Databases in Software Engineering: a Roadmap

Klaus R. Dittrich

Department of Information Technology
University of Zurich
Database Technology Research Group

Winterthurerstrasse 190, CH-8057 Zürich
e-mail: dittrich@ifi.unizh.ch, http://www.ifi.unizh.ch
Tel.: ++41-1-635 4312, Fax: ++41-1-635 6809

©2000 Klaus R. Dittrich

outline

- what is the problem ?
- databases & database technology: what is it, after all ?
- DB support for SEE: what is required ?
- what has been achieved ?
- are we done with this ?
- where to go, what to do, and who ?
what is the problem?

- software engineering involves lots of information that is being produced, has to be maintained and managed, and will eventually be consumed/inspected/...
 (comes in various kinds, with various processing requirements etc.)
- database technology provides lots of (proven!) powerful and efficient solutions for information management
- looks like an ideal solution, doesn't it?
- however (as usual): it's the small things that cause problems ("the devil is in the detail")

database

A collection of interrelated data with the following properties:

- permanently available (i.e. explicitly controllable lifespan)
- potentially large
- integrated (across multiple applications with overlapping information; controlled redundancy)
- usable independently of program that created it (data independence: mutual change immunity AP - DB)
- multiuser operation ("parallel access")
- consistent, safe, secure ("data qualities")
- comfortably, flexibly and efficiently usable ("associative access")
- (possibly) distributed in computer network (→ "transparency")

database technology

The entirety of concepts, methods, systems and tools for the organization and operation of databases
database management system (DBMS)

software for the management and operation of databases with the above-mentioned properties

implements among others:

- **a data model:** conceptual framework for logical data organization means for data structuring/data description ("data definition"/DDL \rightarrow schema, views)
- **means for data access and data manipulation:** DB-operations (DML) query language
- **control mechanisms:**
 - transaction model (incl. recovery, synchronization)
 - consistency maintenance
 - trigger
 - access control
 - backup and archiving
 - secondary storage management (access paths etc.)
 - distribution management in network

DB technology today

- **DBMS are a huge commercial success**
- **data models, query models and transaction models** have been researched extensively
- **some recent and current developments:**
 - from structured to (also) unstructured and semistructured data
 - new data types (multimedia), object-oriented/object-relational models
 - extended transaction models: from concurrency to (also) cooperation
 - advanced query models, including IR-style retrieval
 - DBMS-support for advanced requirements like time, versioning, rule-based triggering, ...
 - distribution, federation, integration, ...
DB support for SEE: what is required?

- software engineering environment (SEE):
 set of tools supporting tasks of the SE process,
 complemented by appropriate infrastructure

- tools produce and consume/inspect data

- thus we need
 - representation and persistent storage of software artifacts
 - integrity and consistency management
 - query and retrieval facilities
 - version and configuration management
 - cooperation support and workspace management
 - process support (workflow management and enactment)

what has been achieved?

- over the years, many efforts have been undertaken towards "software engineering databases"

- typical (simplified) architectural view of SEE:
what has been achieved?

- tricky issue: what goes where (tools vs. repository system)?
- which kind of repository system?

- **database management system (DBMS)**
 artifact query & retrieval, concurrency control, transactions, consistency/integrity/access control, ...

- **object management system (OMS)**
 artifact representation, (some) integrity control, low-level navigation interface

- **file system**
 persistent storage
 (some) concurrency & access control

what has been achieved?

- OMS vs. DBMS?
- proprietary vs. general repository system?
- commercial system vs. research prototype?

(subjective) summary:

a lot of work, without much agreement, conclusive results, or real success stories
are we done with this?

- certainly not ... !
- ... for at least two reasons:
 - advances in database technology give hope for better results in the future
 - cannot imagine that current state is satisfactory for SE community (outsourcing of tasks works elsewhere, too)

- what we do need: clear conception of exactly what DB services are needed, in which form

where to go, what to do, and who?

- a fresh look at "DBMS": collection of services instead of monolithic "dinosaur"
- component technology, extensibility
where to go, what to do, and who?

- databases and software engineering:
 - a marriage of love?
 - a marriage of convenience?
 - a love-hate relationship?
 - a non-relationship?

- interdisciplinary research is advocated so much, and even works between computer science and others; why not try it more between subareas of computer science?

- closer cooperation between communities could achieve a lot!