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Abstract

This paper outlines a method, called reconciliation, for managing interference between partial
specifications or viewpoints. The method supports the detection, verification and tracking of ontological
overlaps. The paper describes the heuristics on which the method is based and illustrates the
application of the method to a scenario.

1. Introduction

The construction of a complex software system involves many agents (aka participants or actors).
These agents have different perspectives or views of the artifact or system they are trying to describe
or model. This gives rise to many partial specifications (or viewpoints) reflecting those perspectives
(Nuseibeh et al. 1993, Maiden et al. 1994). These specifications "interfere" with each other to the
extent they refer to, or assert properties of common aspects of the system under development and its
domain. This is a particular feature of the requirements engineering setting.

Interference between specifications can occur at two different levels. First, they might "ontologically
overlap", that is they might incorporate components referring to common aspects of the "real world".
Second, in cases where they overlap ontologically, they might also be inconsistent with each other.
We believe that both ontological overlap and inconsistency are inevitable and acceptable in system
development (Finkelstein et al. 1994). Ontological overlap because it is necessary to support multiple
perspectives, and inconsistency because it is a necessary to support innovative thinking, deferment
of commitments and exploration of alternatives.

The consequence of this stance is that interference between specifications needs to be "managed",
involving cooperation between the "viewpoint owners" (Finkelstein et al. 1994). This is complicated
by specifications which: use different languages; are at different degrees of abstraction, granularity
and formality; deploy different terminologies; are at different stages of development. These complexities,
set alongside the normal software engineering problems of scale, suggest the need for automated
reasoning and method support for interference management.

The interference management that is required (or indeed possible) varies. In certain cases it might
be loose, that is simply identifying ontological overlaps and inconsistencies, in other cases it might be
tight, involving the integration of the specifications and the resolution of their inconsistencies.

Reconciliation, the method discussed in this paper lies between loose and tight interference
management. It supports the detection, verification and tracking of ontological overlaps. This is in
some senses an easier problem than dealing with inconsistencies. It is amenable to the application of
heuristic techniques, for example, inexact-matching mechanisms (Spanoudakis & Constantopoulos
1995) and models of computer-supported negotiation (Easterbrook 1991), while inconsistency detection
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may require theorem proving and sophisticated formal frameworks (Hunter & Nuseibeh 1995). In



any case the detection of ontological overlaps is prerequisite for detecting inconsistencies.

In the rest of the paper, we describe a heuristic method for reconciling viewpoints (¤2), we detail the
heuristics on which it is based (¤3), give a scenario showing how it is used (¤4), briefly describe tool
support for specification matching (¤5), review related work (¤6) conclude with a discussion of open
research issues and future work (¤7). An Appendix giving basic definitions is attached.

2. Overview

The method we adopt for reconciling viewpoints has two basic stages, namely analysis and revision,
as shown in Figure 1. It detects ontological overlaps using a computational model of similarity and a
classification of specification components with respect to a meta-model of domain-independent, semantic
modelling properties Ñ analysis. It also supports the remodelling of specification components so that
the results of similarity analysis and viewpoint owners assessment of overlaps converge Ñ revision.
The goal of this process is to ensure that the modelling of specifications is consistent with the human
assessment of ontological overlaps between them and establish a shared understanding among
specification owners of the potential for inconsistency.

2.1 Analysis of specifications

Analysis of specifications is performed by a computational model of similarity. A specification is
treated as an aggregation of "specification components", classified using a meta-model, which expresses
general, domain-independent, semantic modelling properties. Both this meta-model and the
specifications are described in Telos, an object-oriented knowledge representation language, supporting
the semantic modelling abstractions of classification, generalisation and attribution (Mylopoulos et
al. 1990).

REVISION

specification1

ANALYSIS

ontological 
overlaps

revised specifications

assessments of 
ontological 
overlaps

modelling 
revisions

verified 
ontological 
overlaps

revised 
specifications

specification2

Figure 1: Reconciliation of Viewpoints

2.1.1 Meta-model

The meta-model consists of a kernel and a set of extensions. The kernel provides the key, domain-
independent, properties of semantic modelling schemes (Storey 1993, Motschnig-Pitrik 1993), whereas
the extensions provide additional properties for modelling established specification languages.

The kernel part is organised as a generalisation taxonomy of classes, with specification components
classified by the properties they possess. In particular, components are distinguished into those
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specialized into natural, nominal, place, event, activity, state, agent and physical quantity components.
Components representing relations are initially distinguished by their arity (for example binary or
n-ary relations). Binary relations are further specialized according to: cardinality constraints (for
example 1:1, N:M, total and onto relations); mathematical properties of relations (for example
symmetric, transitive and set-inclusion relations); existential dependencies between related items or
other constraints between them, including their temporal coexistence, physical separability and
substance homogeneity (Storey 1993).

The extensions to the meta-model comprise classes of additional properties for modelling established
specification languages. Current extensions include constructs to support the description of
specifications developed in the relational (for example fields, relations, inclusion dependencies) and
object-oriented data models (for example object types, attributes and identifiers, is-a relations).

In essence, the meta-model enables the enrichment of the semantic content of specification components
by asserting domain-independent properties about them and supports their representation with
respect to a common set of structuring constructs. Both are prerequisites for the computational
detection of their similarity. A detailed description of the meta-model is given in Spanoudakis &
Constantopoulos, 1995.

2.1.2 Computational model of similarity

Specifications, described as Telos objects in terms of the meta-model, are compared using a
computational model of similarity (Spanoudakis & Constantopoulos 1995, Spanoudakis &
Constantopoulos 1996, Spanoudakis 1994). Similarity analysis is based on three metric functions,
namely the classification, generalisation and attribution metrics, which measure conceptual distances
between specifications with respect to the classification, generalisation relations and the attributes
constituting their descriptions.

The classification distance between specification components indicates their differences with respect
to the properties expressed by the relevant classes of the meta-model. It is computed by identifying
the non-common classes of two components, estimating the importance of these classes, and aggregating
the importance measures obtained into a classification distance measure (function dc in the Appendix).
The generalisation distance reveals semantic differences between specification components, indicated
by their non-common superclasses and is computed in a similar manner to the classification distance
(function dg in the Appendix). The attribution distance between specifications determines an optimal
isomorphism Is between the structures of two specifications. Specification components contained in
these structures are mapped only if they are classified under the same classes of the meta-model Ñ
semantic homogeneity. In cases where they can be mapped in many ways, the model selects the
mapping with the minimum total distance (minimum distance isomorphism and the function da in
the Appendix). The estimation of the pairwise distances between specification components uses
recursive generation of isomorphic mappings between their own substructures.

The similarity analysis of two specifications results in: (i)  their classification, generalisation, attribution
and overall distance measures; (ii) a graph isomorphically mapping semantically homogeneous
components at the successive levels of the structural closures of two specifications (the arcs of this
graph are weighted by the pairwise distances of the mapped components); (iii) a list with their
common and non common classes, each weighted by its importance; and (iv) a list with their common
and non common superclasses, each weighted by its importance.

3



2.2 Revision of specifications

The isomorphism Is between the components of two specifications is likely to reflect their ontological
overlaps. However, flaws, incompleteness or lack of an adequate semantics in the modelling of
specifications might force similarity analysis to generate mappings, which are incorrect. In such
cases, specification owners can propose a different isomorphism Io between specification components,
which in their opinion correctly reflects these overlaps.

Our method uses the assessment of similarity matching by specification owners to suggest heuristic
checks on, and subsequently revisions to, specifications, which would make Is and Io converge. The
criteria forced similarity analysis to generate incorrect mappings between components, namely the
semantic homogeneity and the minimum distance isomorphism, can be used to trace those mappings
back to specific elements in specifications modelling and suggest revisions. Some of these revisions
resolve forms of inconsistency between specifications arising from incompatible classifications of
ontologically coincident components under the meta-model. Others complete specifications with respect
to each other. The method supports iterative revisions (Figure 1) up to a point where Is and Io
coincide completely. Revision stops at this point since the results of similarity analysis are confirmed
as a correct reflection of the ontological overlaps between the specifications. Along the way, the
method guides specification owners through a disciplined check on the correctness and completeness
of their specifications as well as systematic modification in line with their indication of the ontological
overlaps between them.

3. Heuristics

3.1 Appraisal

Specification owners "appraise" the result of similarity analysis by suggesting an alternative
isomorphism Io between the ontologically coincident components of their specifications. In general, Is
and Io will partially coincide. Components with and without counterparts in Is will be referred to as
corresponding and unique, respectively. Components mapped identically or left without any
counterparts by both Is and Io will be said to be correct corresponding and correct unique components,
respectively. Components with non identical mappings in Is and Io will be said to be wrong unique or
wrong corresponding components. The characterization "wrong" for corresponding components means
that their mappings by Is do not correctly indicate ontological overlaps. Similarly, the characterization
"wrong" for unique components in some specification means that, despite the absence of any counterparts
for them in Is, they should be treated as ontologically coincident with components of the other
specification with which it is being compared.
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Figure 2: Wrong Unique and Corresponding Specification Components

We can further distinguish wrong components as:

(i) Wrong unique components of type 1 (WU1-components): These are unique components of
one specification, which should have been mapped onto unique components of the other
(according to Io) although they have not been by Is (e.g. components x1 and y1 in Case 1 of
Figure 2).

(ii) Wrong unique components of type 2 (WU2-components): These are unique components of
one specification that should have been mapped onto components of the other (according to
Io), which have been mapped onto different counterparts by Is (e.g. component x1 in Case 2 of
Figure 2).

(iii) Wrong unique components of type 3 (WU3-components): These are unique components of
one specification that should have been mapped onto components of the other (according to
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(iv) Wrong unique components of type 4 (WU4-components): These are unique components of
one specification which are identified as redundant after comparison with another specification
fails to map them onto counterparts (e.g. component x1 in Case 4 of Figure 2).

(v) Wrong corresponding components of type 1 (WC1-components): These are components
which should have been mapped (according to Io) on counterparts unique in Is and different
from the ones on to which Is maps them (e.g. component y1 in Case 2 of Figure 2).

(vi) Wrong corresponding components of type 2 (WC2-components): These are components,
which should not have been mapped onto any counterparts according to Io although they
have by Is (e.g. components x1 and y1 in Case 5 of Figure 2).

(vii) Wrong corresponding components of type 3 (WC3-components): These are components,
which should have been mapped (according to Io) onto counterparts different from the ones
they have in Is. Their appropriate counterparts have themselves been mapped onto wrong
components by Is (e.g. components x1 and y2 in Case 6 of Figure 2).

(ix) Wrong corresponding components of type 4 (WC4-components): These are components,
that should have been mapped (according to Io) onto counterparts different from the ones
they have in Is, which did not exist at the time of comparison (e.g. component x1 in Case 7 of
Figure 2).

Examples of these cases are given in section 4, below. Based on these distinctions, our method
provides a set of heuristics that can be deployed for tracing disparities between Io and Is back to the
modelling of specification components and revising them so that Io and Is converge. These heuristics
are discussed below.

3.2 Dealing with WU1-Components

WU1-components may appear if similarity analysis prevents them being mapped as they are not
classified under exactly the same classes of the meta-model (due to semantic homogeneity). Notice
that, the classification of ontologically overlapping components should be identical because they are
expected to share the same general semantic properties. For instance, it would not be reasonable to
say that two components, classified as 1:N and M:N relations respectively, express the same relationship
in the real world. Therefore, classification discrepancies between ontologically overlapping components
might be reasonably attributed to incorrect and/or incomplete classification with respect to the
meta-model. Consequently, they need to be checked and possibly revised  thereby enabling similarity
analysis to generate the desired mappings. The following heuristics (expressed for the WU1-components
of Case 1 in Figure 2) may be applied in such cases:

H1: Check if the non-common classes of x1 and y1 are correct and if not remove them.

H2: Check if any of the non-common classes of x1 and y1 should be classes of the other as well
and add the relevant classifications.

3.3 Dealing with WU2-Components

WU2-components may appear due to either the semantic homogeneity or the minimum distance
isomorphism in similarity analysis. Because of the semantic homogeneity criterion, a WU2-component
may not be mapped onto its desired counterpart as they have non identical classifications. Such
cases may be explored and revised in accordance with heuristics H1 and H2, as in the case of
WU1-components. In other cases, the mapping of the desired counterpart of a WU2-component onto
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might be the result of an accidental incorrect common classification of them. Such cases can be
explored and rectified using the following heuristics (expressed for the components of Case 2 in
Figure 2):

H3: Check if the common classes of x2 and y1 are correct and if not remove them.

H4: Check if x2 and y1 should have been classified under any non-common classes of the
meta-model, although they have not, and if so add the relevant classifications.

Notice that, H4 supports the elicitation of new information about the components involved.

If the classification checks do not resolve the problem, the desired mapping might be achieved by
exploring why d(x2,y1) is less than d(x1,y1) and revising the modelling of x1 and y1 in order to
remedy this inequality. Viewpoint owners need to consider specific aspects in the modelling of x1 and
y1, which affected the partial conceptual distances between them and consequently their overall
distance. Given that H1 and H2 have been applied revealing no classification discrepancies between
the components (this implies that their classification distance equals 0), the overall distance inequality
might be the result of similar inequalities between the generalisation and/or the attribution distances
of the involved components (i.e. dg(x1,y1)> dg(x2,y1) and/or da(x1,y1)> da(x2,y1)). Reversing any of
these inequalities by revising the modelling of x1 and y1 can force similarity analysis map them onto
each other. Below, we present heuristics guiding such revisions, (expressed for the components of
Case 2 in Figure 2).

3.3.1 Reverse the inequality between the generalisation distances

Viewpoint owners may consider revising the generalisations of x1 to decrease dg(x1,y1) and the
generalisations of y1 to decrease dg(x1,y1) or increase dg(x2,y1) or both.

i) decrease dg(x1,y1). The following heuristics might be applied:

H5: Check if x1 has been incorrectly generalised to its unique superclasses with respect to y1
and if so remove the relevant generalisations.

H6: Check if any of the unique superclasses of x1 with respect to y1, which are not superclasses
of x2, should be superclasses of y1 and if so add the relevant generalisations.

Notice that, adding to the superclasses of y1 the unique superclasses of x1 which are superclasses of
x2, would not affect the inequality dg(x1,y1)> dg(x2,y1) since it would decrease equally both dg(x1,y1)
and dg(x2,y1).

H7: Check if y1 has been incorrectly generalised to its unique superclasses with respect to x1
but not x2 and remove the relevant generalisations if so.

Notice that, removing the unique superclasses of y1 with respect to both x1 and x2 would not affect
the inequality dg(x1,y1)> dg(x2,y1) since it would decrease equally both dg(x1,y1) and dg(x2,y1).

ii) increase dg(x2,y1). The following heuristic might be applied:

H8: Check if y1 has been incorrectly generalised into its common superclasses with x2, which
are not superclasses of x1, and if so remove the relevant generalisations.

Each non common superclass increases the generalisation distances between components by the
inverse of its specialisation depth in the generalisation taxonomies of which it is a part. Therefore, it
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deleted, ordered in ascending specialisation depths and identify those whose atomic modification
could reverse the inequality dg(x1,y1)> dg(x2,y1).

3.3.2 Reverse the inequality between the attribution distances

The attribution distances between x1 and y1 and between x2 and y1 are computed from optimal
isomorphisms mapping the subcomponents of y1 onto the subcomponents of x1 and x2, respectively.
Revising the modelling of the subcomponents of x1 and y1 may change these isomorphisms either
decreasing da(x1,y1) or increasing da(x2,y1). This can be done by applying the following heuristics:

i) decrease da(x1,y1)

H9: Check if the unique subcomponents of y1, with respect to the similarity isomorphism
between x1 and y1, are WU1, WU2, WU3 or WU4 components and deal with them if so.

The subcomponents of y1, which confront to H9 can be checked in an order imposed by the following
measure:

s(z) ( d(z, Is(z)) - d(z, IsÕ(z))

In this formula, z refers to a unique subcomponent of y1; s(z) is a measure of the importance of z for
y1, called salience, which is computed by the similarity analysis model; Is(z) and d(z,Is(z)) refer to the
counterpart of z in x1 (i.e. nil) and the overall distance between Is(z) and z (i.e. 1), respectively; and
IsÕ(z) and d(z,IsÕ(z)) refer to the counterpart of z in x2 and the overall distance between IsÕ(z) and z
(i.e. 1) respectively. Hence, the subcomponents of y1 subject to H9 should be considered in a sequence
determined by their distance to their counterparts in x2, weighted by their salience for y1.

H10: Check if the unique subcomponents of x1 with respect to the similarity isomorphism
between x1 and y1  are WU1, WU2, WU3 or WU4 components and deal with them if so.

The subcomponents of x1, which are subject to H10 can be checked in an order imposed by their
salience s(z), since this salience measure determines their contribution to the overall distance between
x1 and y1 (function da in the Appendix).

H11: Check for WC1 or WC3 subcomponents in the similarity isomorphism between x1 and y1
and deal with them if any.

Notice that, checking and possibly revising WC2 and WC4 components in x1 and y1 would not
decrease da(x1,y1), since re-mapping them would give rise to two or one unique components in the
specifications, respectively.

ii) increase da(x2,y1)

H12: Check for WC2 or WC4 subcomponents with respect to the similarity isomorphism
between y1 and x2 and deal with them if any.

WC2 components would increase the attribution distance between y1 and x2 if left unmapped, since
according to function da they would contribute to the maximum extent to this distance.

3.4 Dealing with WU3-Components

H13: Create a new component y1 with no subcomponents and deal with y1 and x1 as WU1
components.
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H14: Check for WU1, WU2, WU3 or WU4 components in the subcomponents of x1 and deal
with them if any.

3.5 Dealing with WU4-Components

Having been identified as redundant, WC4 components should be removed from their aggregating
specifications. Hence

H15: Remove x1.

3.6 Dealing with WC1-Components

WC1 components as counterparts of WU2 components in Is appear for same the same reasons and
therefore the heuristics introduced in section 3.3 can be applied.

3.7 Dealing with WC2-Components

Since the contribution of unique components to the overall distance between specifications is maximal,
similarity analysis prefers to map them onto dissimilar counterparts rather than leaving them
unmapped, provided that the criterion of semantic homogeneity allows it. By doing this, it minimizes
the overall distance between the specifications being compared. In such circumstances it is possible
that an incorrect common classification of two components might have caused an undesired mapping,
which could be avoided by modifying the classification of the components. This case might be subject
to the heuristics H3 and H4.

3.8 Dealing with WC3-Components

The WC3-components x1 and y2 of Case 6 in Figure 2 might not have been mapped onto each other
as required either because they were not identically classified or because the mapping of x1 onto y1
and x2 onto y2 had a relatively lower aggregate distance, i.e. d(x1,y1) + d(x2,y2) < d(x1,y2) + d(x2,y1).
In this circumstance we can apply the following heuristic:

H16: Regard x1 as a WU2-component that should be mapped onto y2, and y2 as a WU2-component
that should be mapped onto x1, and deal with them

H16 leads to the application of the heuristics concerning the classification of components and the
inequalities between their generalisation and attribution distances, discussed above.

3.9 Dealing with WC4-Components

The WC4-component x1 of Case 7 in Figure 2 may be dealt with as suggested by the following
heuristic:

H17: Create a new component y2 with no subcomponents and consider it as WU2-component.

In the next section, we demonstrate how the previous heuristics can be used to explore ontological
overlaps between specifications.

4. Scenario

We demonstrate the application of the reconciliation method using a scenario of exploring overlaps
between two object-oriented specifications of library borrowers, items and their relations. These
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Borrower and Student), different types of library items (the object types CopyOfBook, Publication
and their subtypes) and borrowing relations between them (the object type Loans and the object
attribute Borrows). However, they are not modelled identically (different taxonomies of library items,
different attributes for students and borrowers). Similarity analysis generates the isomorphism Is
shown in Figure 3, driven by the identical classification and the structural similarities of the
components.

LibraryCode

String

Borrower

Loans

Integer

Student

StudentCard

UniversityDept.

Publication

ReferenceBookBookCopy

Integer

String

LoanedCopies LoanableCopies

CopyOfBook

Book Shelf

EnrolledAt
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HasStudentCard

IsBorrowedBy

MaxLoanDuration

LoanedCopyBorrowedBy

LoanDuration
HasAddress

HasCode Represents

Object Type
Object Attribute Similarity Isomorphism Is

S1

S2

Isa Relation

HasIsbnIsbn

IsKeptAt

Figure 3: Scenario Step 1

In particular, Is maps:

(1) Borrower onto Student, as the most similar pair of natural kind, agent modelling entities

(2) CopyOfBook onto Publication, as the most similar pair of natural kind, entities

(3) LoanedCopies onto BookCopy, as the most similar pair of natural kind, entities

(4) LoanableCopies onto ReferenceBook, as the most similar pair of natural kind, entities

(5) HasCode onto HasStudentCard, as the most similar pair of 1:1, total, onto, contemporaneous,
non homogeneous, separable and existentially independent binary relations

(6) HasAddress onto LivesAt, as the most similar pair of N:M, optional, onto, contemporaneous,
non homogeneous, separable and existentially independent binary relations

(7) Loans onto IsBorrowedBy, as the most similar pair of N:1, optional, not onto,
contemporaneous, non homogeneous, separable and existentially independent binary relations
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Notice that Is has been selected among other isomorphisms that map identically classified components
in S1 and S2 since it yields a minimum attribution distance (cf. function Da in the appendix). For
instance, the attribute LivesAt could have been mapped onto the attribute LoanDuration in S1
because of their identical classifications. However, the higher similarity of the objects of HasAddress
and LivesAt  (these are Student and Borrower) and the identity of their values (both are strings) led
analysis to their mapping as a more plausible one.

The reconciliation of S1 and S2 starts from the assessment of Is by specification owners. Assuming
that the mappings of Borrower onto Student, HasCode onto HasStudentCard, HasAddress onto
LivesAt and Loans onto IsBorrowedBy are verified by specification owners as correctly reflecting
ontological overlaps, we concentrate on the other associations in Is. According to specification owners,
the mappings of CopyOfBook onto Publication, LoanedCopies onto BookCopy and LoanableCopies
onto ReferenceBook do not reflect correct ontological overlaps.

In particular, CopyOfBook should have been mapped onto BookCopy rather than Publication, as
indicated by the specification owners isomorphism Io in Figure 4. Thus, according to our scheme
CopyOfBook and BookCopy are WC3-components. The incorrect mapping might be explored by
considering the CopyOfBook as a WU2-component that should have been mapped onto BookCopy
and vice versa, as suggested by H16. Since CopyOfBook and BookCopy had been identically classified
as nominal kind entities the application of H1 and H2 does not reveal any problem in respect of the
criterion of semantic homogeneity. Also, the application of H3 and H4 does not reveal any accidental
incorrect common classification for LoanedCopies and BookCopy or CopyOfBook and Publication  (all
of them had been correctly classified as nominal kind entities). However, as indicated by the computed
partial distances of the components, the incorrect mapping was generated because of the unequal
attribution distances (da(LoanedCopies, BookCopy) + da(CopyOfBook, Publication) < da(CopyOfBook,
BookCopy) + da(LoanedCopies, Publication) ). To reverse this inequality we should apply H9, H10,
H11 and H12.
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LoanedCopies
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Figure 4: Scenario Step 2
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More specifically, H10 leads to the realisation that the subcomponent (attribute) Represents of
CopyOfBook is a WU3-component. In other words, it is missing from the specification of BookCopy in
S2. By way of H13, the specification owner decides to create a new attribute, called CopyOf, for the
object type BookCopy with value a new object type, called BookManuscript. However, the similarity
analysis between S1 and S2 still fails to map Book onto BookManuscript because they had not been
classified identically with respect to the meta-model. Treated as WU1-components, BookManuscript
is classified identically with Book as a nominal kind component due to H2. Similarly  to the attribute
Represents, the attribute HasIsbn of Book is identified as a WU3-component (given the similarity
isomorphism between Book and BookManuscript) and through H13 and H2, a new attribute, having
the same name and classification with it, is created for BookManuscript. These modifications result
in the specifications and the similarity isomorphism, which is (partially) shown in Figure 5.
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ReferenceBookBookCopy
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Publication

CopyOfBook

Similarity Isomorphism Is

Figure 5: Scenario Step 3

However, even the new isomorphism is viewed as ontologically incorrect because of the mapping of
LoanedCopies onto Publication and LoanableCopies onto ReferenceBook. As identified by the mapping
of CopyOfBook onto BookCopy, LoanedCopies and LoanableCopies should correspond to subtypes of
BookCopy. Since no such subtypes exist in S2, LoanedCopies and LoanableCopies are considered as
WC4-components. Consequently (H17), two new object types called CheckedOutCopies and
BorrowableCopies, which are meant to be their counterparts are incorporated in S2 (Figure 6). The
mere incorporation of these two components is insufficient to force similarity analysis to map them
as required. Thus, CheckedOutCopies and BorrowableCopies are treated as WU2-components (in
respect to LoanedCopies and LoanableCopies, respectively) and consequenlty they are classified
identically to these components (H2).

Despite this classification, similarity analysis still maps LoanedCopies onto Publication rather than
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and da(LoanedCopies,CheckedOutCopies)=1 1). In fact, LoanedCopies has one corresponding (Loans
which corresponds to IsBorrowedBy) and two unique subcomponents (the Isa relation between
LoanedCopies and CopyOfBook and the inherited attribute Represents) when compared to Publication .
On the other hand, all these subcomponents are unique when compared to CheckedOutCopies. In
trying to reverse this inequality, H10 and H13 lead to the specification of an Isa relation between
CheckedOutCopies and BookCopy, through which CheckedOutCopies inherits IsBorrowedBy. After
these modifications, the attribution distance between LoanedCopies and CheckedOutCopies becomes
lower than the attribution distance between LoanedCopies and  Publication
(da(LoanedCopies,CheckedOutCopies)=0.34) since the former pair has two corresponding
subcomponents while the latter has two unique. Hence, LoanedCopies  is mapped onto BorrowableCopies
by similarity analysis.
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Figure 6: Scenario Step 4

Similarly, the identical classification of BorrowableCopies and LoanableCopies is insufficient to enforce
a mapping since the attribution distance between LoanableCopies and ReferenceBook
(da(LoanableCopies,ReferenceBook)=0.602) is lower than the attribution distance between
LoanableCopies  and BorrowableCopies  (da(LoanableCopies,BorrowableCopies)=1). In fact, the
attribution distance between BorrowableCopies and any other object would be equal to 1 (i.e. the
maximum distance that can be  computed by the similarity model) since BorrowableCopies  has no
attributes as it stands. In trying to reverse this inequality, H9 leads to the identification of the Isa
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relation connecting LoanableCopies with CopyOfBook as a WU3-component with respect to



BorrowableCopies. By way of H13, a new Isa relation, connecting BorrowableCopies with BookCopy
is created, intended to be its counterpart. However, this modification does not reverse the attribution
distance inequality. Now, da(LoanableCopies,BorrowableCopies) becomes equal to 0.633, as a
consequence of the inheritance of the attributes IsBorrowedBy (from Publication) and
MaxLoanDuration  (from BookCopy) to BorrowableCopies, which are unique in respect of the similarity
isomorphism between BorrowableCopies and LoanableCopies. As a result of H10, IsBorrowedBy is
realized as a WU4-subcomponent (i.e. a redundant subcomponent) for BorrowableCopies, since a
borrowing relation cannot involve items which have not been checked out from the library, as
specified in S1. The operationalisation of H15 in this case involves the re-modelling of the subcomponent
IsBorrowedBy as an attribute of CheckedOutCopies rather than Publication . Thus, it is no longer
inherited by BorrowableCopies. Also, MaxLoanDuration  is identified as a WU3-subcomponent (i.e. a
missing subcomponent) with respect to BorrowableCopies  and consequently (H13,H1 and H2) a
analogous attribute, with the same name, is created for CopyOfBook and becomes an attribute of
LoanableCopies by inheritance. These modifications reduce the attribution distance between
BorrowableCopies and LoanableCopies  down to 0.491 and consequently these two components are
mapped onto each other by similarity analysis (see Figure 7).
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Specifications S1 and S2 have now been revised and their similarity analysis generates the isomorphism
which has been verified as ontologically correct by specification owners. At this point reconciliation
may stop. Along the way S1 and S2 have undergone modifications that made them compatible with
their owners assessment about the existence of ontological overlaps between them. New information,
originally missing from them, was also elicited as a result of their comparisons. Also, through the
process, specification owners established a shared understanding about the ontological overlaps in
their specifications and the potential for introducing further inconsistencies in them.

5. Tool Support

The analysis stage in specification reconciliation is currently supported by a prototype built as a
customization of the Semantic Index System (SIS), a tool for representing, storing and retrieving
objects described in the Telos language (Constantopoulos & Doerr 1993). This is integrated with an
implementation of the similarity model and provides queries for detecting similarities between Telos
objects (Spanoudakis 1994b). The meta-model for specification analysis has been implemented as a
kernel SIS object base, which is used as a schema for describing specifications. Specifications are
described as SIS objects classified using this schema and are therefore amenable to similarity
analysis. This process of description is supported by interactive data entry forms, built-in the SIS,
and customized to support the task of classifying specification components.

To support the full reconciliation method discussed above we are building a process model, using
techniques presented in Leonhardt et al. 1995, describing the activity of exploring and rectifying
wrong unique and corresponding components based on the heuristics. The model will allow specification
owners to switch between the stages of analysis and revision if they feel it is necessary, and guide Ñ
rather than forcing Ñ them to adopt specific, predefined types of reconciliation (Finkelstein et al.
1994).

6. Related Work

The detection of ontological overlap, and the resolution of the inconsistencies it might cause have
been concerns in requirements engineering research, due to a recent interest in requirements
specification from multiple viewpoints (Finkelstein & Sommerville 1996; Nuseibeh et al. 1993; Maiden
et al. 1994; Kotonya & Sommerville 1992). They have also been central issues in obtaining and
maintaining the semantic interoperability of multiple database systems (Sheth & Larson 1990; Goh
et al. 1994).

Research in requirements engineering has mainly concentrated on the detection and resolution of
logical inconsistencies, usually taking for granted the detection of ontological overlap. Some of the
approaches focus on the detection of particular types of inconsistencies between specifications expressed
in specific representation models (Finkelstein et al. 1994; Robinson & Fickas 1994; Heitmeyer et al.
1995; Easterbrook &. Nuseibeh 1995), while others are concerned with inconsistency in general
(Zave & Jackson 1993). There has been some work on the detection of ontological overlap based
either on the generation of canonical representations of specifications in a common underlying
language (Johanneson 1993; Meyers & Reiss 1991) or on elaborating analogies between specifications.
Such elaboration has been possible either by matching specifications with classes of requirements
engineering problems (Maiden & Sutcliffe 1994) or by heuristically identifying analogies from the
annotation of specifications with terms in domain-specific dictionaries (Leite & Freeman 1991).

The different strategies used to obtain the semantic interoperability of multiple database systems
can be distinguished into tight-coupling based, the loose-coupling based and the knowledge
representation based (Goh et al. 1994). The tight-coupling strategies (Batini et al. 1986; Sheth &
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semantic equivalencies and disparities between them, based on their representation in single data
models and explicitly asserted relationships between local schema components (for example inclusion
dependencies, equivalence or containment relations). However, integration is not fully automated.
The loose-coupling strategies detect semantic equivalencies based on annotations of local schema
components with terms in shared ontologies (Bright et al. 1994; Sciore et al. 1994). These strategies
ensure the consistent exchange of semantically equivalent information by deploying conversion
functions, supplied by local database systems delegates (Sciore et al. 1994). Finally, the knowledge
representation strategies (Collet et al. 1991; Arens & Knoblock 1992) transform local schemas to a
global schema, which unifies disparate interpretations and representations. This global schema is a
knowledge base describing concepts in various application domains, which enables the comparison of
local schemas not explicitly interrelated with each other.

7. Conclusion

The construction of complex software systems involves many agents with different perspectives or
views of the system they are trying to describe, which give rise to many partial specifications (or
viewpoints). Viewpoints "interfere" with each other to the extent they refer to, or assert properties of
common aspects of the system under development and its domain (i.e. ontological overlap), which in
turn might be inconsistent with each other. This interference needs to be "managed".

Reconciliation, the method discussed in this paper is a method of loose interference management. It
detects ontological overlaps (a prerequisite for detecting inconsistencies) by analysing similarities
between viewpoints and guides viewpoint owners through a process of assessing and verifying them,
thus establishing a shared understanding among these owners of the potential for inconsistency. We
believe that the method has promise though there is clearly considerable scope for further work. An
important issue is the extension of the method so as to make it applicable to specifications of
behavioural requirements. This could be achieved by extending the meta-model so as to reflect
general properties of behavioural specifications. Currently, we are investigating such extensions,
using as a case study the integration of the various specification models of the use-case driven Object
Oriented Software Engineering method (Jacobson 1993)  with our meta-model for specification analysis.
We will be looking at extending the tool support and at larger scale examples which would constitute
a more realistic test.

In the long-term, we envisage the computational support for our method as a component in a tool-kit
developed to support the full spectrum of interference management covering specifications expressed
in different languages, with different degrees of abstraction, granularity and formality, deploying
different terminologies and being at different stages of development or elaboration. We believe that
to cope with the diversity of the interference problem, such a tool-kit should support multiple
reasoning mechanisms and/or methods; including rule-based consistency checking (Finkelstein et al.
1994; Easterbrook et al. 1994) and computer-supported human negotiation (Easterbrook 1991).
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Appendix: The Computational Model for Similarity Analysis

The similarity model is composed of distance  measuring functions defined on Telos objects. In
this Appendix, we formally introduce these objects and functions. A more detailed account of the
model is given in (Spanoudakis, 1994; Spanoudakis & Constantopoulos, 1996 op cit).

a1. Telos Objects

Telos objects are partitioned according to their classification level into Tokens and Classes.
Classes are further partitioned into Simple Classes, Meta Classes, Meta Meta Classes and so on.
They are also partitioned according to their role into Individuals (objects modelling entities) and
Attributes (objects modelling properties and/or relations between entities). These four basic
categories of objects have the following tuple forms:

Individual Tokens (It): oi = [In,A]
Individual Classes (Ic): oi = [In,Isa,A]

Attribute Tokens (At): oi = [From,In,A,To]
Attribute Classes (Ac): oi = [From,In,Isa,A,To]

In these forms, i is an object identifier for oi, In is a set of object identifiers denoting the classes
of oi (oi is said to be an instance of the classes in In), Isa is a set of object identifiers denoting the
superclasses of oi , A is a set of system identifiers denoting the direct attributes (i.e. those not
inherited) of oi, From is the identifier of the object owning the attribute oi and To is the identifier
of the object being the value/range of attribute oi.

Telos objects have logical names (unique to individual objects but shared by more than one
attribute objects owned by distinct classes). Telos classes have intensions (INT[i]) including the
identifiers of the attributes they introduce or inherit from their superclasses. Each Telos attribute
class i has an original class OC(i) (i.e. the most general attribute superclass of i, which has an
identical logical name with it). In these definitions, l is assumed to be an M:1 mapping from the
set of object identifiers to the set of object logical names.

a2. Distance Functions

(i) identification distance

The identification distance indicates whether two objects are identical or not. Object identity
depends on the equality of internal unique identifiers which are assigned to objects by the
database system. Although objects with the same identifier have exactly the same value (i.e. they
have the same classes, superclasses, attributes and attribute values), objects with the same
values may not have the same identifier (i.e. deep equal but not identical objects). The identification
distance distinguishes between those two cases. Formally, this distance is defined as follows:

Definition 1: The identification distance did between two objects oi and oj is defined as:

did(oi,oj) = 0
if i=j and

did(oi,oj) = 1
 if i≠j
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(ii) classification distance

The classification distance between two objects is measured by identifying and measuring the
importance of their non-common classes. Thus, it gives an account of how two specifications
differ with respect to the properties expressed by the classes of the meta-model. The importance
of each class is measured by its specialisation depth, SD(x) , which is formally defined as:

Definition 2: SD(x) is the maximum length (number of links) of the paths connecting class x
with the most general class of its generalisation taxonomy, called specialisation depth of x.

Thus, non-common classes, which are placed at higher levels in generalisation taxonomies are
considered as more important than those placed at lower levels. Given SD(x), the classification
distance is defined as follows:

Definition 3: The classification distance dc between two objects oi and oj is defined as:

dc(oi,oj) =  (bc Dc(oi,oj))/(bc Dc(oi,oj) + 1),  bc e R+

Dc(oi,oj) = Sx e  NCCijSD(x)-1, NCCij = (oi.In - oj.In) Û (oj.In - oi.In)

bc is a normalization parameter evaluated so that dc equals 0.5 when Dc takes its average value
given a specific set of objects (i.e. a context-sensitive estimation of the classification distance).

(iii) generalisation distance

The generalisation distance provides an account of the semantic differences of two individual
objects as evidenced from their non-common superclasses. Each of these superclasses is weighted
by its specialisation depth, like the non-common classes in the classification distance. The
generalisation distance between attribute classes depends on the identity of their original classes
and distinguishes between refined specialisations of the same attribute and specialisations between
attributes with shared but non-identical semantics.

Definition 4: The generalisation distance dg between two objects oi and oj is defined as:

dg(oi,oj) = (bc Dc(oi,oj))/(bc Dc(oi,oj) + 1),  bc e R+ if oi , oj e  Ic

dg(oi ,oj) = do(oi,oj) if oi, oj e  Ac

Dg(oi,oj) = Sx e  NCSijSD(x)-1, NCSij = (oi.Isa -  oj.Isa) Û (oj.Isa - oi.Isa ) Û {i,j}

do(oi,oj) = 0
if OC(i)=OC(j) and

do(oi,oj) = 1
if OC(i)≠ OC(j)

 bg is similar to and evaluated like bc in definition 3.

(iv) attribution distance

The attribution distance is estimated by searching for a minimum distance isomorphism between
the attributes of two objects. Mappings are only considered between attributes, which are instances
of the same original attribute classes. Thus, only specification components which belong to
exactly the same classes of the meta-model, and therefore share exactly the same semantic
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overall distance between the object-values of attributes (definitions 5 and 6 below). Thus, it
generates minimum distance isomorphisms among the attributes of these value-objects and
recursively  among the attributes at all the successive levels of their decomposition-closures. In
doing so, it produces a detailed account of the structural resemblances between two specifications.
Formally, the attribution distance is defined as it follows:

Definition 5: The attribution distance da between two objects oi and oj is defined as:

da(oi,oj) = (ba Da(oi,oj))/(ba Da(oi,oj) + 1),  ba e R+

Da(oi,oj) = ∞
if oi.A  = Ø   or  oi.A  = Ø and

Da(oi,oj) = minm e  I(oi ,oj)
(S(x1,x2) e m s(x1) s(x2) d(x1,x2) + Sx3 e  oi[m] s(x3)

2 + Sx4 e oj[m] s(x4)
2 )

otherwise

where

I(oi,oj): is the set of all the possible morphisms between the semantically homogeneous attributes of oi

and oj  (two attribute objects k and l are semantically homogeneous if and only if  OCL[k]= OCL[l]
where OCL[x] ={ y | ( y = OC(z) ) and (z e  ox.In)} )

oi[m] (oj [m]): is the set with the attributes of oi (oj) that map onto no attribute of oj  (oi) given the
isomorphism m

s(x): is the salience of attribute class x computed as described in (Spanoudakis & Constantopoulos,
1996).

 ba  parameter is similar to and evaluated as bc in definition 3.

(v) overall distance

The overall object distance aggregates the partial identification, classification and generalisation
distances between two objects. Thus, it gives an overall account of both the semantic and the
structural differences between two objects, which is particularly useful in cases where they are
incompletely described with respect to classification and generalisation relations or attributes.
Formally, the overall distance is defined as follows:

Definition 6: The overall distance d between two objects oi and oj is defined as:

d(oi,oj) = (boo D(oi,oj))/(boo D(oi,oj) + 1),  boo e R+ where
D(oi,oj) = (did(oi,oj)

2 + dc(oi,oj)
2 + dg(oi,oj)

2 + da(oi,oj)
2 + dc(oi,oj) dg(oi,oj) +

dc(oi,oj) da(oi,oj) + dg(oi,oj) da(oi,oj))
1/2

if oi,oj e ( It Û Ic )

d(oi,oj) = (boa D(oi,oj))/(boa D(oi,oj) + 1),  boa e R+ where
D(oi,oj)=(did(oi,oj)

2 +  dc(oi,oj)
2 + 36 dg(oi,oj)

2 + da(oi,oj)
2 + d(oi.To,oj.To)2 +

12 dc(oi,oj) dg(oi,oj) + dc(oi,oj) da(oi,oj)  + 12 dg(oi,oj) da(oi,oj) )
1/2

if oi,oj e ( At Û Ac )

D  has a quadric functional form because of experimental evidence about  statistically significant
correlations between dc, dg and da (Spanoudakis & Constantopoulos, 1996 op cit). The relatively
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higher coefficients of products having dg as a factor (i.e. 36, 12) ensure that attributes with the



same original class (and therefore 0 generalisation distance according to definition 4) will necessarily
be  mapped to each other, when comparing the objects to which they apply. b oo and boa parameters
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are similar to and evaluated as bc in definition 3.


