
From Requirements to Monitors by way of Aspects

Andrew Dingwall-Smith, Anthony Finkelstein
Department of Computer Science

University College London
Gower Street, London, WC1E 6BT UK

{a.dingwall-smith,a.finkelstein}@cs.ucl.ac.uk

Abstract

Using goal driven requirements engineering,
requirements are derived from a goal model that captures
multiple strategies for satisfying the goals and takes into
account environmental constraints on the system. The
model is therefore more stable than a conventional
requirements document.

We present early work in building a system for runtime
monitoring of system goals, as part of normal system
operation, so that failure to achieve goals caused by
changes in the system environment can be detected and
acted on. We make use of Hyper/J to separate
instrumentation for monitoring from the core code, and to
add instrumentation directly to class files, without the
need to modify the core class files. We are currently using
a peer to peer networking client as a testbed and we
present examples based on this program.

1. Introduction

This position paper presents early work on using
requirements specifications to support monitoring of
software systems. In the face of a changing environment, a
system may no longer be able to meet the goals required
of it, due to early assumptions about the environment on
which the design has been predicated no longer holding.
For this reason, monitoring a system as part of its normal
operation is important so that user can be informed of
failures or the system configuration changed to take
account of environmental changes. This has similarities to
[2] which also deals with monitoring a system based on
the system goals.

Monitoring systems typically work by instrumenting
programs to emit events to the monitoring system, either
on the same machine or another machine. Instrumentation
of Java programs can be done by inserting instrumentation
into the source code or into class files [3]. Instrumentation
of class files is done by creating custom tools which
manipulate the byte code to insert the instrumentation,

according to high level specifications. This enables the
monitoring system to be separated from the program to be
monitored.

Our monitoring system makes use of Hyper/J [4],[6] to
instrument class files. By using a general purpose tool to
support separation of concerns, we eliminate the need to
write tools for manipulating bytecode directly.

We are using the Limewire, Gnutella peer to peer
networking program as a testbed for our approach. This
program is freely available and is written in Java. In
Limewire we have a relatively simple system to deal with.
However, it is a system which should still be subject to a
changing environment as it is affected by the many other
Gnutella servants it connects to and issues such as
bandwidth and network traffic. This paper uses examples
based on our work using Limewire.

2. Goal dr iven requirements engineer ing and
KAOS

Goal driven requirements engineering is an approach to
requirements engineering that aims to capture the rational
for requirements and assist in the elicitation of
requirements. Goals are elicited from the stakeholders in
the system. These goals are used to build a goal model in
which the goals are decomposed into sub-goals which
describe in greater detail how the goals should be
satisfied. Ultimately, requirements can be derived from
the goal model. New higher level goals can also be added
to capture the purpose of goals.

In general, a set of goals can be decomposed in many
ways, providing many possible implementations. The goal
model captures multiple goal decompositions and assists
in selecting the appropriate decomposition by capturing
conflicting goals. The goal model should be more stable
than a requirements specification.

The KAOS approach[1], is an example of a goal driven
requirements engineering method. This approach specifies
goals in terms of an objects model. This provides two
views of the system, with one view crosscutting the other.

KAOS allows goals to be defined using temporal logic
if formal specification is desired. The temporal logic
formulae refer to objects in the object model. KAOS
defines several goal patterns such as Achieve, Maintain
and Avoid, which correspond to a certain types of
temporal logic formulae. Some common definitions are:

Achieve: P��� Q
Maintain: P��� Q
Avoid: P��� ¬Q

These logic operators may also have time constraints
on them.

Each instance of an achieve goal must eventually be
satisfied by the system. The formal specification of the
goal may constrain the time in which the goal instance
must be achieved.

3. Goal decomposition for L imewire

We have identified goals that stakeholders in the
system are likely to require and constructed monitors for

these goals. A partial goal graph for the high level goal
'Handle Incoming Message' is shown in Fig. 1. This goal
requires that incoming messages should be handled, in
accordance with the Gnutella protocol [5]. This involves
sending requests to other connected servants, sending
replies back to their originators, responding to requests
and so on. Sub-goals are to filter out any unwanted
messages and to handle each type of message defined in
the Gnutella protocol.

Both the goals 'Handle Query Reply' and 'Handle Ping
Reply' have the sub-goal 'Route Reply', as these messages
are routed in the same manner. This goal is defined as:

Achieve[RouteReply] Use the route table to route this
reply to the connection from which this connection
originated.

The goals 'Handle My Ping Reply' and 'Handle My
Query Reply' deal with the cases where the reply is a
response to a request sent out by our own servant
program. The 'Route To Source' goal is further
decomposed into the goals 'Routing Reply Correctly' and

Achieve
Handle Query

Reply

Achieve
Handle Incoming

Message

Achieve
Handle Query

Request

Achieve
Handle Ping

Achieve
Handle Ping

Reply

Achieve
Route Reply

Achieve
Route According
To RouteTable

Achieve
Output Message
To Connection

Achieve
Handle My Ping

Reply

Achieve
Handle My

Query Reply

Achieve
Filter Routed

Messages

Achieve
Handle Push

Request

Achieve
Route Reply

Correctly

Maintain
Accurate Route

Table

Figure 1. Partial goal decomposition for goal HandleIncomingMessage

'Output Message To Connection'. The first of the goals
requires that the messages sent to a connection are sent to
the connection held in the route table. The second goal
requires that all the messages received are sent to a
connection, not dropped. These goals are defined as:

Achieve[RouteReplyCorrectly] Messages should be
sent to the correct connection, according to the route
table.

Achieve[OutputM essageToConnection] A managed
connection which is given a message should output that
message to the connection.

The 'Route Reply Correctly' goal can be achieved by
sending the reply to the connection in the route table,
which is the goal 'Route According To Route Table', and
the goal 'Accurate Route Table' which says that the entries
in the route table should be correct.

4. Monitor ing architecture

The monitoring system architecture is shown in Fig. 2.
The inputs to the system are the Limewire class files,
instrumentation code, written in Java, the Hyper/J
composition rules and the monitor systems class files. The
instrumentation source must be compiled by a normal
Java compiler as Hyper/J operates on class files. Hyper/J
must then be run to integrate the instrumentation classes
and the Limewire classes, according to the composition

rules. To run the instrumented program, the Java runtime
environment needs access to the original Limewire class
files, the instrumented Limewire classes and the
monitoring system classes.

The original classes are required as the composition
rules tell Hyper/J to only output the classes which need to
be instrumented. The instrumented Limewire classes will
have the same names as the original Limewire classes so it
is important that the class path is set so that the
instrumented classes are searched before the original
classes.

The monitoring system runs on a single machine using
a multi-threaded architecture. Instrumentation is inserted
into the program, using Hyper/J, which places events in a
queue. At a set interval, a monitoring thread reads the
events from the queue and uses the events to determine
whether the monitored goal is being satisfied.

5. Hyper/J composition rules

The Hyper/J composition rules, Fig. 3, introduce two
dimensions of concern, in addition to the existing Object
dimension, which is created automatically. In the ‘Goal’
dimension, each monitor belongs to the concern
corresponding to the goal it is trying to monitor. In the
‘Aspect’ dimension, the original Limewire classes are in
the ‘Core’ concern. Only those classes which need to be
instrumented are imported into the hyperspace, using ‘as
in package’ at lines 14 and 15 of the specification file.

In Java, a class which has no constructor defined for it

Instrumentation Source

Limewire Class fi les Instrumentation
Class Fi les

Instrumented Limewire Classes Monitor Class
Fi les

Instrumented Limewire Monitor

Composition
Rules

Hyper/J composi tion

Compile

events

Run-time

composition

Fig. 2. Monitoring system architecture

has a default constructor generated by the compiler. This
can cause problems with Hyper/J, as classes without
constructors are often not intended as stand alone classes.
The default constructors generated for the goal monitor
classes need to be explicitly assigned to the Goal.None
concern so that they are excluded from the composition.

The relationships section specifies the merge by name
composition strategy, meaning that classes with the same
name are merged together by merging fields and methods
with the same name. The order relationships specify the
relative order of method bodies in the merged methods, in

the cases where the order is important.
The goals which are being monitored can be changed

by simply adding or removing those concerns to the
composition and then running Hyper/J again.

The classes into which the instrumentation has to be
composed are obtained from the goal specifications. The
goals are defined in terms of a domain-level object model.
The domain-level objects then have to be related to the
implementation object model. At present, we only do this
informally, using the natural language definition of a goal
and the objects that are referred to in this definition. Using

1. - concer ns
 2. package moni t or . out put message : Goal . Out put Message
 3. oper at i on moni t or . out put message. ManagedConnect i on. <i ni t > : Goal . None
 4. oper at i on moni t or . out put message. Pi ngRepl y. <i ni t > : Goal . None
 5. oper at i on moni t or . out put message. Quer yRepl y. <i ni t > : Goal . None
 6. oper at i on moni t or . out put message. Rout er Ser vi ce. <i ni t > : Goal . None
 7.
 8. package moni t or . r out ecor r ect l y : Goal . Rout eCor r ect l y
 9. oper at i on moni t or . r out ecor r ect l y. ManagedConnect i on. <i ni t > : Goal . None
10. oper at i on moni t or . r out ecor r ect l y. MessageRout er . <i ni t > : Goal . None
11. oper at i on moni t or . r out ecor r ect l y. Rout er Ser vi ce. <i ni t > : Goal . None
12. oper at i on moni t or . r out ecor r ect l y. Rout eTabl e. <i ni t > : Goal . None
13.
14. package com. l i megr oup. gnut el l a as i n package moni t or . out put message : Aspect . Cor e
15. package com. l i megr oup. gnut el l a as i n package moni t or . r out ecor r ect l y : Aspect . Cor e
16.
17. - hyper modul es
18. hyper modul e Moni t or edLi mewi r e
19. hyper sl i ces:
20. Aspect . Cor e,
21. Goal . Out put Message,
22. Goal . Rout eCor r ect l y;
23. r el at i onshi ps:
24. mer geByName;
25.
26. or der act i on Goal . Rout eCor r ect l y. ManagedConnect i on. handl ePi ngRepl y
27. bef or e act i on Aspect . Cor e. ManagedConnect i on. handl ePi ngRepl y;
28.
29. or der act i on Goal . Rout eCor r ect l y. ManagedConnect i on. handl eQuer yRepl y
30. bef or e act i on Aspect . Cor e. ManagedConnect i on. handl eQuer yRepl y;
31.
32. or der act i on Goal . Out put Message. ManagedConnect i on. handl ePi ngRepl y
33. bef or e act i on Aspect . Cor e. ManagedConnect i on. handl ePi ngRepl y;
34.
35. or der act i on Goal . Out put Message. ManagedConnect i on. handl eQuer yRepl y
36. bef or e act i on Aspect . Cor e. ManagedConnect i on. handl eQuer yRepl y;
37.
38. or der act i on Goal . Out put Message. Pi ngRepl y. wr i t ePayl oad
39. af t er act i on Aspect . Cor e. Pi ngRepl y. wr i t ePayl oad;
40.
41. or der act i on Goal . Out put Message. Quer yRepl y. wr i t ePayl oad
42. af t er act i on Aspect . Cor e. Quer yRepl y. wr i t ePayl oad;
43.
44. or der act i on Goal . Rout eCor r ect l y. MessageRout er . handl ePi ngRepl y
45. bef or e act i on Aspect . Cor e. MessageRout er . handl ePi ngRepl y;
46.
47. or der act i on Goal . Rout eCor r ect l y. MessageRout er . handl eQuer yRepl y
48. bef or e act i on Aspect . Cor e. MessageRout er . handl eQuer yRepl y;
49.
50. end hyper modul e;

Fig. 3. Hyper/J composition rules

the temporal logic specification used in KAOS, and a
formal object model, may allow us to formally derive this
relationship. As an example, the goal 'Output Message To
Connection' refers to the objects ''Managed Connection'
and 'Message'. In the Hyper/J composition rules,
instrumentation for this goal is composed into the
Limewire classes 'Managed Connection', 'Ping Reply' and
'Query Reply'. 'Ping Reply' and 'Query Reply' are sub-
classes of the Limewire 'Message' class. This shows the
correspondence between the Limewire classes which are
instrumented and and the goal definition.

6. Monitor design

We have implemented monitors for the goals 'Output
Reply To Connection' and 'Route Message According To
Route Table'. Since both of these goals fit into the achieve
pattern, the monitors are quite similar. In the case of the
'Output Message To Connection' goal, whenever the
'Managed Connection' class receives a reply message, the
monitor stores the record of that event. The record
includes the time of the event and a reference to the
Message object that was received. At set intervals, the
monitor checks every stored record to see if the time since
it occurred is greater than the time constraint on the goal.
If it is then the record is removed from the store and the
monitor reports that the program has failed to achieve the
goal.

Whenever a message is sent to the connection by the
'Query Reply' or 'Ping Reply' classes, the monitor searches
the record of events for one with a matching Message
reference. If one is found then it indicates that the goal has
been successfully achieved. Otherwise, the time constraint
on the message must already been violated and the failure
reported, so no further action is necessary.

7. Conclusions and fur ther work

Our system currently only monitors goals which match
the KAOS achieve pattern. Implementing monitors for
other patterns such as maintain and avoid should be fairly
trivial.

We also intend to look at monitoring non-functional

goals and soft goals. Non-functional goals seem
particularly suited to our approach. Soft-goals, that is
goals that do not have defined conditions for achievement,
are more difficult. For soft goals, it is not obvious what
sort of information is useful to the user or the program
itself.

Our goal is to generate monitors from high level
specifications, that is, generating monitors from the
temporal logic used in KAOS. To date we have used the
specification as a guide but hard coded the monitors to
give us a sense of whether the approach might work.

8. Acknowledgements
This research has been supported by BTexact and

EPSRC in their collaborative programme 'Generative
Software Development'. We are grateful for their generous
support.

9. References

[1] A. Dardenne, A. van Lamsweerde, and S. Fickas. "Goal-
directed requirements acquisition", Science of Computer
Programming, 20:3-50, 1993

[2] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard.
"Reconciling System Requirements and Runtime
Behaviour", Proc. IWSSD'98 - 9th International Workshop
on Software Specification and Design, IEEE CS Press,
April 1998.

[3] M. Kim, S. Kannan, I. Lee, O. Sokolsky and Mahesh
Viswanathan. "Java-MaC: a Run-time Assurance Tool for
Java Programs", Proc. RV’01- 1st Workshop on Runtime
Verification, Electronic Notes in Computer Science, 55(2),
2001.

[4] P Tarr, H Ossher, W Harrison and SM Sutton, Jr. "N
degrees of Separation: Multidimensional separation of
concerns", Proc. ICSE 99, IEEE, May 1999, ACM press

[5] "The Gnutella Protocol Specification v0.4",
http://www9.limewire.com/developer/gnutella_protocol_0.
4.pdf

[6] "Hyper/J" http://www.alphaworks.ibm.com/tech/hyperj

