘t oString()’ method is
used.

It is necessary to find a unique identifier for each ob-

ject which appears in an attribute. This is used by the goal
checker to match different occurrences of the same object.
In the example, the client and server are identified by their
IP addresses while the file is identified by its name.

An example of a generated aspect for the ‘SentFile’
event is shown in figure 5. An instrumentation aspect is
generated for each event. The event aspect will have a
pointcut for each ‘Occurs’ element. In the example, there
is only one ‘Occurs’ element, so there is only one point-
cut, labelled ‘sentFileOccurs0’. All the attributes for this
event are object attributes or accessed by method calls so
the only parameter the pointcut requires is the instance of
the ‘HTTPUploader’ class. The ‘call’ primitive pointcut
matches all calls to methods with signature ‘void writeRe-
sponse()’. The ‘target’ primitive pointcut matches join
points in which the target object is an instance of ‘HTTP-
Uploader’. The pointcut as a whole matches only calls to
the ‘writeResponse’ method of ‘HTTPUploader’.

There is also advice generated for the pointcut. In this
example, the advice executes after the method returns with-
out throwing an exception. This was specified by the ‘po-
sition’ attribute in the ‘Occurs’ element. The advice actu-
ally sends the instrumentation message, using the Java log-
ging API. The attribute values are all use the ‘targetClass’
parameter of the pointcut to access member variables and
methods. The ‘sentBy’ attribute also uses the information
from the ‘instanceID’ attribute to access specific informa-
tion about a socket.

4.2. Generating Instrumentation For Relation-
ships

The mapping for the relationship ‘UploadAvailable’ is
shown in figure 6. Relationship mappings are quite similar
to event mappings. In place of the ‘Occurs’ element, rela-
tionship mappings have ‘Transition’ elements which indi-
cate the positions in the execution where a new instance of
a relationship exists or ceases to exist. The type of the tran-
sition is indicated by the value attribute of the ‘Transition’
element.

Matching a particular method is not sufficient to specify
the transitions for this method. The ‘Condition’ element
gives a condition which must also be met for the transition
to occur. In the case of the first ‘Transition’ element in the
example, the condition is that the ‘stateNum’ should be
equal to the value ‘Uploader.CONNECTING’. Conditions
may also be used in events if necessary.

The roles in the relationship work match like the at-
tributes in the event. The ‘instanceIDelement’ attribute
specifies which element to use to get the value. The
‘instanceID’ attribute extracts the value from the instance.



<Event domainName="ReceivedRequest">
<Occurs position="before"

method="//UML:Class[@name=’HTTPUploader’]//UML:Operation[@name=’HTTPUploader’]">
<Attribute domainName="requestedFrom"

instanceIDElement="//UML:Parameter[@name=’socket’]"
instanceID="socket.getLocalAddress().getHostAddress()"/>

<Attribute domainName="requestedBy"
instanceIDElement= "//UML:Parameter[@name=’socket’]"
instanceID="socket.getInetAddress().getHostAddress()"/>

<Attribute domainName="requestedFileName"
instanceIDElement="//UML:Parameter[@name=’fileName’]"/>

</Occurs>
</Event>

<Event domainName="SentFile">
<Occurs position="afterReturning"

method="//UML:Class[@name=’HTTPUploader’]
//UML:Operation[@name=’writeResponse’]">

<Attribute domainName="sentTo"
context="class"
instanceIDElement="//UML:Operation[@name=’getHost’]"/>

<Attribute domainName="sentBy"
context="class" instanceIDElement="//UML:Attribute[@name=’_socket’]"

instanceID="_socket.getLocalAddress().getHostAddress()"/>
<Attribute domainName="file"

context="class"
instanceIDElement="//UML:Operation[@name=’getFileName’]"/>

</Occurs>
</Event>

<Event domainName="ReceivedFile">
<Occurs position="afterReturning"

method="//UML:Class[@name=’HTTPDownloader’]//UML:Operation[@name=’doDownload’]">
<Attribute domainName="receivedBy"

context="class"
instanceIDElement="//UML:Attribute[@name=’_socket’]"
instanceID="_socket.getLocalAddress().getHostAddress()"/>

<Attribute domainName="file"
instanceIDElement="//UML:Class[@name=’HTTPDownloader’]

//UML:Operation[@name=’getFileName’]"/>
</Occurs>

</Event>

Figure 4: Mapping from events to Limewire implementation

5. Goal Checking

The goal checking part of the monitoring system re-
ceives events from the program instrumentation. These
events are used to construct an instance of the domain
model of the system. To do this, the instrumentation has to
produce three types of instrumentation events. Update to
relationships indicate when specific instances of relation-
ships exist or when they cease to exist. Update to attributes

are sent whenever the value of an attribute changes. Up-
dates to events indicate when an event occurs and what the
attributes of that event are.

Goal checkers are generated by breaking the temporal
logic formula into predicates and creating a tree structure of
the predicates. The structure of the checker generated for
the goal Achieve[ReliableTransmission] is shown in fig-
ure 7.

The top level of this tree is a checker for the goal type. In



package com.instrumentation;

import java.util.logging.*;

privileged aspect SentFile {
protected Logger logger;

public SentFile() {
logger = logger.getLogger("EventLogger.SentFile");

}

pointcut sentFileOccurs0(com.limegroup.gnutella.uploader.HTTPUploader targetClass) :
call(void writeResponse()) && target(targetClass);

after(com.limegroup.gnutella.uploader.HTTPUploader targetClass) returning :
receivedRequestOccurs0(targetClass) {

Object[] recordParameters = new Object[2];
String[] attributesNames = new Object[3];
String[] attributeValues = new Object[3];

attributeNames[0] = "sentTo";
attributeValues[0] = targetClass.getHost();
attributeNames[1] = "sentBy";
attributeValues[1] = targetClass._socket.getLocalAddress().getHostAddress();
attributeNames[2] = "file";
attributeValues[2] = targetClass.getFileName();

recordParameters[0] = attributeNames;
recordParameters[1] = attributeValues;
logger.log(Level.FINER, "SentFile", recordParameters);

}
}

Figure 5: Aspect generated for ‘SentFile’ event

Figure 7: Goal Checker Structure For Achieve[Re-
liableTransmission]

this case, an achieve goal. This has an antecedent predicate
and a consequent predicate. In this case, the consequent is
a compound predicate.

The goal checker determines goal satisfaction using the
domain model. Whenever the domain model is modified,
the predicate checkers which depend on that part of the do-
main model are informed. Each relationship checker de-
pends on the relationship in the domain model. Each com-
parison checker will depend on the attributes in the com-
parison. Each event occurrence checker will depend on the
event checked.

Once a predicate checker has received an update, the
goal checker starts to determine whether the parent pred-
icate is true. The predicate binds instances of the objects
in the update to the variable labels in the predicate. These
bindings are then sent to the parent checker. Compound
checker, such as AND and OR checkers, must examine
their other sub-predicates to determine which bindings ex-
ist which will make the whole predicate true. This set of
bindings is then passed up to the parent monitor. This pro-



<Relationship domainName="UploadAvailable">

<Transition value="true" position="after"
method="//UML:Class[@name=’HTTPUploader’]//UML:Operation[@name=’setState’]">
<Condition>

<Equals>
<Value context="class"

instanceElement="//UML:Attribute[@name=’_stateNum’]"/>
<Value instance="Uploader.CONNECTING"/>

</Equals>
</Condition>

<Role domainName="sharedBy"
context="class"
instanceIDElement="//UML:Attribute[@name=’_socket’]"
instanceID="socket.getLocalAddress().getHostAddress()"/>

<Role domainName="shared"
context="class"
instanceIDElement="//UML:Attribute[@name=’_fileName’]"/>

</Transition>

<Transition value="false" position="after"
method="UML:Class[@name=’HTTPUploader’]//UML:Operation[@name=’setState’]">
<Condition>

<Equals>
<Value context="class"

instanceElement="//UML:Attribute[@name=’_stateNum’]"/>
<Value instance="Uploader.CONNECTING"/>

</Equals>
</Condition>

<Role domainName="sharedBy" instanceIDElement="//UML:Parameter[@name=’socket’]"
instanceID="socket.getLocalAddress().getHostAddress()"/>

<Role domainName="shared" instanceIDElement="//UML:Parameter[@name=’fileName’]"/>
</Transition>

</Relationship>

Figure 6: Mapping from relationship to Limewire implementation

cess continues until a goal monitor is met, which is respon-
sible for determining the satisfaction of temporal proper-
ties.

In the example goal checker, when the event ‘SentFile’
occurs, the event checker for the event will be be informed
by the domain model listener. The event will then be bound
to the label ‘sentFile’. This binding will be passed up to its
parent which is the achieve checker. The achieve checker
will store this event and its attributes as an instance of the
goal which is still to be satisfied.

When the event ‘ReceivedFile’ occurs, the checker for
this event will be informed. The event will be bound to the
label ‘receivedFile’ and then passed to its parent. In this
case the parent is an AND checker. The AND checker then
checks its other predicate to see if it is satisfied. If there is

an instance of the ‘Client’ entity with the same identifier as
the ‘receivedBy’ attribute of the ‘ReceivedFile’ event then
that identifier is bound to the ‘sentTo’ attribute of the ‘Sent-
File’ event. The event is passed up to the parent of the AND
checker which is another AND checker. This checker binds
an instance of the ‘File’ entity to the file attribute if one ex-
ists. The event is then passed to the goal checker which
records previous ‘SentFile’ events. This then compares the
bindings for the unsatisfied instances with the new bind-
ings. If any bindings match then an instance of the goal is
satisfied.



5.1. Goal Checker Design

When a goal monitor is reached, its satisfaction is deter-
mined using the pattern base approach used in KAOS. Each
goal specification belongs to a pattern and the monitoring
system has a class for each goal pattern which is responsi-
ble for determining the satisfaction or failure of the goal.

The determination of the satisfaction or failure of goal
patterns is done using the formal goal operationalisation
patterns in [9]. For example, the operationalisation pattern
for a bounded achieve goal is shown below:

C⇒ ♦≤dT
Domain Pre-condition¬T
Dom Post-conditionT
Required Trigger Condition ¬T S≤d−1C

This operation specifies that there must be a transition
from ¬T to T when the relationshipT has not been true
for d−1 time units sinceC became true at the latest. The
operationalisation pattern for the after invariant goal pattern
is:

C⇒�Q
Domain Pre-condition¬C
Domain Post-conditionC
Required Post-conditionQ

Domain Pre-conditionQ
Domain Post-condition¬Q
Required Pre-condition�¬C

In this case there are two operations. The first says that
when the transition from¬C to C occurs, thenQ must be
true. The second says that when the transition fromQ to
¬Q occurs,C must have been false in all previous states.

6. Monitoring Soft Goals

Soft goals[10, 11] are goals which do not have formal
criteria for their satisfaction. This is a different division
than the division into functional and non-functional goals
which can also be made, but is not important to the im-
plementation of goal monitoring. The determination of
whether a soft goal has been satisfied must be made by
the stake holders in the system. The designer of the sys-
tem must try to implement soft goals to a sufficient extent,
taking into account conflicts with other soft goals.

Although it is not possible to formally specify criteria
for the satisfaction of a soft goal, it should be possible to
formally specify what needs to be monitored so that the de-
termination of satisfaction can be made. We identify some
specification patterns for soft goals and categorise them by
what type of soft goals they may be suitable for expressing.

An unreliable goal is specified using a hard goal which
cannot always be satisfied. The soft goal requires that as

many instances as possible of this goal should be satisfied.
This soft goal monitor needs to report the number of times
the hard goal succeeds or fails. This type of goal specifica-
tion allows reliability soft goals to be monitored.

By specifying an unbounded achieve goal but requiring
that each instance of the goal should be satisfied in a rea-
sonably short time. The monitor for this soft goal needs
to report the time taken to satisfy each instance of the hard
goal. This type of goal specification allows responsiveness
soft goals to be monitored.

A maintain goal in which the consequent predicate can-
not be true at all times. The monitor for this goal should re-
port when the consequent predicate is not true. This type of
goal specification allows availability soft goals to be moni-
tored.

Soft goals are monitored by adding soft goal checkers
to the monitoring framework described in figure 2. If the
soft goal specification is based on a hard goal then the hard
goal is checked by the existing hard goal checker. Instead
of displaying failures of this goal, the output is sent to a
soft goal checker, which collates the output. This collation
may take the form of calculating averages, rolling averages,
standard deviations or maximum and minimum values.

7. Conclusions

This paper describes two contributions. The first is a
mapping from concepts in the KAOS meta-model to the
design of a system. The second is the automatic generation
of instrumentation aspects from the mapping.

We have a prototype implementation, written in Java, of
some of the ideas in this paper. This implementation can
generate the instrumentation files automatically. The do-
main model instance is constructed using Java data struc-
tures. The goal checker can check a subset of the goals
expressible in KAOS. We have not yet implemented soft
goal checkers or visual output from the monitors.

We have used this implementation to generate monitors
for our Limewire case study. This shows that the approach
can produce monitors for simple hard goals.

8. Related Work

Our work is similar to [3] which also looked at monitor-
ing KAOS goal-oriented requirements specifications. This
paper describes a system to monitor goals at run-time. The
system is instrumented to emit events to a monitor which
then informs a reconciler. The reconciler automatically re-
solves the failure by adapting individual goals or by switch-
ing to alternate goal refinements. The system relies on
manual addition of instrumentation code to the monitored
agents to produce events.

In [8], the concept of using a high level specification



to generate the run-time checker and a low level specifica-
tion to generate the instrumentation was introduced. The
low level specification maps the concepts in the high level
specification to the implementation.

In [5], a monitoring system is described which uses tem-
poral logic as a specification language. This papers dis-
cusses some of the complexities involved in monitoring
temporal logic formulae at run-time. However, we avoid
some of that complexity by restricting ourselves to only
monitoring the temporal logic formulae used in KAOS goal
patterns.

9. Future Work

At present, the monitoring system only runs as a local
monitor, running on the same machine as the system, which
can only run on that system. The next step is to allow the
monitor to run on a different machine from the monitored
system and to accept instrumentation events from several
machines. This introduces a timing problem which has to
be solved, as instrumentation events may not arrive at the
goal checker in the same order they are generated.

It still need to be determined what feedback goals mon-
itors should generate. The general aim is that the feedback
should support system evolution. The intention is that the
goal checkers should generate generic information which
can then be interpreted by various gauges in different ways.

10. Acknowledgements

This research has been supported by BTexact and EP-
SRC as part of the collaborative programme in ‘Generative
Software Development’. We are grateful for their generous
support.

References

[1] Gnu general public license.http://www.gnu.org/
copyleft/gpl.html .

[2] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition.Science of Computer
Programming, 20(1-2):3–50, 1993.

[3] M. S. Feather, S. Fickas, A. van Lamsweerde, and C. Pon-
sard. Reconciling system requirements and runtime behav-
ior. In Proceedings of the 9th International Workshop on
Software Specification and Design, pages 50–59, 1998.

[4] R. J. Hall. Cpprofj: Aspect-capable call path profiling of
multi-threaded java applications. In17th International Con-
ference On Automated Software Engineering, pages 107–
116, 2002.

[5] K. Havelund and G. Rosu. Monitoring java programs
with java pathexplorer. In K. Havelund and G. Rosu, edi-
tors,Electronic Notes in Theoretical Computer Science, vol-
ume 55. Elsevier Science Publishers, 2001.

[6] M. Jackson. The world and the machine. InInternational
Conference on Software Engineering, pages 283–292, 1995.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ.Lecture Notes
in Computer Science, 2072:327–355, 2001.

[8] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and
M. Viswanathan. Java-mac: a run-time assurance tool
for java programs. In K. Havelund and G. Rosu, edi-
tors, Electronic Notes in Theoretical Computer Science,
volume 55. Elsevier Science Publishers, 2001.

[9] E. Letier. Reasoning about Agents in Goal-Oriented Re-
quirements Engineering. PhD thesis, Université catholique
de Louvain, 2001.

[10] J. Mylopoulos, L. Chung, and B. A. Nixon. Representing
and using nonfunctional requirements: A process-oriented
approach.Software Engineering, 18(6):483–497, 1992.

[11] E. Yu. Towards modelling and reasoning support for early-
phase requirements engineering. InProceedings of the 3rd
IEEE Int. Symp. on Requirements Engineering, pages 226–
235, 1997.


