Empirical Studies of Software Engineering: A Roadmap

Dewayne Perry, University of Texas
Adam Porter, University of Maryland
Lawrence Votta, Motorola Inc.

June 8, 2000

ICSE 2000

Roadmap

- Where we are
- Where we should be
- Some suggestions to get there

June 8, 2000

ICSE 2000
Current State

- Implementation Oriented
 - Fenton: poor statistical designs, don’t scale
 - Basili: differences in projects make comparisons difficult
 - Johnson: practitioners resist measurement
- Need to be requirements oriented
 - Think hard about what experiments really are
 - How they can be most effectively used
- Core problem: conceptualizing and organizing a body of work as scientific basis

Software Development

- Little hard evidence to inform decisions
 - correlations suggestive but not sufficient in all cases
 - many times don’t know exception cases
- Do not know fundamental mechanisms
 - software tools
 - methods and techniques
- Empirical studies are the key
 - show mechanism
 - eliminate alternative explanations
Strengths

- Empirical validation is standard in some fields
- Quality of empirical studies (ES) rising
- Funding agencies recognizing value of ES
- Many currently interested
- ES tutorials, panels, SOTAs, papers, etc.
- Key consciousness raising papers (Tichy et al., Zelkowitz)
- Several key organizations: SEL, ISERN

Systemic Problems

- Research ideas often not empirically validated
 - should retroactively validate, proactively direct
- Search for perfect study - focus on credibility
- Study the obvious
 - OK, but need deeper insight
- Lots of data
 - not enough - should answer important questions
- Lack hypotheses
- Lack conclusions from data
Challenges

- Improve state of research and practice
- Create better studies
- Draw more credible conclusions

Create Better Empirical Studies

- Establish principles that are
 - causal: correlated, temporally ordered, testable theory
 - actionable: causal agent effectively controllable
 - general: widely applicable
- Answer important questions
- Family of focused studies - illuminate related aspects
- Cost effective
- Reproduced and extended by others
Credible Interpretations

- Degree of confidence we have in conclusions
 - eliminate alternative explanations
 - need a compelling logic in the discussion
- Validity is critical: construct, internal, external
- Hypothesis is critical - ask important questions
- Resolution appropriate to the intent of the study
- Make data public

The Way Forward

- In empirical study design, maximize
 - accuracy of interpretation
 - relevance
 - impact
- Subject to
 - resource constraints
 - risk
Structure of an Empirical Study

- Research context
 - problem definition
 - research review
- Hypothesis
 - abstract - about the world
 - concrete - about the design
- Experimental design
 - variables: independent and dependent
 - plan to systematically manipulate variables
 - control operational context

June 8, 2000

Structure of an Empirical Study

- Threats to validity: construct, internal, external
- Data analysis and presentation
 - quantitative: hypothesis testing, power analysis
 - qualitative
- Results and conclusions
 - limits, influences
 - explain how answered question
 - practical significance
 - sufficient information for repairability

June 8, 2000
Concrete Steps

• Designing Studies
 – ask significant questions
 • Knight-Leveson, N-version programming
 – family of studies
 • Schneideman et al, on value of flowcharts
 – build partnerships
 • takes time; multi-person effort; interdisciplinary; industry
 – long running in vivo/situ experiments
 • subparts; subject rights; know when to stop

June 8, 2000

Concrete Steps

• Collecting the data
 – retrospective artifact analysis
 • eg, version management systems
 – simulation and modeling
 • eg, integration studies of Solheim and Rowland

• Involving others
 – meta-analysis
 • Porter/Johnson
 – educational laboratories
 • teach empirical studies basics (a la physics)
 • populate lab with appropriate data/designs/equipment

June 8, 2000

Conclusions

• Good empirical studies enable us to
 – encode knowledge more rapidly
 – prune low payoff ideas rapidly
 – recognize and value high payoff ideas
 – exploit important practical ideas