
2 Anticipating Change in

 Requirements Engineering

Soo Ling Lim and Anthony Finkelstein

Department of Computer Science, University College London

s.lim@cs.ucl.ac.uk and a.finkelstein@cs.ucl.ac.uk

Abstract Requirements change is inevitable in the development and maintenance

of software systems. One way to reduce the adverse impact of change is by antici-

pating change during requirements elicitation, so that software architecture com-

ponents that are affected by the change are loosely coupled with the rest of the

system. This chapter proposes Change-oriented Requirements Engineering

(CoRE), a method to anticipate change by separating requirements into layers that

change at relatively different rates. From the most stable to the most volatile, the

layers are: patterns, functional constraints, non-functional constraints, and busi-

ness policies and rules. CoRE is empirically evaluated by applying it to a large-

scale software system, and then studying the requirements change from develop-

ment to maintenance. Results show that CoRE accurately anticipates the relative

volatility of the requirements.

Keywords: Requirements change management; shearing layers; goal modelling.

2.1 Introduction

Requirements change is inevitable in the development and maintenance of soft-

ware systems. As the environment and stakeholders’ needs continuously change,

so must the system, in order to continue meeting its intended purpose. Studies

show that requirements change accounts for a large part of the rework in devel-

opment, in some cases up to 85% [4, 16, 34]. As such, it is one of the top causes

of project failure [30], and often regarded as one of the most chronic problems in

software development [14].

One way to reduce the impact of change is to anticipate change during re-

quirements elicitation. Identifying volatile requirements from the start enables the

design of the system such that architectural components that realise the require-

ments are loosely coupled with the rest of the system [29, 33]. Then, software

changes to accommodate the requirements change are easier to implement, reduc-

ing the amount of rework.

2

Despite the centrality of change management in requirements engineering, the

area of change management lacks research [33]. Existing requirements engineer-

ing methods regard change anticipation as a separate activity after documentation

[29]. Without the notion of future changes, the documentation mixes stable and

volatile requirements, as the existing method section will show. Existing change

anticipation approaches are guidelines that rely on domain experts and experi-

enced requirements engineers [29], who may be absent in some projects. Finally,

existing literature is almost entirely qualitative: there is no empirical study on the

accuracy of these guidelines in real projects.

To address these problems, this chapter proposes Change-oriented Require-

ments Engineering (CoRE), an expert independent method to anticipate require-

ments change. CoRE separates requirements into layers that change at relatively

different rates during requirements documentation. This informs architecture to

separate components that realise volatile requirements from components that real-

ise stable requirements. By doing so, software design and implementation prepares

for change, thus minimising the disruptive effect of changing requirements to the

architecture.

CoRE is empirically evaluated on its accuracy in anticipating requirements

change, by first applying it to the access control system project at University Col-

lege London, and then studying the number of requirements changes in each layer

and the rate of change over a period of 3.5 years, from development to mainte-

nance. This study is one of the first empirical studies of requirements change over

a system’s lifecycle. The results show that CoRE accurately anticipates the rela-

tive volatility of the requirements.

The rest of the chapter is organised as follows. Section 2.2 reviews existing

methods in requirements elicitation and change anticipation. Section 2.3 intro-

duces the idea behind CoRE. Section 2.4 describes CoRE and Section 2.5 evalu-

ates it on a real software project. Section 2.6 discusses the limitations of the study

before concluding.

2.2 Existing Methods

Requirements Elicitation

In requirements elicitation, model-based techniques, such as use case and goal

modelling, use a specific model to structure their requirements, which often mixes

stable and volatile requirements.

Use case is one of the common practices for capturing the required behaviour

of a system [13, 7]. It models requirements as a sequence of interactions between

3

the system and the stakeholders or other systems, in relation to a particular goal.

As such, a use case can contain both stable and volatile requirements. An example

use case for an access control system is illustrated in Table 2.1. In the use case,

“displaying staff member details” in Step 1 is more stable than “sending photos to

the staff system” in Step 4, because the verification and retrieval of person infor-

mation is central to all access control systems, but providing photos to another

system is specific to that particular access control system.

Table 2.1. Use Case: Issue Cards to Staff

Step Action Description

1. The card issuer validates the staff member’s identity and enters the identity into the

system.

2. The system displays the staff member’s details.

3. The card issuer captures the staff member’s photo.

4. The system generates the access card and sends the photo to the staff system.

Goal modelling (e.g., KAOS [32] and GBRAM [1]) captures the intent of the

system as goals, which are incrementally refined into a goal-subgoal structure.

High-level goals are, in general, more stable than lower-level ones [33]. Neverthe-

less, goals at the same level can have different volatility. For example, the goal “to

maintain authorised access” can be refined into two subgoals: “to verify card-

holder access rights” and “to match cardholder appearance with digital photo.”

The second subgoal is more volatile than the first as it is a capability required only

in some access control systems.

Requirements Documentation

When it comes to documenting requirements, most projects follow standard re-

quirements templates. For example, the Volere Requirement Specification Tem-

plate by Robertson and Robertson [24] organises requirements into functional and

non-functional requirements, design constraints, and project constraints, drivers,

and issues. The example access control system has the functional requirement “the

access control system shall update person records on an hourly basis.” Within this

requirement, recording cardholder information is more stable than the frequency

of updates, which can be changed from an hour to 5 minutes when the organisa-

tion requires its data to be more up-to-date.

A standard requirements template is the IEEE Recommended Practice for Soft-

ware Requirements Specification [11]. The template provides various options

(e.g., system mode, user class, object, feature) to organise requirements for differ-

ent types of systems. For example, the system mode option is for systems that be-

have differently depending on mode of operation (e.g., training, normal, and em-

4

ergency), and the user class option is for systems that provide different functions

to different user classes. Nevertheless, none of these options organise require-

ments by their volatility, which is useful for systems with volatile requirements,

such as software systems in the business domain [14].

Requirements Change Management

In requirements change management, one of the earliest approaches by Harker et

al. [10] classifies requirements into enduring requirements and volatile require-

ments. Volatile requirements include mutable requirements, emergent require-

ments, consequential requirements, adaptive requirements, and migration re-

quirements. Harker et al.’s classification is adopted in later work by Sommerville,

Kotonya, and Sawyer [15, 28, 29]. Although the classification clearly separates

stable requirements from volatile ones, the relative volatility among the types of

volatile requirements is unknown. For example, mutable requirements change fol-

lowing the environment in which the system is operating and emergent require-

ments emerge as the system is designed and implemented. Without further guide-

lines, it is unclear whether a mutable requirement is more volatile than an

emergent requirement.

Later work provides guidelines to anticipate requirements change. Guidelines

from van Lamsweerde include: (1) stable features can be found in any contraction,

extension, and variation of the system; (2) assumptions and technology constraints

are more volatile than high-level goals; (3) non-functional constraints are more

volatile than functional requirements; and (4) requirements that come from deci-

sions among multiple options are more volatile [33]. Guidelines from Sommer-

ville and Sawyer [29] are: (1) identify requirements that set out desirable or essen-

tial properties of the system because many different parts of the system may be

affected by the change; and (2) maintain a list of the most volatile requirements,

and if possible, predict likely changes to these requirements. The caveat with these

guidelines is that they require experienced requirements engineers or domain ex-

perts to identify requirements that are likely to be volatile, and still, errors can oc-

cur [29].

To summarise, existing requirements elicitation methods lack the ability to an-

ticipate change. In addition, existing requirements templates do not separate re-

quirements by their volatility, and existing change management approaches are

expert dependent. In contrast, in the CoRE method proposed in this chapter, re-

quirements anticipation is part of the requirements modelling process and inde-

pendent of the person doing the analysis.

5

2.3 The Shearing Layers

CoRE adopts the concept of shearing layers from building architecture. This con-

cept was created by British architect Frank Duffy who refers to buildings as com-

posed of several layers of change1 [5]. The layers, from the most stable to most

volatile, are site, structure, skin, services, space plan, and “stuff” or furniture (Fig.

2.1). For example, services (the wiring, plumbing, and heating) evolve faster than

skin (the exterior surface), which evolves faster than structure (the foundation).

The concept was elaborated by Brand [5], who observed that buildings that are

more adaptable to change allow the “slippage” of layers, such that faster layers are

not obstructed by slower ones. The concept is simple: designers avoid building

furniture into the walls because they expect tenants to move and change furniture

frequently. They also avoid solving a five-minute problem with a fifty-year solu-

tion, and vice versa.

Fig. 2.1. The shearing layers of architecture [5].

The shearing layer concept is based on the work of ecologists [22] and systems

theorists [26] that some processes in nature operate in different timescales and as a

result there is little or no exchange of energy or mass or information between

them. The concept has already been adopted in various areas in software engineer-

ing. In software architecture, Foote and Yoder [9], and Mens and Galal [20] fac-

tored artefacts that change at similar rates together. In human computer interac-

tion, Papantoniou et al. [23] proposed using the shearing layers to support

evolving design. In information systems design, Simmonds and Ing [27] proposed

using rate of change as the primary criteria for the separation of concerns.

Similar to the elements of a building, some requirements are more likely to

change; others are more likely to remain the same over time. The idea behind

1 http://www.predesign.org/shearing.html

6

CoRE is to separate requirements into shearing layers, with a clear demarcation

between parts that should change at different rates.

2.4 Change-oriented Requirements Engineering (CoRE)

The Shearing Layers of Requirements

CoRE separates requirements into four layers of different volatility and cause of

change. From the most stable to the most volatile, the layers are: patterns, func-

tional constraints, non-functional constraints, and business policies and rules (Fig.

2.2). Knowledge about patterns and functional constraints can help design and im-

plement the system such that non-functional constraints, business policies and

rules can be changed without affecting the rest of the system.

Fig. 2.2. The shearing layers of requirements.

The layers with more arrows are more volatile.

Patterns. A pattern is the largest combined essential functionality in any variation

of a software component that achieves the same goal. As such, they remain un-

changed over time unless the goal is no longer needed. For example, the goal of an

inventory system is to maintain a stock of items for sale. It can be achieved by the

Inventory pattern illustrated in Fig. 2.3 (a) with functionalities such as making

reservations, adding and finding products. These functionalities have existed long

before software systems and are likely to remain unchanged. Different patterns

can be found in different domains, e.g., patterns in the medical domain revolve

around patients, doctors, patient records [28] and patterns in the business domain

revolve around products, customers, inventory [2]. In the business domain, Arlow

7

and Neustadt [2] developed a set of patterns which they named enterprise arche-

types as the patterns are universal and pervasive in enterprises2. Their catalogue of

patterns consists of various business related pattern, including the ones in Fig. 2.3.

Fig. 2.3. Example patterns: (a) Inventory pattern (b) Person pattern [2].

Functional constraints. Patterns allow freedom for different instantiations of

software components achieving the same goals. In contrast, functional constraints

are specific requirements on the behaviour of the system that limit the acceptable

instantiations. These constraints are needed to support the stakeholders in their

tasks, hence remain unchanged unless the stakeholders change their way of work-

ing. For example, an access control system’s main goal is to provide access con-

trol. The pattern assigned to this goal is the PartyAuthentication archetype

that represents an agreed and trusted way to confirm that a party is who they say

they are [2]. A functional constraint on the achievement of this goal is that the sys-

tem must display the digital photo of the cardholder when the card is scanned, in

order to allow security guards to do visual checks.

Non-functional constraints. A non-functional constraint is a restriction on the

quality characteristics of the software component, such as its usability, and relia-

bility [6]. For example, the ISO/IEC Software Product Quality standard [12] iden-

tifies non-functional constraints as a set of characteristics (e.g., reliability) with

sub-characteristics (e.g., maturity, fault tolerance) and their measurable criteria

(e.g., mean time between failures). Changes in non-functional constraints are in-

dependent of the functionality of the system and occur when the component can

no longer meet increasing quality expectation. For example, in an access control

system, a person’s information has to be up-to-date within an hour of modifica-

tion. The constraint remains unchanged until the system can no longer support the

increasing student load, and a faster service is needed.

2 From this point on, the word “archetype” is used when referring specifically

to the patterns by Arlow and Neustadt [2].

8

Business policies and rules. A business policy is an instruction that provides

broad governance or guidance to the enterprise [3, 21]. A business rule is a spe-

cific implementation of the business policies [3, 21]. Policies and rules are an es-

sential source of requirements specific to the enterprise the system operates in [25,

3]. They are the most volatile [3], as they are related to how the enterprise decides

to react to changes in the environment [21]. For example, a university deploying

the access control system may have the business policy: access rights for students

should correspond to their course duration. The business rule based on the policy

is: a student’s access rights should expire 6 months after their expected course

end date. For better security, the expiration date can be shortened from 6 months

to 3 months after the students’ course end dates.

CoRE Method

CoRE is based on goal modelling methods [8, 35]. To separate requirements into

the shearing layers, CoRE applies five steps to the goals elicited from stakeholders

(Fig. 2.4). The access control system example for a university is used as a running

example to demonstrate the method.

Fig. 2.4. The five steps in CoRE.

Step 1: Assign patterns to goals. CoRE starts by checking if there is a pattern for

each goal. A pattern can be assigned to a goal if and only if the operation(s) in the

pattern is capable of achieving the goal. There are two ways for this to happen.

First, the goal is a direct match to a functionality in the pattern. For example, the

goal of searching for a person by name can be directly mapped to the functionality

to find a person by ID or name in the PartyManager archetype [2]. Second, the

goal can be refined into subgoals that form a subset of the operations in the pat-

tern. For example, the goal to manage people information centrally can be refined

into subgoals such as to add or delete a person, and to find a person by ID or

name. These subgoals are a subset of the operations in the PartyManager arche-

9

type. If no patterns can be assigned to the goal, proceed to Step 2 with the goal.

Otherwise, proceed to Step 3.

Step 2: Refine goals. This step refines high-level goals into subgoals and repeats

Step 1 for each subgoal. To refine a goal, the KAOS goal refinement strategy [8]

is used where a goal is refined if achieving a subgoal and possibly other subgoals

is among the alternative ways of achieving the goal. For a complete refinement,

the subgoals must meet two conditions: (1) they must be distinct and disjoint; and

(2) together they must reach the target condition in the parent goal. For example,

the goal to control access to university buildings and resources is refined into

three subgoals: to maintain up-to-date and accurate person information, assign

access rights to staff, students, and visitors, and verify the identity of a person re-

questing access. If these three subgoals are met, then their parent goal is met.

As the refinement aims towards mapping the subgoals to archetypes, the pat-

terns are used to guide the refinement. For example, the leaf goal3 to maintain up-

to-date and accurate person information is partly met by the PartyManager ar-

chetype that manages a collection of people. Hence, the leaf goal is refined into

two subgoals: to manage people information centrally, and to automate entries

and updates of person information. A goal cannot be refined if there are no pat-

terns for its subgoals even if it is refined. For example, the goal to assign access

rights to staff, students, and visitors has no matching patterns as access rights are

business specific. In that case, proceed to Step 4.

Step 3: Identify functional constraints. For each pattern that is assigned to a

goal, this step identifies functional constraints on the achievement of the goal.

This involves asking users of the system about the tasks they depend on the sys-

tem to carry out, also known as task dependency in i* [35]. These tasks should be

significant enough to warrant attention. For example, one of the security guard’s

task is to compare the cardholders’ appearance with their digital photos as they

scan their cards. This feature constrains acceptable implementations of the

PartyAuthentication archetype to those that enable visual checks.

Step 4: Identify business policies and rules. The goals that cannot be further re-

fined are assigned to business policies and rules. This involves searching for poli-

cies and rules in the organisation that support the achievement of the goal [21].

For example, the goal to assign access rights to staff, students, and visitors is sup-

ported by UCL access policies for these user categories. These policies form the

basis for access rules that specify the buildings and access times for each of these

user categories and their subcategories. For example, undergraduates and post-

graduates have different the access rights to university resources.

3 A leaf goal is a goal without subgoals.

10

Step 5: Identify non-functional constraints. The final step involves identifying

non-functional constraints for all the goals. If a goal is annotated with a non-

functional constraint, all its subgoals are also subjected to the same constraint. As

such, to avoid annotating a goal and its subgoal with the same constraint, higher-

level goals are considered first. For example, the access control system takes peo-

ple data from other UCL systems, such as the student system and human resource

system. As such, for the goal to maintain up-to-date and accurate person informa-

tion, these systems impose data compatibility constraints on the access control

system.

The output of the CoRE method is a list of requirements that are separated into

the four shearing layers. A visual representation of its output is illustrated in Fig.

2.5. This representation is adopted from the KAOS [8] and i* methods [35]. For

example, the goal refinement link means that the three subgoals should together

achieve the parent goal, and the means-end link means that the element (functional

constraint, non-functional constraint, or pattern) is a means to achieve the goal.

Fig. 2.5. Partial CoRE output for the university access control system.

11

2.5 Evaluation

CoRE’s goal is to separate requirements into layers that change at different rates.

The evaluation asks if CoRE can be used to separate requirements into the shear-

ing layers, and if it accurately anticipates the volatility of each shearing layer. The

access control system project in University College London is used as a case study

to evaluate CoRE. First, CoRE is used to model the initial requirements for the

project. Then, the requirements change in the system is recorded over a period of

3.5 years, from the development of the system to the current date after the system

is deployed. The result is used to find out the volatility for each layer and when

changes in each layer occur in the system lifecycle.

The RALIC Project

RALIC (Replacement Access, Library and ID Card) was the access control system

project at University College London (UCL). RALIC was initiated to replace the

existing access control systems at UCL, and consolidate the new system with

identification, library access and borrowing. RALIC was a combination of devel-

opment and customisation of an off-the-shelf system. The objectives of RALIC

included replacing existing access card readers, printing reliable access cards,

managing cardholder information, providing access control, and automating the

provision and suspension of access and library borrowing rights.

RALIC was selected as the case study to evaluate CoRE for the following rea-

sons. First, the stakeholders and project documentation were accessible as the sys-

tem was developed, deployed, and maintained at UCL. Second, RALIC was a

well-documented project: the initial requirements and subsequent changes were

well-documented. Third, the system development spanned over two years and the

system has been deployed for more than two years, providing sufficient time to

study change during development as well as maintenance. Finally, RALIC was a

large-scale project with many stakeholders [19] in a changing environment, pro-

viding sufficient data in terms of requirements and their changes to validate

CoRE.

Applying CoRE to RALIC

The CoRE method was used to separate the requirements for the RALIC project

into the shearing layers. The initial requirements model was built using the re-

quirements documentation signed off by the client as the baseline. The initial re-

quirements model for RALIC consists of 26 elements from the CoRE layers: 3

12

patterns, 5 functional constraints, 4 non-functional constraints, 5 business policies,

and 9 business rules.

To study requirements change, modifications to the requirements documenta-

tion after the baseline are considered as a change. There are 3 types of change:

• Addition: a requirement is introduced after sign-off.

• Deletion: an existing requirement is removed.

• Modification: an existing requirement is modified due to changes in stake-

holder needs. Corrections, clarifications, and improvements to the documen-

tation are not considered as changes.

As RALIC was an extremely well-documented project, requirements change

can be studied retrospectively. During the project, the team members met fort-

nightly to update their progress and make decisions. All discussions were doc-

umented in detail in the meeting minutes as illustrated in Fig. 2.6, by an external

project support to increase the objectiveness of the documentation. As such, study-

ing the minutes provided an in-depth understanding of the project, its progress, re-

quirements changes, and their rationale.

Fig. 2.6. An excerpt of RALIC's meeting minutes on card design. Names have been anony-

mised for reasons of privacy.

RALIC used a semi-formal change management process. During development,

minor changes were directly reflected in the documentation. Changes requiring

further discussions were raised in team meetings and reported to the project board.

Major changes required board approval. Meeting discussion about changes and

their outcome (accepted, postponed, or rejected) were documented in the minutes.

13

During maintenance, team meetings ceased. The maintenance team recorded

change requests in a workplan and as action items in a change management tool.

The following procedure was used to record changes. All project documenta-

tion related to requirements, such as specifications, workplans, team and board

meeting minutes, were studied, as changes may be dispersed in different locations.

Care was taken not to consider the same changes more than once. Repeated docu-

mentation of the same changes occurred because changes discussed in team meet-

ings can be subsequently reported in board meetings, reflected in functional speci-

fication, cascaded into technical specification and finally into workplans.

Interviews were also conducted with the project team to understand the project

context, clarify uncertainties or ambiguities in the documentation, and verify the

findings.

Some statements extracted from the documentation belong to more than one

CoRE layer. For example, the statement “for identification and access control

using a single combined card” consists of two patterns (i.e., Person and

PartyAuthentication) and a functional constraint (i.e., combined card). In

such cases, the statements are split into their respective CoRE layers.

Although the difference between pattern, functional constraint, and non-

functional constraint is clear cut, policies and rules can sometimes be difficult to

distinguish. This is because high-level policies can be composed of several lower-

level policies [21, 3]. For example, the statement “Access Systems and Library

staff shall require leaver reports to identify people who will be leaving on a par-

ticular day” is a policy rather than a rule, because it describes the purpose of the

leaver reports but not how the reports should be generated. Sometimes, a state-

ment can consist of both rules and policies. For example, “HR has changed the

staff organisation structure; changes were made from level 60 to 65.” Interviews

with the stakeholders revealed that UCL has structured the departments for two

faculties from a two tier to a three tier hierarchy. This is a UCL policy change,

which has affected the specific rule for RALIC, which is to display department ti-

tles from level 65 of the hierarchy onwards.

Each change was recorded by the date it was approved, a description, the type

of change, and its CoRE layer (or N/A if it does not belong to any layer). Table

2.2 illustrates the change records, where the type of change is abbreviated as A for

addition, M for modification, and D for deletion, and the CoRE layers are abbrevi-

ated as P for pattern, FC for functional constraint, NFC for non-functional con-

straint, BP for business policies, BR for business rules, and N/A if it does not be-

long to any layer. There were a total of 97 changes and all requirements can be

exclusively classified into one of the four layers.

14

Table 2.2. Partial Change Records

Date Description Type Layer

6 Oct 05 The frequency of data import from other systems is one hour

(changed from 2 hours).

M NFC

6 Oct 05 The access rights for students expire three months after their

expected course end date (changed from 6 months).

M BR

18 Oct 05 End date from the Staff and Visitor systems and Student Status

from the Student system is used to determine whether a person

is an active cardholder.

A BR

16 Nov 05 Expired cards must be periodically deleted. A BP

30 Nov 05 Access card printer should be able to print security logos within

the protective coating.

A FC

8 May 06 The highest level department name at departmental level 60

should be printed on the card.

A BR

17 Jan 07 The frequency of data import from other systems is 2 minutes

(changed from 5 minutes).

M NFC

2 Apr 07 Replace existing library access control system that uses barcode

with the new access control system.

D BP

1 Jul 08 Programme code and name, route code and name, and faculty

name from the Student system is used to determined their ac-

cess on the basis of courses.

A BR

15 Aug 08 The highest level department name at departmental level 65

should be printed on the card (changed from 60).

M BR

1 Jan 09 Introduce access control policies to the Malet Place Engineer-

ing Building.

A BP

Layer Volatility

To evaluate if CoRE accurately anticipates the volatility of each shearing layer,

the change records for RALIC (Table 2.2) is used to calculate each layer’s vola-

tility. The volatility of a layer is the total number of requirements changes divided

by the initial number of requirements in the layer. The volatility ratio formula

from Stark et al. [31] is used (Eq. 2.1).

, (2.1)

where Added is the number of added requirements, Deleted is the number of de-

leted requirements, Modified is the number of modified requirements, and Total is

the total number of initial requirements for the system. Volatility is greater than 1

when there are more changes than initial requirements.

15

Using Eq. 2.1 to calculate the volatility for each layer enables the comparison

of their relative volatility. As expected, patterns are the most stable, with no chan-

ges over 3.5 years. This is followed by functional constraints with a volatility ratio

of 0.6, non-functional constraints with a volatility ratio of 2.0, and business poli-

cies and rules with a volatility ratio of 6.4. The volatility ratio between each layer

is also significantly different, showing a clear boundary between the layers. Busi-

ness policies and business rules have similar volatility when considered sepa-

rately: policies have a volatility ratio of 6.40 and rules 6.44.

Timing of Change

The volatility ratio indicates the overall volatility of a layer. To understand when

the changes occur, the number of quarterly changes for each layer is plotted over

the duration of the requirements change study, as illustrated in Fig. 2.7.

Fig. 2.7. Quarterly requirements changes for each layer.

The quarter Oct-Dec 05 has the highest number of changes for functional con-

straints, non-functional constraints, business policies and rules because the re-

quirements elicitation and documentation were still in progress. The project board

had signed off the high-level requirements, but the details surrounding access

rights and card processing were still under progress. Many of the changes were

16

due to better understanding of the project and to improve the completeness of the

requirements.

Consistent with the existing literature (e.g., [7]), missing requirements surfaced

from change requests after the system was deployed. The system went live first for

new staff in May 06 and then for the whole of UCL in March 07. Each time it

went live, the number of requirements change increased in the following quarters.

A rise in policy change in quarters Oct-Dec 05 and Jan-Mar 07 was followed

by a rise in rule change in the following quarters, because business rules are based

on business policies. As more than one rule can be based on the same policy, the

number of changes in rules is naturally higher than that of policies. Nevertheless,

after the system went live, policy changes did not always cascade into rule chan-

ges. For example, application of the access control policy to new buildings re-

quired only the reapplication of existing rules.

Interestingly, the quarterly changes for business rules resemble an inverse ex-

ponential function, as the number of changes was initially large but rapidly de-

creased. In contrast, the quarterly changes for business policies shows signs of

continuous change into the future. Rules suffered from a high number of changes

to start with, as the various UCL divisions were still formulating and modifying

the rules for the new access control system. After the system went live, the chan-

ges reduced to one per quarter for three quarters, and none thereafter. One excep-

tion is in quarter Jul-Sep 08, where UCL faculty restructuring had caused the

business processes to change, which affected the rules. Nevertheless, these chan-

ges were due to the environment of the system rather than missing requirements.

Implications

CoRE produces requirements models that are adequate without unnecessary de-

tails because leaf goals are either mapped to archetypes, which are the essence of

the system, or to business policies and rules, ensuring that business specific re-

quirements are supported by business reasons. CoRE does not rely on domain ex-

perts because the archetypes capture requirements that are pervasive in the do-

main. The requirements models are complete and pertinent because all the

requirements in RALIC can be classified into the four CoRE layers. Also, RALIC

stakeholders could readily provide feedback on CoRE models (e.g., Fig. 2.5),

showing that the model is easy to understand.

As CoRE is based on goal modelling, it inherits their multi-level, open and ev-

olvable, and traceable features. CoRE captures the system at different levels of ab-

straction and precision to enable stepwise elaboration and validation. The

AND/OR refinements enables the documentation and consideration of alternative

options. As CoRE separates requirements based on their relative volatility, most

changes occur in business policies and rules. The rationale of a requirement is

17

traceable by traversing up the goal tree. The source of a requirement can be traced

to the stakeholder who defined the goal leading to the requirement.

Finally, CoRE externalises volatile business policies and rules. As such, the

system can be designed such that software architecture components that imple-

ment these volatile requirements are loosely coupled with the rest of the system.

For example, in service-oriented architecture, these components can be imple-

mented such that changes in business policies are reflected in the system as con-

figuration changes, and changes in business rules are reflected as changes in ser-

vice composition [18]. This minimises the disruptive effect of changing

requirements on the architecture.

2.6 Future Work

The study is based on a single project, hence there must be some caution in gener-

alising the results to other projects, organisations, and domains. Also, the study as-

sumed that all requirements and all changes are documented. Future work should

evaluate CoRE on projects from different domains, and in a forward looking man-

ner, i.e., anticipate the change and see if it happens. As RALIC is a business sys-

tem, enterprise archetype patterns were used. Future work should investigate the

use of software patterns in other domains, such as manufacturing or medical do-

mains. Finally, future work should also investigate the extent of CoRE’s support

for requirements engineers who are less experienced.

The requirements changes that CoRE anticipates are limited to those caused by

the business environment and stakeholder needs. But requirements changes can be

influenced by other factors. For example, some requirements may be more volatile

than others because they cost less to change. In addition, CoRE does not consider

changes due to corrections, improvements, adaptations or uncertainties. Future

work should consider a richer model that accounts for these possibilities, as well

as provide guidance for managing volatile requirements.

CoRE anticipates change at the level of a shearing layer. But among the ele-

ments in the same layer, it is unclear which is more volatile. For example, using

CoRE, business rules are more volatile than functional constraints, but it is unclear

which rules are more likely to change. Future work should explore a predictive

model that can anticipate individual requirements change and the timing of the

change. This could be done by learning from various attributes for each require-

ment such as the number of discussions about the requirement, the stakeholders

involved in the discussion and their influence in the project, and the importance of

the requirement to the stakeholders. Much of these data for RALIC have been

gathered in previous work [17].

18

2.7 Conclusion

This chapter has described CoRE, a novel expert independent method that classi-

fies requirements into layers that change at different rates. The empirical results

show that CoRE accurately anticipates the volatility of each layer. From the most

stable to the most volatile, the layers are patterns, functional constraints, non-

functional constraints, and business policies and rules.

CoRE is a simple but reliable method to anticipate change. CoRE has been

used in the Software Database project4 to build a UCL wide software inventory

system. Feedback from the project team revealed that CoRE helped the team bet-

ter structure their requirements, and gave them an insight of requirements that

were likely to change. As a result, their design and implementation prepared for

future changes, thus minimising the disruptive effect of changing requirements to

their architecture.

Acknowledgments The authors would like to thank members of the Estates and Facilities Divi-

sion and Information Services Division at University College London for the RALIC project

documentation, their discussions and feedback on the requirements models, as well as Peter

Bentley, Fuyuki Ishikawa, Emmanuel Letier, and Eric Platon for their feedback on the work.

References

[1] Anton A. I. (1996) Goal-based requirements analysis. In Proceedings of the 2nd Interna-

tional Conference on Requirements Engineering, pages 136-144.

[2] Arlow J. and Neustadt I. (2003) Enterprise Patterns and MDA: Building Better Software

with Archetype Patterns and UML. Addison-Wesley Professional.

[3] Berenbach B., Paulish D. J., Kazmeier J., Daniel P., and Rudorfer A. (2009) Software Sys-

tems Requirements Engineering: In Practice. McGraw-Hill Osborne Media.

[4] Boehm B. W. (1981) Software Engineering Economics. Prentice Hall.

[5] Brand S. (1995) How Buildings Learn: What Happens After They’re Built. Penguin Books.

[6] Chung L., Nixon B. A., Yu E., and Mylopoulos J. (1999) Non-functional Requirements in

Software Engineering. Springer.

[7] Cockburn A. (2002) Writing Effective Use Cases. Addison-Wesley Professional.

[8] Dardenne A., van Lamsweerde A., and Fickas S. (1993) Goal-directed requirements acquisi-

tion. Science of Computer Programming, 20(1-2):3-50.

[9] Foote B. and Yoder J. (2000) Big ball of mud. Pattern Languages of Program Design,

4(99):654-692.

[10] Harker S. D. P., Eason K. D., and Dobson J. E. (1993) The change and evolution of re-

quirements as a challenge to the practice of software engineering. In Proceedings of the

IEEE International Symposium on Requirements Engineering, pages 266-272.

[11] IEEE Computer Society. (2000) IEEE Recommended Practice for Software Requirements

Specifications.

[12] International Organization for Standardization. (2001) Software Engineering - Product

Quality, ISO/IEC TR 9126(1-4).

4 http://www.ucl.ac.uk/isd/community/projects/azlist-projects

19

[13] Jacobson I. (1995) The use-case construct in object-oriented software engineering. Scen-

ario-based Design: Envisioning Work and Technology in System Development, pages 309-

336.

[14] Jones C. (1996) Strategies for managing requirements creep. Computer, 29(6):92-94.

[15] Kotonya G. and Sommerville I. (1998) Requirements Engineering. Wiley.

[16] Leffingwell D. (1997) Calculating the return on investment from more effective require-

ments management. American Programmer, 10(4):1316.

[17] Lim S. L. (2010) Social Networks and Collaborative Filtering for Large-Scale Requirements

Elicitation. PhD Thesis, University of New South Wales. Available at:

http://www.cs.ucl.ac.uk/staff/S.Lim/phd/thesis_soolinglim.pdf.

[18] Lim S. L., Ishikawa F., Platon E., and Cox K. (2008) Towards agile service-oriented busi-

ness systems: A directive-oriented pattern analysis approach. In Proceedings of the 2008

IEEE International Conference on Services Computing, Vol. 2, pages 231-238.

[19] Lim S. L., Quercia D., and Finkelstein A. (2010) StakeNet: Using social networks to ana-

lyse the stakeholders of large-scale software projects. In Proceedings of the 32nd Interna-

tional Conference on Software Engineering, Vol. 1, pages 295-304.

[20] Mens T. and Galal G. (2002) 4th Workshop on Object-oriented Architectural Evolution.

pages 150-164. Springer.

[21] Object Management Group. (2006) Business Motivation Model (BMM) Specification,

Technical Report dtc/060803.

[22] O’Neill R. V., DeAngelis D. L., Waide J. B., and Allen T. F. H. (1986) A Hierarchical Con-

cept of Ecosystems. Princeton University Press.

[23] Papantoniou B., Nathanael D., and Marmaras N. (2003) Moving Target: Designing for Ev-

olving Practice. In HCI International 2003.

[24] Robertson S. and Robertson J. (2006) Mastering the Requirements Process. Addison-

Wesley Professional.

[25] Ross R. G. (2003) Principles of the Business Rule Approach. Addison-Wesley Professional.

[26] Salthe S. N. (1993) Development and Evolution: Complexity and Change in Biology. MIT

Press.

[27] Simmonds I. and Ing D. (2000) A shearing layers approach to information systems devel-

opment, IBM Research Report RC21694. Technical report, IBM.

[28] Sommerville I. (2004) Software Engineering. Addison-Wesley, 7th edition.

[29] Sommerville I. and Sawyer P. (1997) Requirements Engineering: A Good Practice Guide.

John Wiley & Sons.

[30] Standish Group. (1994) The CHAOS Report.

[31] Stark G. E., Oman P., Skillicorn A., and Ameele A. (1999) An examination of the effects of

requirements changes on software maintenance releases. Journal of Software Maintenance:

Research and Practice, 11(5):293-309.

[32] van Lamsweerde A. (2001) Goal-oriented requirements engineering: A guided tour. In Pro-

ceedings of the 5th IEEE International Symposium on Requirements Engineering, pages

249-262.

[33] van Lamsweerde A. (2009) Requirements Engineering: From System Goals to UML Mod-

els to Software Specifications. John Wiley & Sons.

[34] Wiegers K. (2003) Software Requirements. Microsoft Press, 2nd edition.

[35] Yu E. S. K. (1997) Towards modelling and reasoning support for early-phase requirements

engineering. In Proceedings of the 3rd IEEE International Symposium on Requirements En-

gineering, pages 226-235.

