
1

Overlaps in Requirements Engineering

George Spanoudakis1, Anthony Finkelstein2 & David Till1

1 Department of Computing, City University, Northampton Square, London EC1V 0HB, UK

email: {gespan| till} @cs.city.ac.uk

2 Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK

email: acwf@cs.ucl.ac.uk

Abstract

Although overlap between specifications – that is the incorporation of elements which designate common

aspects of the system of concern – is a precondition for specification inconsistency, it has only been a side

concern in requirements engineering research. This paper is concerned with overlaps. It defines overlap

relations in terms of specification interpretations, identifies properties of these relations which are derived

from the proposed definition, shows how overlaps may affect the detection of inconsistency; shows how

specifications could be rewritten to reflect overlap relations and still be amenable to consistency checking

using theorem proving; analyses various methods that have been proposed for identifying overlaps with

respect to the proposed definition; and outlines directions for future research.

1. Motivation

In software engineering settings where different stakeholders may have conflicting requirements for the system to be

built, there is no point in worrying about the consistency of the resulting specifications unless you are pretty confident

that they refer to the same things within a shared domain of discourse. In other words, unless there is an overlap between

these specifications.

Specification components overlap if they designate common aspects of the system of concern. A consistency rule is a

condition that the two specifications must jointly satisfy. A breach of such a rule manifests itself as a logical

inconsistency, that is the assertion of a fact and its negation. Overlap and inconsistency are two different levels of

interference between specifications, the first of which is precondition for the second (Finkelstein et al [1996]).

Consider as a simple example the specifications in Figure 1, which describe loans from a university library. These

specifications have been expressed in different languages (Specification-1 in an ER-modeling notation and Specification-

2 in plain English) and constructed by different agents (Anthony and George). The component Staff of Specification-1

overlaps with the component Student of Specification-2 if there are members of the university staff who are also

students. Given this overlap between Student and Staff, the specifications in Figure 1 would be inconsistent with respect

to a consistency rule requiring that the amount of money that any library borrower should pay for late returns to the

library must be the same according to both specifications. The inconsistency in this case occurs because Specification-1



2

and Specification-2 introduce different late return penalties for students and staff members (this inconsistency is formally

derived in section 5). Note that, it would be meaningless to check consistency with respect to this rule if the

specifications in Figure 1 were describing loans from libraries of different universities and therefore there was no overlap

between the penalties indicated (these penalties are incurred due to late returns to different libraries). Also, checking the

same consistency rule would reveal no inconsistency if the specifications were concerned with the same university

library but no student could be a member of the staff at that university. In this case Student and Staff would not overlap.

Specification-2

owner George

English

Specification-1

representation

owner

Staff

LibraryItem

Borrows

max 
Loan 
Duration

30 days

late 
Return 
Penalty

10p/day

Anthony

ER-diagram

hasItem

Library

representation

The library has 
books and 
conference 
proceedings. 
Students may 
borrow 
books but not 
conference 
proceedings. 
Members of staff 
can borrow both 
books and 
proceedings. An 
item may be 
borrowed for up to 
20 days. Holding 
an item beyond 
this period carries 
a penalty of 50p 
per day.

Figure 1: Interfering specifications

Evidently from this example, overlaps have to be identified and made explicit before checking for inconsistencies. Also

reporting on the consistency status of specifications must be made with reference to a specific set of overlap relations.

These relations need to be represented in forms suitable for supporting consistency checking. They also need to be

maintained after consistency checking since they indicate the potential for inconsistency when changes to specification

elements violate previously satisfied rules or additional consistency rules are identified.

The objective of this paper is to distinguish clearly between the concepts of overlap and inconsistency, provide a formal

semantics for overlap, clarify the relationship between the two concepts, and thus establish a single framework for

understanding and dealing with both these phenomena. To do that it uses the formal framework of first-order logic. This

is because the notion of inconsistency is well understood and defined within this formal framework. However, the use of



3

first-order logic does not entail any claim about its practicality as a representation scheme for specifying requirements

nor its necessity for deriving inconsistencies between requirements specifications.

The rest of the paper is structured as follows. Section 2 proposes a formal semantics for overlap relations, identifies

properties of overlap relations which can be derived from the definition proposed and shows how these properties may

be used to check the consistency of relations asserted by different agents. Section 3 shows how specifications could be

rewritten to reflect overlap relations. Section 4 establishes the relationship between overlap and inconsistency. Section 5

gives examples of checking the consistency of specifications with respect to specific overlap relations and consistency

rules using theorem proving. Section 6 analyses various methods that have been proposed for identifying overlaps with

respect to the semantic framework proposed and section 7 outlines directions for future research. Conclusions are

provided in section 8.

2. A semantics for overlap relations

We define overlaps as relations between interpretations ascribed to specifications by specific agents. An agent is an

active entity – generally a person – but sometimes a computational mechanism. An interpretation reflects how an agent

understands a specification. Agents may ascribe interpretations alone or jointly. In the latter case, the joint interpretation

reflects the common understanding of the specification by the group of agents involved.

In the discussion which follows we assume specifications expressed in predicate logic. For specifications which are

originally expressed in another language, we assume that they can be transformed into predicate logic by some rewriting

system. Formally an interpretation is defined as follows:

Definition 1: The interpretation of a first-order theory T, whose vocabulary W is partitioned into two sets of constant

and predicate symbols C and P, is a pair (I,D) where:

• D is a non empty set of individuals, called the domain of the interpretation;

• I is a total morphism which maps:

– each constant symbol in C onto an element of D

– each predicate symbol S of degree n in P onto a relation R ⊆  Dn  (R is called the extension of S)

Note that in this definition the vocabulary W of a first-order theory is assumed to include no function symbols since

functions do not add to the expressive power of the framework.

In the field of requirements engineering the domain of an interpretation is often referred to as the universe of discourse

(UoD). Given the previous definition of an interpretation, overlaps between specifications are defined as follows:



4

Definition 2: Assume a pair of symbols xi and xj in the vocabularies Wi and Wj of two specifications Si and Sj and two

interpretations TiA=(IiA, DiA) and TjB=(IjB, DjB) of Si and Sj ascribed to them by two sets of agents A and B, respectively.

• xi and xj will be said not to overlap at all with respect to TiA and TjB if I iA(xi) ��Ø, IjB(xj) ��Ø, and IiA(xi) ∩

I jB(xj) = Ø1

• xi and xj will be said to overlap totally with respect to Tia and TjB if I iA(xi) ��Ø, IjB(xj) ��Ø, and

IiA(xi)=I jB(xj)

• xi will be said to overlap inclusively with xj with respect to TiA and TjB if xi and xj are predicate symbols of

degree k, IiA(xi) ��Ø, IjB(xj) ��Ø, and IjB(xj) ⊂  IiA(xi)

• xi will be said to overlap partially with xj with respect to TiA and TjB if xi and xj are predicate symbols of

degree k, IiA(xi) ��Ø, IjB(xj) ��Ø, IiA(xi) ∩  IjB(xj) � Ø, IiA(xi) – IjB(xj) ��Ø, and IjB(xj) – IiA(xi) ��Ø

According to this definition:

• Overlap relations are defined in terms of interpretations rather than models. This is a deliberate choice made due to

the fact that at the early stages of requirements engineering when specification overlaps need to be explored it is

probable that specifications may have no models (i.e., they may consist of non satisfiable formulas).

• Overlap relations may only be asserted between specification symbols that have the same degree. This is not the

finest level of granularity at which overlaps could be established. We could for instance have overlaps between

projections of the extensions of the predicates. For instance, the extension of the predicate person(x) inclusively

overlaps with the projection of the pairs (x,y) in the extension of the predicate marriage(x,y) over any of their

elements. However, asserting overlaps at this level of granularity would dramatically increase the number of the

relations that should be identified and therefore the scalability of the approach (given the restrictions of definition 2,

N*M overlap relations need to be established between two specifications that have N and M symbols respectively).

• Overlap relations may only be asserted between specification symbols that have non-empty interpretations. An

empty interpretation for a symbol could indicate either that there are no elements in the domain for which the

property represented by the symbol becomes true or that the agent is not able to ascribe an interpretation to the

symbol. In both these cases it would be unreasonable to try to establish an overlap relation.

The four types of overlap relations distinguished by definition 2, i.e. null, partial, inclusive and total overlaps, cover all

the possible relations between non empty interpretations of specification elements exhaustively.

Our definition accommodates overlaps established with respect to:

• An interpretation assigned to a single specification by a single group of agents (Figure 2, Case 1) – for instance

according to the interpretation assumed by George "student" overlaps partially with "staff" in Specification 2

(Figure 1).

                                                       
1  The symbols ∩, ∪ and - denote the set intersection, union and difference operations respectively throughout the paper.



5

• Interpretations assigned to a single specification by different groups of agents (Figure 2, Case 2) – for instance

according to the interpretations assumed by George for "student" and Anthony for "staff" in Specification 2

(Figure 1), "student" overlaps partially with "staff".

• Interpretations assigned to different specifications by the same group of agents (Figure 2, Case 3) – for instance

according to the interpretation assumed by George "Student" in Specification 2 (Figure 1) overlaps partially

with "Staff" in Specification 1 (Figure 1).

• Interpretations assigned to different specifications by different groups of agents (Figure 2, Case 4) – for instance

according to the interpretations assumed by George for "borrow" in Specification 2 (Figure 1) and Anthony for

the relationship type "Borrows" in Specification 1 (Figure 1), "borrow" overlaps totally with "borrows".

I S1A1

S1

D S1A1

S1

I S1A1 I S1A2

D S1A1 D S1A2

S1

I S1A1 I S2A1

D S1A1 D S2A1

S2 S1

I S1A1 I S2A2

D S1A1 D S2A2

S2

Case 1:   single specification, 
                single agent group

Case 2:   single specification, 
               two groups of agents

Case 3:   two specifications, 
               single agent group

Case 4:   two specifications, 
               two groups of agents 

Figure 2: Different settings of overlap exploration

Note that in reality it is impossible to enumerate the interpretations of specifications with sufficient completeness for

them to be used to identify overlaps. This is because it is impossible to enumerate the domains of interpretations, which

in most cases are of unbounded size or change frequently. Consider for example the domains of the specifications in

Figure 1. They change as new students and members of staff join the university; new items are purchased for the library;

existing students and members of staff leave the university; and old library items are withdrawn or become obsolete. To

overcome this problem interpretations have to be associated with the agents who ascribe them. Agents can assert overlap



6

relations without having to define the interpretations underlying these relations. Thus, if an agent A asserts that predicate

P overlaps inclusively with predicate Q, this agent essentially confirms that IA(Q) ⊂ IA(P) without having to define IA(Q)

or IA(P). In essence, the identity of the agent in our framework is a substitute for a precise account of the interpretation

underlying the relation.

Our notion of agent, as the source of interpretations underlying overlap relations, includes people and computational

mechanisms for identifying overlap relations. A human agent might be the "owner of a specification" or some third

party. A computational agent might be an automatic scheme for identifying overlaps such as the unification algorithms

used in theorem proving (see section 3 below). In section 6 we review how the identification of overlaps is treated in the

literature.

Since agents substitute for interpretations, overlaps can be represented as relations between the symbols in the

vocabularies Wi and Wj of two specifications Si and Sj, the powerset of overlap identifying agents (2A), and the set of

overlap types (OT):

OV ⊂ Wi × Wj × 2A × 2A × OT 2

An association ov(ci,cj,{a1},{a2},t) means that there is an overlap of type t between the symbols ci and cj in the

vocabularies of Si and Sj given the interpretation of Si that is assumed by a1 and the interpretation of Sj that is assumed

by a2. The set of overlap types OT includes the following elements: no (null overlap); to (total overlap); po (partial

overlap); ⊂ (inclusive overlap – ci overlaps inclusively with cj); and ⊃ (inclusive overlap – cj overlaps inclusively with

ci).

Obviously different (sets of) agents may assert different overlap relations between the same specifications. A set of

overlap associations between the symbols in the vocabularies of two specifications Si and Sj, which have been asserted

by the sets of agents a1 and a2, Oa1a2(Si,Sj), may be seen as the viewpoint of the agents in a1 and a2 about the overlap

between Si and Sj.

2.2 Properties of overlap

To ensure the coherence of overlap relations, which are asserted by a group of agents, we make the following axiomatic

assumption about the interpretations that may be ascribed to any specification by a specific agent:

Axiom: An agent (set of agents) may only have one interpretation (joint interpretation) of the same

specification.

                                                       
2  The type of the overlap acts as a qualifier for each of the elements of OV and enables the distinction of subsets of OV

by the type of the overlap associations they represent. This is necessary since the relation OV includes all the overlaps

that have been asserted for the components of two specifications by two sets of agents regardless of their type.



7

In other words, we assume that an agent does not assume different interpretations for a specification when it explores the

overlap relations between the symbols of this specification and symbols of any other specification. Below we present a

set of properties, which hold for overlap relations of different types given the previous axiom and definition 2. Proofs of

these properties are provided in the appendix. In the formulas which formally express these properties, xi are variables

whose values are items in specification vocabularies (Wi), ti are variables whose values are overlap types (OT), and ai are

variables whose values are sets of agents (i.e., elements of the powerset of agents 2A).

Property 1: Overlap types are mutually exclusive. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀t1: OT) (∀t2: OT) (∀a1: 2
A)(∀a2: 2

A) (ov(x1,x2, a1, a2,t1) ∧ ov(x1,x2, a1, a2,t2) → (t1 = t2))

Property 2: Total overlap is a reflexive relation between the symbols in the vocabulary of the same specification given

the interpretation of this specification by the same group of agents. Formally, this property is expressed as follows:

(∀x1: W1) (∀a1: 2
A) (ov(x1, x1, a1, a1,to))

Property 3: Total overlap is a symmetric relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀a1: 2
A) (∀a2: 2

A) (ov(x1, x2, a1, a2,to) → ov(x2, x1, a2, a1,to))

Property 4: Total overlap is a transitive relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀x3:W3) (∀a1: 2
A) (∀a2: 2

A) (∀a3: 2
A) (ov(x1, x2, a1, a2,to) ∧ ov(x2, x3, a2, a3,to) →

(ov(x1, x3, a1, a3,to))

Property 5: Null overlap is an irreflexive relation for symbols in the vocabulary of the same specification given the

interpretation of this specification by the same group of agents. Formally, this property is expressed as follows:

(∀x1: W1) (∀a1: 2
A) (¬ ov(x1, x1, a1, a1,no))

Property 6: Null overlap is a symmetric relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀a1: 2
A) (∀a2: 2

A) (ov(x1, x2, a1, a2,no) → ov(x2,x1, a2, a1,no))

Property 7: Null overlap is a pseudo-transitive relation with respect to total and inclusive overlaps. Formally, this

property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀x3: W3) (∀a1: 2
A) (∀a2: 2

A) (∀a3: 2
A) (ov(x1, x2, a1, a2,no) ∧ ov(x2,x3, a2, a3,to) →

ov(x1,x3, a1, a3,no))

(∀x1: W1) (∀x2: W2) (∀x3: W3) (∀a1: 2
A) (∀a2: 2

A) (∀a3: 2
A) (ov(x1, x2, a1, a2,no) ∧ ov(x2,x3, a2, a3,⊂) →

ov(x1,x3, a1, a3,no))

Property 8: Inclusive overlap is an irreflexive relation for symbols in the vocabulary of the same specification given the

interpretation of this specification by the same group of agents. Formally, this property is expressed as follows:

(∀x1: W1) (∀a1: 2
A) (¬ ov(x1, x1, a1, a1,⊂))



8

Property 9: Inclusive overlap is an anti-symmetric relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀a1: 2
A) (∀a2: 2

A) (ov(x1, x2, a1, a2,⊂) → ¬ ov(x2, x1, a2, a1,⊂))

Property 10: Inclusive overlap is a transitive relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀x3: W3) (∀a1: 2
A) (∀a2: 2

A) (∀a3: 2
A) (ov(x2, x1, a2, a1,⊂) ∧ ov(x3, x2, a3, a2,⊂) →

ov(x3, x1, a3, a1,⊂))

Property 11: Inclusive overlap is a pseudo-transitive relation with respect to total overlaps. Formally, this property is

expressed as follows:

(∀x1: W1) (∀x2: W2) (∀x3: W3) (∀a1: 2
A) (∀a2: 2

A) (∀a3: 2
A) (ov(x2, x1, a2, a1,⊂) ∧ ov(x3, x2, a3, a2,to) →

ov(x3,x1, a3, a1,⊂))

Property 12: Inclusive overlap is a pseudo-symmetric relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀a1: 2
A) (∀a2: 2

A) (ov(x1, x2, a1, a2,⊂) ↔ ov(x2,x1, a2, a1,⊃))

Property 13: Partial overlap is an irreflexive relation for symbols in the vocabulary of the same specification given the

interpretation of this specification by the same group of agents. Formally, this property is expressed as follows:

(∀x1: W1) (∀a1: 2
A) (¬ ov(x1, x1, a1, a1,po))

Property 14: Partial overlap is a symmetric relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀a1: 2
A) (∀a2: 2

A) (ov(x1, x2, a1, a2,po) → ov(x2, x1, a2, a1,po))

Property 15: Partial overlap is a pseudo-transitive relation with respect to total overlaps. Formally, this property is

expressed as follows:

(∀x1: W1) (∀x2:W2) (∀x3: W3) (∀a1: 2
A) (∀a2: 2

A) (∀a3: 2
A) (ov(x1, x2, a1, a2,po) ∧ ov(x2, x3, a2, a3,to) →

ov(x1, x3, a1, a3,po))

2.3 Consistency of overlap relations

Often, our assumption that an agent (or a set of agents) does not assume different interpretations for a specification when

it explores the overlap relations between the symbols of this specification and symbols of any other specification turns

out to be false. This happens more often if the agent involved is a human being. It is possible to detect such cases by

checking the consistency of a set of asserted overlap relations with respect to the properties set out above.

For instance, we can establish that the following overlap relations asserted between the symbols of the specifications in

Figure 1,

ov(LibraryItem,book,{a1},{a2},⊂),

ov(LibraryItem,item,{a1},{a3},⊃),

ov(book,item,{a2},{a3},no)



9

are contradictory if,

a) the interpretations assumed for LibraryItem by the agent a1 and which gave rise to

ov(LibraryItem,book,{a1},{a2},⊂) and ov(LibraryItem,item,{a1},{a3},⊃)  are the same;

b) the interpretations assumed for book by the agent a2 and which gave rise to ov(LibraryItem,book,{a1},{a2},⊂)  and

ov(book,item,{a2},{a3},no) are the same; and

c) the interpretations assumed for item by the agent a3 that gave rise to ov(LibraryItem,item,{a1},{a3},⊃)  and

ov(book,item,{a2},{a3},no) are the same.

This is because the first two of these relations imply that ov(item,book,{a3},{a2},⊂)  (by transitivity of inclusive overlap

– see property 10 in section 2.2), which contradicts the third (since overlap types are mutually exclusive – see property 1

in section 2.2). This contradiction indicates that the agents did not assume the same interpretations of symbols across all

the comparisons.

Furthermore, the properties set out in section 2.2 may be used to infer additional overlap relations from given ones. For

instance, from ov(item,book,{a1},{a2},⊂) and ov(item,LibraryItem,{a1},{a1},to) it may be deduced (by pseudo-

transitivity of inclusive overlaps) that, ov(LibraryItem,book,{a1},{a2},⊂).

3. Representation of overlap relations in first-order logic

As we argued in section 1, the consistency status of specifications needs to be checked and established in reference to

specific overlap relations and this status may change given different assumptions about overlaps (made by different

agents).

In the case where specifications are expressed in first-order logic and their consistency is checked using theorem

proving, the ability to derive an inconsistency with respect to specific overlap relations depends on an explicit

representation of these relations. This is because theorem provers assume that only identical constants and predicates

with the same name are totally overlapping and therefore can be mated and resolved in constructing proofs (Ramsay

[1988]). Thus, the specifications S1 = {p(a)} and S2 = {¬q(a)}, which are inconsistent if the predicates p and q are

known to overlap totally, would not be found to be so by theorem proving since p(a) cannot be mated and resolved with

¬q(a). However, if the total overlap relation between p and q, ov(p,q,{a},{a},to), is explicitly represented by the formula

(∀x) (p(x) ↔ q(x)) (since IS1a(p) = IS2a(q)) then it is possible to construct a refutation from the set of formulas S1 ∪ S2 ∪

{( ∀x) (p(x) ↔ q(x))} and thus show that they are not satisfiable.



10

Figures 3-5 show algorithms which define a transformation F that transforms two specifications (expressed in first-order

logic) in a way which explicitly represents the overlap relations between their predicate and constant symbols. Thus, F

makes it possible to take into account these relations when checking their consistency by theorem proving.

Algorithm: F
Input: Si,Sj,Oa1a2 (Si,Si), Oa1a2 (Sj,Sj), Oa1a2 (Si,Sj)
Output: S
begin

let Ci and Cj be two sets consisting of the constant symbols of Si and Sj

respectively;
let Pi and Pj be two sets consisting of the predicate symbols of Si and Sj

respectively;
intra-overlap-f(Si, Ci, Pj, Oa1a2 (Si,Si), NSi);
intra-overlap-f(Sj, Cj, Pj, Oa1a2 (Sj,Sj), NSj);
inter-overlap-f(NSi, Ci, Pi, NSj, Cj, Pj, Oa1a2 (Si,Sj), S);
return (S);

end

Figure 3: The algorithm for transformation F

Algorithm: intra-overlap-f
Input: S, C, P, Oa1a2 (S,S)
Output: NS
comment:
• S: a set consisting of the formulas which constitute

the specification to be transformed
• C: a set consisting of the constant symbols  of S
• P: a set consisting of the  predicate symbols of S
• Oa1a2 (S,S): a set consisting of the  overlap relations

between the symbols of S
• NS: a set consisting of the formulas resulting from

the transformation of S

begin
NS = {};
for all ov(p,q,a1,a2,to) ∈ Oa1a2 (S,S) do

if ((p, q ∈ C) and (p ��T���then
NS = NS ∪ {(p = q)}

else if ((p, q ∈ P) and (p ��T���then
NS = NS ∪ {( ∀x1)(∀x2)...(∀xn) (p(x1,x2,...,xn)

↔ q(x1,x2,...,xn))};
end if;

for all ov(p,q,a1,a2,no) ∈ Oa1a2 (S,S) do
if ((p, q ∈ C) and (p ��T���then

NS = NS ∪ { ¬ (p = q)};

else if ((p, q ∈ P) and (p ��T���then
NS = NS ∪ {(∀x1) (∀x2)...(∀xn)( ¬

(p(x1,x2,...,xn) ∧ q(x1,x2,...,xn)))};
end if;

end for;
for all  ov(p,q,a1,a2,⊂) ∈ Oa1a2 (S,S) do

if ((p, q ∈ P) and (p ��T���then
NS = NS ∪ {(∀x1) (∀x2)...(∀xn) (q(x1,x2,...,xn)

→ p(x1,x2,...,xn))}
end if;

end for;
for all  ov(p,q,a1,a2,po) ∈ Oa1a2 (S,S) do

if ((p, q ∈ P) and (p ��T���then
NS = NS ∪ {(∃x1) (∃x2)...(∃xn) (p(x1,x2,...,xn) ∧

q(x1,x2,...,xn))};
NS = NS ∪ {(∃x1) (∃x2)...(∃xn) (p(x1,x2,...,xn) ∧

¬ q(x1,x2,...,xn))};
NS = NS ∪ {(∃x1) (∃x2)...(∃xn) (¬p(x1,x2,...,xn) ∧

q(x1,x2,...,xn))};
end if ;

end for;
NS = NS ∪ S;
end

Figure 4: The algorithm for intra-overlap transformation



11

According to F:

• All the symbols in the vocabularies of the specifications are prefixed by the identifier of the specification they

come from. For instance, every occurrence of a predicate symbol p(x) of specification S1 is rewritten as S1p(x).

Thus, the identical symbols of S1 and S2 are not necessarily considered as totally overlapping.

• Totally overlapping constants are represented by asserting an equality relation between them (unless they are

identical and belong to the same specification in which case no action is necessary). For instance a total overlap

relation ov(c1,c2,{a1},{a2},to) between two constant symbols c1 and c2 is asserted by:

S1c1 = S2c2 (since I(c1) = I(c2))

• Totally overlapping predicates are represented by a universally quantified equivalence between them. For

instance a total overlap relation ov(p,q,{a1},{a2},to) between two predicates p(x) and q(x) is asserted by:

(∀x) (S1p(x) ↔ S2q(x)) (since I(p) = I(q))

• Non overlapping constants are represented by asserting that they are not equal. For instance a null overlap

relation ov(c1,c2,{a1},{a2},no) between two constant symbols c1 and c2 is asserted by: ¬(S1c1 = S2c2) (since

I(c1) ∩ I(c2) = Ø)

In this way, F distinguishes between non identical constants for which a null overlap relation has been asserted

and non identical constants for which no null overlap relation has been asserted. The latter case is treated as one

in which the overlap between the constants involved is uncertain.

• Non overlapping predicates are represented by an assertion that that there is no tuple of individuals for which

both of them become true. For instance a null overlap relation ov(p,q,{a1},{a2},no) between two predicates p(x)

and q(x) is asserted by:

(∀x) (¬(S1p(x) ∧ S2q(x))) (since I(p) ∩ I(q) = Ø)

• Predicates which overlap inclusively are represented by a universally quantified implication between them. For

instance an inclusive overlap relation ov(p,q,{a1},{a2},⊂ ) between two predicates p(x) and q(x) is asserted by:

(∀x) (S1q(x) → S2p(x)) (since I(q) ⊂ I(p))

• Partially overlapping predicates are represented by assertions expressing that there will be tuples of individuals

for which both predicates are true and tuples for which only one of them is true and the other is false. For

instance a partial overlap relation ov(p,q,{a1},{a2},po) between two predicates p(x) and q(x) is asserted by:

(∃x) (S1p(x) ∧ S2q(x)) (since I(p) ∩ I(q) ��Ø)

(∃x) (S1p(x) ∧ ¬ S2q(x)) (since I(p) – I(q) ��Ø)

(∃x) (¬S1p(x) ∧ S2q(x)) (since I(q) – I(p) ��Ø)



12

The general approach of F is to assert formulas which express the semantics of overlap relations as defined by definition

2 in first-order logic rather than re-writing symbols in a way that would have the same effect during unification (for

instance totally overlapping non identical predicate symbols could have been re-written as the same symbol). This

approach makes it possible to identify the overlap relations which have been involved in deriving an inconsistency

between specifications as one of the reasons for this inconsistency (see section 5 below). The assertion of equalities

between the totally overlapping constant symbols make necessary the extension of the axioms of first-order logic with

axioms to handle equalities (see definition 3 below).

As an example of how F works assume the following partial representations of the specifications of Figure 1 in predicate

logic: S1 = {(∀x1) (staff(x1) → penalty(x1,10p) } and  S2 = {(∀x1) (student(x1) → penalty(x1,50p) }.

OAA(S1,S1) staff penalty 10p

staff to

penalty to

10p to

Table 1: Intra–S1 overlaps given by an agent A

OAA(S2,S2) student penalty 50p

student to

penalty to

50p to

Table 2: Intra–S2 overlaps given by an agent A

OAA(S1,S2) student penalty 50p

staff po

penalty to

10p no

Table 3: Overlaps between S1 and S2 given by an agent A

Given the overlap relations between the symbols of S1 and S2 shown in Tables 1-3 (the overlap types shown in italics

denote those overlap relations that cannot be detected by standard unification), F produces the following formulas:

(∀x) (S1staff(x) → S1penalty(x, S110p))

(∀x) (S2student(x) → S2penalty(x, S250p))

(∃x) (S1staff(x) ∧ S2student(x))

(∃x) (S1staff(x) ∧ ¬ S2student(x))

(∃x) (¬S1staff(x) ∧ S2student(x))

(∀x1) (∀x2) (S1penalty(x1,x2) ↔ S2penalty(x1,x2))

¬ (S110p = S250p)



13

Algorithm: inter-overlap-f
Input: NSi, Ci, Pi, NSj, Cj, Pj, Oa1a2 (Si,Sj)
Output: S
comment:
• NSi (NSj): the set of the formulas resulting from the

transformation of Si (Sj) due to its internal overlaps
• Ci (Cj): the set of the constant symbols of Si (Sj)
• Pi (Pj): the set of the predicate symbols in Si (Sj)
• Oa1a2 (Si,Sj) : a set of overlap relations between the

constant and predicate symbols of  Si and Sj

• S: set of the formulas resulting from the
transformation of Si and Sj

begin
S = {}; T i = NSi; Tj = NSj;

comment: prefix the names of the symbols in the
vocabularies of Si and Sj by the identifier of the
relevant specification

for all p in Pi do NPi[p] = concatenate ("Si",p);
end for;
for all p in Pj do NPj[p] = concatenate ("Sj",p);
end for;
for all c in Ci do NCi[c] = concatenate ("Si",c);
end for;
for all c in Cj do NCj[c] = concatenate ("Sj",c);
end for;

for all ov(p,q,a1,a2,to) ∈ Oa1a2 (Si,Sj) do
if ((p ∈ Pi) and (q ∈ Pj)) then

np = NPi[p]; nq = NPj[q];
S = S ∪ {( ∀x1) (∀x2)...(∀xn) (np(x1,x2,...,xn) ↔

nq(x1,x2,...,xn))};
else if ((p ∈ Ci) and (q ∈ Cj)) then

np = NCi[p]; nq = NCj[q];
S = S ∪ {(np = nq)};

end if;
end for;

for all ov(p,q,a1,a2,no) ∈ Oa1a2 (Si,Sj) do
if ((p ∈ Pi) and (q ∈ Pj)) then

np = NPi[p]; nq = NPj[q];
S = S ∪ {( ∀x1) (∀x2)...(∀xn) (¬ (np(x1,x2,...,xn) ∧

nq(x1,x2,...,xn)))};

else if ((p ∈ Ci) and (q ∈ Cj)) then
np = NCi[p]; nq = NCj[q];
S = S ∪ { ¬ (np = nq)};

end if;
end for;

for all ov(p,q,a1,a2,⊂) ∈ Oa1a2 (Si,Sj) do
if ((p ∈ Pi) and (q ∈ Pj)) then

np = NPi[p]; nq = NPj[q];
S = S ∪ {( ∀x1) (∀x2)...(∀xn) (nq(x1,x2,...,xn) →

np(x1,x2,...,xn))};
end if;

end for;

for all ov(p,q,a1,a2,po) ∈ Oa1a2 (Si,Sj) do
if ((p ∈ Pi) and (q ∈ Pj)) then

np = NPi[p]; nq = NPj[q];
S = S ∪ {( ∃x1) (∃x2)...(∃xn) (np(x1,x2,...,xn) ∧

nq(x1,x2,...,xn))};
S = S ∪ {( ∃x1) (∃x2)...(∃xn) (np(x1,x2,...,xn) ∧

¬nq(x1,x2,...,xn))};
S = S ∪ {( ∃x1) (∃x2)...(∃xn) (¬np(x1,x2,...,xn) ∧

nq(x1,x2,...,xn))};
end if;

end for;

comment: rewrite the predicate symbols of Si and Sj

for all p in Pi do
rewrite every occurrence of p in Ti as NPi[p];

 end for;
for all p in Pj do

rewrite every occurrence of p in Tj as NPj[p];
 end for;

comment: rewrite the constant symbols of Si and Sj

for all c in Ci do
rewrite every occurrence of c in Ti as NCi[c];

end for;
for all c in Cj do

rewrite every occurrence of c in Tj as NCj[c];
end for;
S = S ∪ Ti ∪ Tj;
return(S);
end

Figure 5: The algorithm for inter-overlap transformation

The transformation F adds up to 3*N formulas to the original specifications where N is the number of the overlap

relations identified between their symbols. The formulas asserted by F may make some of the formulas in the original

specifications (or literals in them) redundant. Consider for instance a specification S1 = {(∀x) (p(x) ∧ q(x) → u(x))} for

which the overlap relation ov(p,q,{a},{a},⊂) is known to be true. F will transform S1 into the formulas:

{( ∀x) (S1p(x) ∧ S1q(x) → S1u(x)), (∀x)( S1q(x) → S1p(x)) }



14

Thus, the literal S1p(x) in the formula (∀x) (S1p(x) ∧ S1q(x) → S1u(x)) becomes redundant. This suggests that F could

perhaps incorporate some formula simplification mechanism or the use of a simplification resolution strategy (see

Nilsson [1971] pp. 217-18) to reduce the computational cost of checking the consistency of specifications by theorem

proving. However, it has to be realised that the net benefit from using simplification mechanisms depends on the

computational cost of identifying the formulas and literals which can be eliminated and the reduction of the rate of

growth of new clauses in resolution which results from this elimination. The extent of such a benefit (if it exists at all)

given the particular specifications has to be identified by careful analysis before adopting a simplification approach since

in any case resolution is going to generate clauses at a combinatorial growth rate.

Note that F is not meant to have a permanent effect on the contents of specifications. It is only used to rewrite

specifications in a way which represents specific sets of intra- and inter-specification overlap relations that have been

asserted by specific agents so as to enable their consistency checking with respect to these relations. After the

consistency check, the specifications are maintained in their original form. Their consistency status with respect to

different sets of overlap relations may be checked after transforming them again using F.

4. Overlap and inconsistency

As we argued in section 1, the presence of overlaps is directly related to the need to determine whether specifications

satisfy certain consistency rules. The consistency status of specifications needs to be checked and established in

reference to specific overlap relations. This status may change given different assumptions about overlaps made by

different agents.

To account for this dependency, we propose a definition of specification inconsistency which takes into account specific

consistency rules (as in Finkelstein et. al. [1994]) and overlap relations. Formally,

Definition 3: Assume two specifications Si and Sj, three sets of intra- and inter-specification overlap relations

Oa1a2(Si,Si), Oa1a2(Sj,Sj) and Oa1a2(Si,Sj) and a consistency rule CR. Si and Sj will be said to be inconsistent with respect to

CR when overlapping as indicated by Oa1a2(Si,Si), Oa1a2(Sj,Sj) and  Oa1a2(Si,Sj) if:

{F(Si;Sj; Oa1a2(Si,Si); Oa1a2(Sj,Sj); Oa1a2(Si,Sj)) ∪  EA} �¤&5

where

• F is the transformation defined in section 3

• EA is the set of the equality axioms (Shepherdson [1988]) which are needed to handle the equalities that F asserts in

order to express the total overlaps between the constants of Si and Sj:

(∀x) x = x

(∀x1) (∀x2) x1 = x2  → x2 = x1

(∀x1) (∀x2) (∀x3) x1 = x2  ∧ x2 = x3 → x1 = x3

for each predicate symbol p: (∀x1) (∀y1) ... (∀xn) (∀yn) x1 = y1  ∧ x2 = y2 ∧ ... ∧ xn = yn → (p(x1, ..., xn) ↔ p(y1, ..., yn))



15

Our definition is a special case of the Craig & Robinson’s theorem of joint consistency. According to this theorem (see

Shoenfield [1967], pg. 79) two theories Ti and Tj are inconsistent if and only if there is a formula A such that Ti �$�DQG

Tj � ¤$�� 7KLV� LV� WKH� JHQHUDO� FDVH� ZKHUH� WKH� REMHFWLYH� LV� WR� ILQG� D� IRUPXOD� $�� ZKLFK� LV� GHULYHG� IURP� RQH� RI� WKH

specifications and satisfies the conditions of the theorem, and thus show that Ti and Tj are not satisfiable. In our case, the

objective is to check whether the specifications violate a specific consistency rule by trying to prove that the negation of

a rule can be derived from the specifications. In terms of the theorem above, F(Si;Sj; Oa1a2(Si,Si); Oa1a2(Sj,Sj); Oa1a2(Si,Sj))

plays the role of the theory Tj from which we try to prove ¬CR and CR plays the role of the theory Ti. If ¬CR can be

proved from F(Si;Sj; Oa1a2(Si,Si); Oa1a2(Sj,Sj); Oa1a2(Si,Sj)) (i.e. {F(Si;Sj; Oa1a2(Si,Si); Oa1a2(Sj,Sj); Oa1a2(Si,Sj))} �¤&5��WKHQ

since CR �&5�E\�YLUWXH�RI�WKH�WKHRUHP�)�6i;Sj; Oa1a2(Si,Si); Oa1a2(Sj,Sj); Oa1a2(Si,Sj)) and CR will be inconsistent. Note

that checking the satisfiability of the specifications as such with respect to specific overlap relations can also be

expressed in terms of our definition. In this case, ¬CR would be the empty clause (¬CR ≡ ⊥).

We assume that the consistency rule CR is expressed in terms of the re-written (by F) predicates of Si and Sj. This rule

may represent:

• constraints which ensure that specific system features have been consistently specified in partial overlapping

specifications of the system as for example the case of the penalty for late returns in section 1

• semantic properties of constructs of the specification language(s) used, which must be obeyed by Si and Sj for them

to be legitimate specifications in this language(s) – for instance the graph formulated by the generalisation relations

of a class diagram expressed in the Unified Modeling Language must by acyclic (Rational [1997], pg. 31))

• constraints that must hold for specifications if they are to be compliant with software engineering practices or

standards – for instance every data flow in a data-flow diagram must have an entry in the corresponding requirement

dictionary (Emmerich et al [1997]).

Examples of expressing consistency rules and checking the consistency of specifications with respect to specific overlap

relations between their symbols are given in the following section.

5. Examples

5.1 Example 1: Inter–specification inconsistency

As shown in section 3, the following formulas capture part of the information in the specifications in Figure 1 in a way

which represents the overlaps shown in Tables 1-3:

(f1) (∀x) (S1staff(x) → S1penalty(x, S110p))

(f2) (∀x) (S2student(x) → S2penalty(x, S250p))

(f3) (∃x) (S1staff(x) ∧ S2student(x))



16

(f4) (∃x) (S1staff(x) ∧ ¬ S2student(x))

(f5) (∃x) (¬S1staff(x) ∧ S2student(x))

(f6) (∀x1) (∀x2) (S1penalty(x1,x2) ↔ S2penalty(x1,x2))

(f7) ¬ (S110p = S250p)

These formulas are inconsistent with respect to a rule requiring that the amount of money that any library borrower

should pay for late returns to the library according to the specifications involved must be the same. This consistency rule

is expressed by the formula:

CR = { (∀x1) (∀x2) (∀x3) (S1penalty(x1, x2) ∧ S2penalty(x1, x3) → (x2 = x3)}

The inconsistency may be shown by constructing a refutation from the set of formulas {f1,...,f7} ∪ {CR} ∪ EA using

resolution as follows:

• From f3 we have that there will be an a such that S1staff(a) ∧ S2student(a) or equivalently:

(f8) S1staff(a)

(f9) S2student(a)

• From f1 and f8 we have: (f10) S1penalty(a, S110p)

• From f2 and f9 we have: (f11) S2penalty(a, S250p)

• From f10 and CR we have: (f12) ¬ S2penalty(a, x3) ∨ (S110p= x3)

• From f11 and f12 we have: (f13) (S110p= S250p)

• From f7 and f13 we have: ⊥

Note that the partial overlap between the predicate staff (S1) and the predicate student (S2) had a special role in revealing

this inconsistency. The assertion of this relation indicated that, given the interpretation of the predicates staff and student

by the agent A, there will be students who are also members of the university staff as well as students who are not

members of the university staff and members of staff who are not students. This was not apparent in the original

specifications. Due to this overlap S1 and S2 are inconsistent with respect to the late return penalties they specify for

different categories of library borrowers.

5.2 Example 2: Intra–specification inconsistency

The case of intra-specification inconsistency is covered by definition 3 assuming that Sj = Ø, Oa1a2(Sj,Sj) = Ø, and

Oa1a2(Si,Sj) = Ø. Then, the condition of the definition becomes:

{F(Si; Ø; Oa1a2(Si,Si); Ø; Ø) ∪ EA} �¤�&5

Consider as an example the following part of Specification 2 in Figure 1 represented in first-order logic:

S2 = { (∀x1) (∀x2) (student(x1) ∧ book(x2) → canborrow(x1,x2)),

(∀x1) (∀x2) (student(x1) ∧ proceedings(x2) → ¬ canborrow(x1,x2)),

(∀x1) (∀x2) (staff(x1) ∧ book(x2) → canborrow(x1,x2)),



17

(∀x1) (∀x2) (staff(x1) ∧ proceedings(x2) → canborrow(x1,x2)),

(∃x) (book(x)),

(∃x) (proceedings(x))}

These formulas are inconsistent given the overlaps between the predicate symbols of S2 shown in Table 4 (the overlap

relations whose types appear in italics are those that cannot be detected by standard unification algorithms). The

inconsistency arises due to the partial overlap between the predicates student and staff, which allows for the possibility to

have students who are also members of staff. Given this overlap and the subsequent transformation of S2 by F, it can be

derived that such students can and cannot borrow proceedings, which is a contradiction.

OBB(S2,S2) staff student book proceedings canborrow

staff to po

student po to

book to

proceedings to

canborrow to

Table 4: Intra-Specification overlaps for S2 asserted by an agent B

More specifically, the algorithm F transforms S2 into the following formulas (note that only the intra-overlap-f algorithm

asserts new formulas in this case since that Sj = Ø, Oa1a2(Sj,Sj) = Ø and Oa1a2(Si,Sj) = Ø):

(f1) (∀x1) (∀x2) (S2student(x1) ∧ S2book(x2) → S2canborrow(x1,x2))

(f2) (∀x1) (∀x2) (S2student(x1) ∧ S2proceedings(x2) → ¬ S2canborrow(x1,x2))

(f3) (∀x1) (∀x2) (S2staff(x1) ∧ S2book(x2) → S2canborrow(x1,x2))

(f4) (∀x1) (∀x2) (S2staff(x1) ∧ S2proceedings(x2) → S2canborrow(x1,x2))

(f5) (∃x) (S2book(x))

(f6) (∃x) (S2proceedings(x))

(f7) (∃x) (S2staff(x) ∧ S2student(x))

(f8) (∃x) (S2staff(x) ∧ ¬ S2student(x))

(f9) (∃x) (¬S2staff(x) ∧ S2student(x))

Then, given a consistency rule which has the truth value "true", a refutation may be constructed from {f1,...,f9} ∪ EA

using resolution as follows (as it turns out in this case the equality axioms are not required):

• From f7 we have that there will be an a such that S2staff(a) ∧ S2student(a) or equivalently:

(f10) S2staff(a)

(f11) S2student(a)

• From f6 we have that there will be a b such that: (f12) S2proceedings(b)

• From f2 and f11 we have: (f13) (∀x2) (S2proceedings(x2) → ¬ S2canborrow(a,x2))



18

• From f12 and f13 we have: (f14) ¬ S2canborrow(a,b)

• From f4 and f10 we have: (f15) (∀x2) (S2proceedings(x2) → S2canborrow(a,x2))

• From f12 and f15 we have: (f16) S2canborrow(a,b))

• From f14 and f16 we have: ⊥

Note that since S2 says nothing about the relationship between the predicates student and staff the previous inconsistency

could not have been detected from the formulas in S2. It has to be realised that this ambiguity was present in

Specification-2 of Figure 1 and did not arise due to the representation of this specification in first-order logic. Such

ambiguities are likely to characterise requirements (Mullery, [1996]) and cannot be totally removed by specifying them

in any formal language like first-order logic. The only way to remove them is to try to identify overlap relations.

6. Related work

Despite the importance of overlap for inconsistency, its identification has only been a side concern in requirements

engineering research. Overlaps are usually identified by representation conventions, shared ontologies, designations and

specification owners.

The simplest and most common representation convention is to assume total overlap between elements with identical

names and no overlap between any other pair of elements (Easterbrook et. al. [1994], Finkelstein et. al. [1994],

Easterbrook & Nuseibeh [1996], Heitmeyer et. al. [1995], van Lamsweerde [1996], Nissen et. al. [1996]). Undoubtedly

this convention is unacceptably weak for even simple forms of specification heterogeneity such as the presence of

synonyms and homonyms. Overlaps may also be identified by relations embedded in specification languages. For

instance, the "Is-a" relation in various object-oriented specification languages, which is usually given a set-inclusion

semantics, is a statement of inclusive overlap: the subtype designates a subset of the instances of the supertype.

Similarly, the implication (→) between two predicates of the same arity constitutes a statement of inclusive overlap in a

first order language. Note that such embedded relations may only interrelate specifications represented in the same

language, and need to be identified explicitly for independently constructed specifications.

In order to extend this approach for specifications expressed in different languages it is necessary to interrelate the

constructs of these languages. Fiadeiro & Maibaum [1995] interrelate such constructs using the formal framework of

category theory. They formalise specifications as categories (directed graphs with a composition and identity structure)

and use functors between these categories (i.e. functional mappings between the nodes and edges of the categories) to

interconnect them in a consistent way (i.e. in a way which preserves their structures and therefore the properties that

these structures represent). Note however that functors cannot be used to represent overlap relations since the latter are

N:M mappings in the general case. Also the existence of a functor between two categories does not mean that they also

overlap. Consider for instance the following two Is-a graphs:

Graph 1: object-class(Student), object-class(LibraryBorrower), Is-a(Student,LibraryBorrower)

Graph 2: object-class(Book), object-class(LibraryItem), Is-a(Book,LibraryItem)



19

If we assume a subset semantics for the Is-a relations then these relations will constitute partial orders and therefore the

previous graphs may be considered as categories (Rydeheard & Burstall [1988]). Between these graphs there is a functor

which maps:

object-class(Student) onto object-class(Book),

object-class(LibraryBorrower) onto object-class(LibraryItem), and

Is-a(Student,LibraryBorrower) onto Is-a(Book,LibraryItem)

This functor preserves the Is-a relations between the classes in the two graphs. Nevertheless these classes do not overlap

given any plausible interpretation that may be derived from their names.

An alternative approach is to use shared ontologies for assigning interpretations to specification elements and to identify

overlaps between elements that have been "tagged" with the same item in the ontology (Leite & Freeman [1991],

Robinson & Fickas [1994], Boehm & In [1996]). In order to be useful – that is to facilitate communication between

agents about a specific domain of discourse without necessarily assuming a global shared theory – ontologies have to

include definitions of their items and be general. Furthermore, the agents need to "commit" themselves to the ontology in

the sense that their observable actions are consistent with the definitions of the items (Gruber [1993], Guarino [1994]).

As a consequence of ontology generality, specifications have to add a lot of details to an ontology in order to describe a

system with reasonable degree of completeness. Inevitably this leads to associations of many specification elements with

the same item in the ontology and as a result only coarse-grain overlaps can be identified by using these items.

Furthermore since ontologies incorporate item definitions, they are models themselves and as such they might be

interpreted in different ways by different specification owners! Thus the same ontology item may be used for ascribing

different meanings to different specification elements. As a consequence the existence of overlaps between elements

associated with the same item in an ontology cannot be assumed with safety unless there is evidence that the

specification owners understood the ontology in the same way.

A third approach is to involve people in overlap identification (Easterbrook [1991], Zave & Jackson [1993], Spanoudakis

& Finkelstein [1997]). In this approach, specification owners (or a third party) explore their specifications and

cooperatively identify overlaps possibly with the support of some tool or method. The support available might range

from visual aid for browsing, graphical selection and recording of overlaps (Easterbrook [1991]) to specification

matching methods (Spanoudakis & Constantopoulos [1995]). However inspection is not sufficient when it comes to

specifications of substantial complexity. Matching methods tend to be sensitive to heterogeneity in the specification

representation, granularity and level of abstraction.

Finally, there is a possibility to identify overlaps by virtue of "designations" (Jackson [1997]). Designations constitute a

way of associating non ground terms in formal specifications with ground terms which are known to have reliable and

unambiguous interpretations (called "phenomena"). A designation associates a non ground term with a recognition rule

which identifies the phenomena designated by it. The rule is specified in natural language. Designations can certainly

help human agents in identifying overlap relations between specification components. However, they shouldn’t be used

as definitive indications of overlaps. The reason is that the recognition rules of designations might themselves admit

different interpretations. Even Jackson (1997) admits that:



20

" ... the recognition rule in a designation is inevitably imperfect. However carefully it may be

formulated, there may always be hard cases in which we are uncertain whether or not the rule applies."

(Jackson [1997], page 14).

7. Future Work

The distinction between overlap and inconsistency is crucial and, we believe, necessitates the investigation of overlap as

a key component of any research whose objective is the effective management of inconsistency in requirements

engineering. The particular issues which deserve special attention in our view include the identification, synthesis,

representation and management of overlap relations.

7.1 Overlap identification

It should be clearly appreciated that the identification of overlap is complicated by specifications which might have been

constructed independently by stakeholders with varying concerns, backgrounds and knowledge. As a consequence

specifications might have been expressed in different languages; might be at different levels of abstraction, granularity

and formality, and deploy different terminologies. The complexities arising from these forms of heterogeneity – set

alongside the normal software engineering problems of scale – make the identification of overlap a very complex

activity.

We have been working on the assumption that effective overlap identification is possible by developing specialised

methods or algorithms for specifications expressed in particular specification languages. This approach has been

successful in developing algorithms for specialised consistency checks (e.g. consistency checking for SCR specifications

[Heitmeyer et al 1995]).  In [Spanoudakis & Finkelstein 1997, Spanoudakis & Finkelstein 1998], we presented a method

for identifying overlaps and inconsistencies between specifications expressed in an object-oriented framework. This

method is based on an automatic similarity analysis of specifications which identifies possible overlaps between them

which are then assessed and confirmed or rejected by humans. The similarity analysis performed by the method has

polynomial complexity, something that makes it scaleable.

Our experience with this method indicates that the accuracy of the similarity analysis is considerably reduced when it

comes to specifications which express requirements at very different levels of granularity and abstraction. This is exactly

where human intervention is required. The articulation of heuristic criteria for deciding which parts of the specifications

are problematic in this respect and as such should be inspected carefully by humans is the next step we wish to explore in

this direction of research.

7.2 Synthesis of overlap relations

We envisage that in many settings a combination of different overlap identification techniques will be required, and

overlap relations identified by different agents will need to be synthesised in an attempt to reduce the cost and

complexity of overlap identification. For instance, in cases where a shared ontology has been evidently used in a



21

coherent way for some time, it makes sense to use it for identifying coarse-grain overlaps and then refine them using

some other method (e.g. specification matching or inspection). Or, in checking the consistency of more than two

specifications it might be necessary to rely on pairwise overlaps between them asserted by different agents.

In cases where overlap relations have been identified by different agents but not jointly, it is necessary to be able to

check if these relations are consistent, and to synthesise them in a coherent and systematic way prior to informing

consistency checking. It is also necessary to be able to assess our confidence in the subsequent consistency checking.

Dealing systematically with these issues requires an extension of the formal framework presented in this paper.

7.3 Overlap representation and management

Overlap relations need to be stored separately from the specifications they relate, represented in forms suitable for

consistency checking, and maintained after consistency checking. This would make checking consistency with respect to

different sets of overlap relations easier. It would also facilitate the role of overlap as an indicator of the potential for

inconsistency when changes to specification elements violate previously satisfied rules or additional consistency rules

are identified. However, representing overlaps separately from the specifications they relate introduces interesting

questions about what happens to them when specifications change, especially in cases where the agents that identified

these relations were not involved in making the changes.

8. Conclusions

In this paper, we have argued that there are two distinct levels of interference between requirement specifications,

namely specification overlap and inconsistency, provided formal definitions for both these levels, and discussed their

relationship. The paper suggests that overlap is a relation between interpretations ascribed to specifications by specific

agents, inconsistency is unsatisfiability of specifications with respect to specific consistency rules and overlap relations,

and the consistency status of specifications has to be checked with respect to specific overlap relations and might change

if these relations change.

The consequence of this stance is that the identification of overlaps deserves special attention in research which is

concerned with the detection of inconsistencies between specifications. This is because however carefully two

specifications may be constructed or even formalised there will always be vagueness regarding the overlap relations

between their components which must be reduced (and ideally totally removed) before being able to say anything about

their consistency with certainty.

This paper makes a step towards this direction by providing a formal semantics for overlap relations and establishing a

set of properties that may be used to check their consistency. Note that according to this semantics overlap relations are

restricted to symbols of the same degree in the vocabularies of specifications (see Definition 2). Clearly, there might be

cases where specifications would exhibit inconsistencies if overlap relations between symbols of different degrees had

been taken into account. Nevertheless, we have deliberately made this restriction to avoid an increase in the

computational complexity of the entire approach if such relations are taken into account.



22

In this paper we have also reviewed existing approaches to the identification of overlap and assessed their merit with

respect to the proposed semantics. Finally, we have suggested the research directions that should be pursued in order to

deal effectively with the problem of identifying overlaps between requirement specifications.

References

Boehm B., In H., 1996. "Identifying Quality Requirements Conflicts", IEEE Software, March 1996, pp. 25-35.

Easterbrook S., 1991. "Handling Conflict between Domain Descriptions with Computer-Supported Negotiation",

Knowledge Acquisition, 3, pp. 255-289.

Easterbrook S., Finkelstein A., Kramer J. & Nuseibeh B., 1994. "Co-Ordinating Distributed ViewPoints: the anatomy of

a consistency check", International Journal on Concurrent Engineering: Research & Applications, 2,3, CERA Institute,

USA, pp. 209-222.

Easterbrook S., Nuseibeh B., 1996. "Using ViewPoints for Inconsistency Management", Software Engineering Journal,

11, 1, BCS/IEE Press, pp. 31-43.

Emmerich W., Finkelstein A., Montangero C. and Stevens R., 1997. "Standards Compliant Software

Development", ICSE ’97 Workshop on Living with Inconsistency (electronic publication - available by ftp from:

http://www.cs.ucl.ac.uk/staff/w.emmerich/publications/)

Fiadeiro J., Maibaum T., 1995. "Interconnecting Formalisms: Supporting Modularity, Reuse and Incrementality",

Proceedings of the Symposium on the Foundations of Software Engineering (FSE 95), ACM Press, pp. 1-8.

Finkelstein, A., Spanoudakis, G. & Till D., 1996. "Managing Interference", Joint Proceedings of the Sigsoft ‘96

Workshops – Viewpoints ‘96, ACM Press, pp. 172-174.

Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh, B., 1994. "Inconsistency Handling In Multi-Perspective

Specifications", IEEE Transactions on Software Engineering, 20, 8, pp. 569-578.

Gruber T., 1993. "Towards Principles for the Design of Shared Ontologies Used for Knowledge Sharing", International

Workshop on Formal Ontology, Padova, Italy (also available as Technical Report KSL 93-04, Knowledge Systems

Laboratory, Stanford University).

Guarino N., 1994. "The Ontological Level", In Philosophy and the Cognitive Sciences, (eds) R. Casati, B. Smith and G.

White, Holder-Pichler-Tempsky, Vienna.



23

Heitmeyer C., Labaw B., Kiskis D., 1995. "Consistency Checking of SCR-Style Requirements Specifications",

Proceedings of the 2nd International Symposium on Requirements Engineering (RE ’95), IEEE CS Press, pp. 56-63.

Jackson M., 1997. "The meaning of requirements", Annals of Software Engineering, Vol. 3, pp. 5-21.

Leite J.C.S.P., Freeman P.A., 1991. "Requirements Validation through Viewpoint Resolution", IEEE Transactions on

Software Engineering, Vol. 12, No. 12, pp. 1253-1269.

Mullery G., 1996. "Tool Support For Multiple Viewpoints", Joint Proceedings of the Sigsoft ‘96 Workshops –

Viewpoints ‘96, ACM Press, pp. 227-231.

Nilsson N., 1971. "Problem Solving Methods in Artificial Intelligence", McGraw Hill.

Nissen H., Jeusfeld M., Jarke M., Zemanek G., Huber H., 1996. "Managing Multiple Requirements Perspectives with

Metamodels", IEEE Software, March 1996, pp. 37-47.

Ramsay A., 1988. "Formal Methods in Artificial Intelligence", Cambridge Tracts in Theoretical Computer Science,

Cambridge University Press, ISBN 0 521 35236 3.

Rational, 1997. "UML Semantics", Rational Software Corp., 2800 San Thomas Expressway, Santa Clara, CA, USA,

version 1.1, (available by ftp from: http://www.rational.com/uml/adobe.html)

Robinson W., Fickas S., 1994. "Supporting Multiple Perspective Requirements Engineering", Proceedings of the 1st

International Conference on Requirements Engineering (ICRE 94), IEEE Computer Society Press, pp.206-215

Rydeheard D.E., Burstall R.M., 1988. "Computational Category Theory", Prentice Hall, International Series in Computer

Science, ISBN 0-13-162736-8

Shepherdson J.C., 1988. "Negation in Logic Programming", In Foundations of Deductive Databases and Logic

Programming, (ed) Minker J., Morgan Kaufmann, pp.19-89

Shoenfield J., 1967. "Mathematical Logic",  Addison Wesley.

Spanoudakis G., Constantopoulos P., 1995. "Integrating Specifications: A Similarity Reasoning Approach", Automated

Software Engineering Journal, 2, 4, pp. 311-342.

Spanoudakis, G., Finkelstein, A., 1997. "Reconciling Requirements: a method for managing interference, inconsistency

and conflict", Annals of Software Engineering, Vol. 3, pp. 433-457



24

Spanoudakis, G., Finkelstein, A., 1998. "A Semi-automatic Process of Identifying Overlaps and Inconsistencies between

Requirements Specifications", In Proceedings of the 5th International Conference on Object Oriented Information

Systems (OOIS ‘98), Springer, ISBN 1-85233-046-5, pp. 405-426

van Lamsweerde A., 1996. "Divergent Views in Goal-Driven Requirements Engineering", Joint Proceedings of the

Sigsoft ‘96 Workshops – Viewpoints ‘96, ACM Press, pp. 252-256.

Zave P., Jackson M., 1993. "Conjunction as Composition", ACM Transactions on Software Engineering and

Methodology, Vol. 2, No. 4, pp. 379-411.



25

Appendix: Properties of overlap relations

In the formulas which formally express the properties of overlap below, xi are variables whose values are items in

specification vocabularies (Wi), ti are variables whose values are overlap types (OT), and ai are variables whose values

are sets of agents (elements of the powerset 2A).

Property 1: Overlap types are mutually exclusive. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀t1: OT) (∀t2: OT) (∀a1: 2
A)(∀a2: 2

A) (ov(x1, x2, a1, a2,t1) ∧ ov(x1, x2, a1, a2,t2) → (t1 = t2))

Proof. Assume two predicate or constant symbols s1 and s2 and two sets of agents a1 and a2. If s1 and s2 overlap totally

with respect to the interpretations ascribed to them by a1 and a2( ov(s1,s2,a1,a2,to)) then by definition 2 Ia1(s1) = Ia2(s2).

Therefore, Ia1(s1) ∩ Ia2(s2) ��Ø, Ia1(s1) ⊄ Ia2(s2), Ia2(s2) ⊄ Ia1(s1). However,

• From Ia1(s1) ∩ Ia2(s2) ��Ø we have that ¬ ov(s1,s2,a1,a2,no),

• From Ia1(s1) ⊄ Ia2(s2) we have that ¬ ov(s1,s2,a1,a2,⊃), and

• From Ia2(s2) ⊄ Ia1(s1) we have that ¬ ov(s1,s2,a1,a2,⊂).

Similar proofs may be constructed in the cases where s1 and s2 overlap partially, inclusively or do not overlap at all. 

Property 2: Total overlap is a reflexive relation between the symbols in the vocabulary of the same specification given

the interpretation of this specification by the same group of agents. Formally, this property is expressed as follows:

(∀x1: W1) (∀a1: 2
A) (ov(x1, x1, a1, a1,to))

Proof. Since an agent (set of agents) a has a single interpretation (Ia,Da) of a specification S and the mapping Ia is a total

morphism each symbol in S will be mapped onto a single relation R (R ⊆ Dn) given (Ia,Da). Therefore for each symbol x

in S it will be that Ia(x) = Ia(x) or equivalently, ov(x,x,a,a,to). 

Property 3: Total overlap is a symmetric relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀a1: 2
A) (∀a2: 2

A) (ov(x1, x2, a1, a2,to) → ov(x2, x1, a2, a1,to))

Proof. Assume two predicate or constant symbols s1 and s2 and two sets of agents a1 and a2. If it is known that

ov(s1,s2,a1,a2,to) then Ia1(s1) = Ia2(s2) or equivalently Ia2(s2) = Ia1(s1) and by implication ov(s2,s1,a2,a1,to). 

Property 4: Total overlap is a transitive relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀x3:W3) (∀a1: 2
A) (∀a2: 2

A) (∀a3: 2
A) (ov(x1, x2, a1, a2,to) ∧ ov(x2, x3, a2, a3,to) →

(ov(x1, x3, a1, a3,to))



26

Proof. Assume three predicate symbols s1, s2 and s3 and three sets of agents a1, a2 and a3. If it is known that

ov(s1,s2,a1,a2,to) and ov(s2,s3,a2,a3,to) then Ia1(s1) = Ia2(s2) and Ia2(s2) = Ia3(s3). Therefore Ia1(s1) = Ia3(s3) and by

implication ov(s1,s3,a1,a3,to). 

Property 5: Null overlap is an irreflexive relation for symbols in the vocabulary of the same specification given the

interpretation of this specification by the same group of agents. Formally, this property is expressed as follows:

(∀x1: W1) (∀a1: 2
A) (¬ ov(x1, x1,a1, a1,no))

Proof. Since by property 2 a symbol in the vocabulary of a specification totally overlaps with itself and overlap types are

mutually exclusive, a symbol cannot have a null overlap relation with itself. 

Property 6: Null overlap is a symmetric relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀a1: 2
A) (∀a2: 2

A) (ov(x1, x2, a1, a2,no) → ov(x2,x1, a2, a1,no))

Proof. Assume two predicate or constant symbols s1 and s2 and two sets of agents a1 and a2. If it is known that

ov(s1,s2,a1,a2,no) then Ia1(s1) ∩ Ia2(s2) = Ø and by implication ov(s2,s1,a2,a1,no). 

Property 7: Null overlap is a pseudo-transitive relation with respect to total and inclusive overlaps. Formally, this

property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀x3: W3) (∀a1: 2
A) (∀a2: 2

A) (∀a3: 2
A) (ov(x1, x2, a1, a2,no) ∧ ov(x2,x3, a2, a3,to) →

ov(x1,x3, a1, a3,no))

(∀x1: W1) (∀x2: W2) (∀x3: W3) (∀a1: 2
A) (∀a2: 2

A) (∀a3: 2A) (ov(x1, x2, a1, a2,no) ∧ ov(x2,x3, a2, a3, ⊂) →

ov(x1,x3, a1, a3,no))

Proof. Assume three predicate symbols s1, s2 and s3 and three sets of agents a1, a2 and a3.

Case 1 (total overlaps): If it is known that ov(s1,s2,a1,a2,no) and ov(s2,s3,a2,a3,to) then Ia1(s1) ∩ Ia2(s2) = Ø and Ia2(s2)

= Ia3(s3). Therefore Ia1(s1) ∩ Ia3(s3) = Ø and by implication ov(s1,s3,a1,a3,no).

Case 2 (inclusive overlaps): If it is known that ov(s1,s2,a1,a2,no) and ov(s2,s3,a2,a3,⊂) then Ia1(s1) ∩ Ia2(s2) = Ø and

Ia2(s2) ⊃ Ia3(s3). Therefore Ia1(s1) ∩ Ia3(s3) = Ø and by implication ov(s1,s3,a1,a3,no). 

Property 8: Inclusive overlap is an irreflexive relation for symbols in the vocabulary of the same specification given the

interpretation of this specification by the same group of agents. Formally, this property is expressed as follows:

(∀x1: W1) (∀a1: 2
A) (¬ ov(x1, x1, a1, a1,⊂))



27

Proof. Since by property 2 a symbol in the vocabulary of a specification totally overlaps with itself and overlap types are

mutually exclusive, a symbol cannot have an inclusive overlap relation with itself. 

Property 9: Inclusive overlap is an anti-symmetric relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀a1: 2
A) (∀a2: 2

A) (ov(x1, x2, a1, a2,⊂) → ¬ ov(x2, x1, a2, a1,⊂))

Proof. Assume two predicate or constant symbols s1 and s2 and two sets of agents a1 and a2. If it is known that

ov(s1,s2,a1,a2,⊂) then Ia1(s1) ⊃ Ia2(s2). Therefore Ia1(s2) ⊄ Ia2(s1) and by implication ¬ ov(s2,s1,a2,a1,⊂). 

Property 10: Inclusive overlap is a transitive relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀x3: W3) (∀a1: 2
A) (∀a2: 2

A) (∀a3: 2
A) (ov(x2, x1, a2, a1,⊂) ∧ ov(x3, x2, a3, a2,⊂) →

ov(x3, x1, a3, a1,⊂))

Proof. Assume three predicate symbols s1, s2 and s3 and three sets of agents a1, a2 and a3. If it is known that

ov(s1,s2,a1,a2,⊃) and ov(s2,s3,a2,a3,⊃) then Ia1(s1) ⊂ Ia2(s2) and Ia2(s2) ⊂ Ia3(s3). Therefore Ia1(s1) ⊂ Ia3(s3) and by

implication ov(s1,s3,a1,a3,⊃). 

Property 11: Inclusive overlap is a pseudo-transitive relation with respect to total overlaps. Formally, this property is

expressed as follows:

(∀x1: W1) (∀x2: W2) (∀x3: W3) (∀a1: 2
A) (∀a2: 2

A) (∀a3: 2
A) (ov(x2, x1, a2, a1,⊂) ∧ ov(x3, x2, a3, a2,to) →

ov(x3, x1, a3, a1,⊂))

Proof. Assume three predicate symbols s1, s2 and s3 and three sets of agents a1, a2 and a3. If it is known that

ov(s1,s2,a1,a2,⊃) and ov(s2,s2,a2,a3,to) then Ia1(s1) ⊂ Ia2(s2) and Ia2(s2) = Ia3(s3). Therefore Ia1(s1) ⊂ Ia3(s3) and by

implication ov(s1,s3,a1,a3,⊃). 

Property 12: Inclusive overlap is a pseudo-symmetric relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀a1: 2
A) (∀a2: 2

A) (ov(x1, x2, a1, a2,⊂) ↔ ov(x2,x1, a2, a1,⊃))

Proof. Assume two predicate symbols s1, s2 and two sets of agents a1 and a2. If it is known that ov(s1,s2,a1,a2,⊂) then

Ia2(s2) ⊂ Ia1(s1) and by implication ov(s2,s1,a2,a1,⊃). Similarly, if ov(s2,s1,a2,a1,⊃) then Ia2(s2) ⊂ Ia1(s1) and by

implication ov(s1,s2,a1,a2,⊂). 

Property 13: Partial overlap is an irreflexive relation for symbols in the vocabulary of the same specification given the

interpretation of this specification by the same group of agents. Formally, this property is expressed as follows:

(∀x1: W1) (∀a1: 2
A) (¬ ov(x1, x1, a1, a1,po))



28

Proof. Since by property 2 a symbol in the vocabulary of a specification totally overlaps with itself and overlap types are

mutually exclusive, a symbol cannot have a partial overlap relation with itself. 

Property 14: Partial overlap is a symmetric relation. Formally, this property is expressed as follows:

(∀x1: W1) (∀x2: W2) (∀a1: 2
A) (∀a2: 2

A) (ov(x1, x2, a1, a2,po) → ov(x2, x1, a2, a1,po))

Proof. Assume two predicate or constant symbols s1 and s2 and two sets of agents a1 and a2. If it is known that

ov(s1,s2,a1,a2,po) then Ia1(s1) ∩ Ia2(s2) ��Ø, Ia1(s1) - Ia2 ��Ø, and Ia2(s2) - Ia1(s2)  ��Ø and by implication

ov(s2,s1,a2,a1,po). 

Property 15: Partial overlap is a pseudo-transitive relation with respect to total overlaps. Formally, this property is

expressed as follows:

(∀x1: W1) (∀x2:W2) (∀x3: W3) (∀a1: 2
A) (∀a2: 2

A) (∀a3: 2
A) (ov(x1, x2, a1, a2,po) ∧ ov(x2, x3, a2, a3,to) →

ov(x1, x3, a1, a3,po))

Proof. Assume three predicate symbols s1, s2 and s3 and three sets of agents a1, a2 and a3. If it is known that

ov(s1,s2,a1,a2,po) and ov(s2,s3,a2,a3,to) then Ia1(s1) ∩ Ia2(s2)�Ø, Ia1(s1)–Ia2(s2)�Ø, Ia2(s2)–Ia1(s1)�Ø and Ia2(s2) =

Ia3(s3). Therefore Ia1(s1) ∩ Ia3(s3)�Ø, Ia1(s1)–Ia3(s3)�Ø and Ia3(s3)–Ia1(s1)�Ø, and by implication ov(s1,s3,a1,a3,po). 


