
Software Engineering and Performance: A Road-map

Rob Pooley
Department of Computing and Electrical Engineering,

Heriot-Watt University
Edinburgh EH14 4AS, United Kingdom

+44 131 451 3367
rjp@cee.hw.ac.uk

ABSTRACT
Software engineering has traditionally focussed on
functional requirements and how to build software that
has few bugs and can be easily maintained. Most design
approaches include non-functional requirements among
the elements of the analysis of a system, but little
attention has usually been paid to how these requirements
can be dealt with through the development life-cycle.
Performance analysis, mostly through queueing models
and simulations, has usually been used only in designing
hardware devices, such as switches, or in capacity
planning in the deployment of systems, again
concentrating on the hardware and its ability to cope with
a given workload. Work on the inclusion of performance
engineering throughout the life-cycle has made relatively
little impact. With the advent of more structured software
design approaches, such as component based
development, software architectures and object broker
distributed systems, the ability to design software for
performance has begun to emerge as a major challenge.
This paper reviews some approaches to performance
prediction and suggests how this area might develop in
the next decade or so.

Keywords
software engineering, performance engineering

1 PERFORMANCE ANALYSIS,
PERFORMANCE ENGINEERING

The study of the performance of computer systems and
networks attempts to understand and predict their time
dependent behaviour. The overall process of estimating
performance is often referred to as performance analysis.

Its integration within the engineering process is
commonly referred to as performance engineering. As
well as modelling, this involves measurement of real
systems. Recent work has tried to combine estimation of a
systemÕs performance with estimates of its reliability,
giving a joint measure, called performability.

These topics have been the subject of extensive research
and their importance is widely recognised, but many
software and hardware designers are reluctant to use
them. They are perceived as difficult and time consuming.
This need not be true, however, as powerful and user
friendly tools are now available to assist. Some are
described briefly below. for more details of these and
others, readers should consult the references at the end of
this paper especially, the Proceedings of the International
Conference on Modelling Techniques and Tools for
Computer Performance Evaluation [1,16,6,7] for further
information. Papers of interest may also be found in the
UK Performance Engineering Workshop proceedings
[20,5] and the Proceedings of the First International
Workshop on Software and Performance [23].

The rest of this paper is organised as follows. Section 2
introduces the state of the art in performance evaluation.
Section 3 outlines the distinctive contribution of software
performance engineering (SPE). Section 4 outlines
significant factors arising from recent developments in
software design. Section 5 looks at some current work in
integrating software design and SPE. Section 6 presents
an agenda for further work in this area and section 7 sums
up the paperÕs message.

2 PERFORMANCE ENGINEERING
TECHNIQUES

Performance engineering is essentially an experimental
approach to predicting the likely performance of systems.
It can involve building and then monitoring a typical
system, under the workloads of interest, or using models
which reproduce the time dependent behaviour of an
unrealised system, either driven by a trace of the expected
workload or by a workload represented as a set of random
variables (stochastic modelling). Most of the work of
interest to software engineering is probably concerned

Taken From:"The Future of Software Engineering" , Anthony Finkelstein (Ed.), ACM Press 2000Order number is 592000-1, ISBN 1-58113-253-0. ACM E-Store: http://store.acm.org/acmstore

with stochastic modelling of systems during their design,
i.e. modelling abstractions of the target system. The
advantages of modelling include:

• estimates are made where a system does not exist yet
or is too costly to buy to monitor;

• the workloads possible with a model may not be easy
to generate on a real system;

• models can generate almost any measures we wish,
which monitoring may not match;

• a model can test conditions which would damage the
real system.

Typical representations used for performance models
include queueing networks, Petri nets (especially timed
and stochastic extensions), a variety of proprietary
simulation languages and notations and, most recently,
timed and stochastic extensions to formal description
languages and process algebras.

Models can be classified according to how they are
described or how they are solved. The main solution
techniques are analytic, numerical and simulation. When
we solve a model we can obtain an estimate for a set of
values of interest within the system being modelled, for a
given set of conditions which we set for that execution.
These conditions may be fixed permanently in the model
or left as free variables or parameters of the model, and

set at runtime. By varying the input values we explore
how the outputs vary with changing conditions. This is
similar to the experiments we might conduct by
measuring a real system.

The failure of traditional engineering and computer
science education to build in an effective introduction to
notions of probability, as a key abstraction and
approximation technique have tended to leave research in
these areas outside the mainstream of software
engineering. It is interesting to contrast the relatively low
emphasis on stochastic modelling and statistical
understanding in engineering with the high emphasis
within management and business studies, where
operations research is highly valued for its ability to
contribute to efficiency.

Most engineers are happy to replace some complex
behaviour with a simple delay when estimating time
dependent behaviour. Most will happily use upper and
lower bounds to estimate operational tolerances.
Surprisingly few are capable of generalising this to use
appropriate stochastic variables for such estimates.

Perhaps even worse, few seem to understand the
respective roles of statistics in interpreting observations
and stochastic modelling in applying such understanding
to assist in abstraction.

¥

¥

Database

SCSI

Disc

CPU

Figure 1: Typical queueing network

Place Token
Immediate
Transition

Timed
Transition

Normal
Arc

Inhibiting
Arc

Figure 2: Typical stochastic Petri net

Simulation is the most general and versatile means of
performance modelling. It has many uses, but its results are
usually only approximations and the price of increased
accuracy is longer execution times.

 Analytical techniques provide models which can be solved
symbolically for the average (steady state) behaviour of a
system. Unfortunately only a very restricted set of models
have such solutions. Even fewer have exact solutions.

Numerical techniques involve deriving an underlying
model, typically a continuous time Markov chain, which
can be solved for a given set of parameters by solving a set
of simultaneous equations. These are somewhere between
analytical and simulation models, being more general but
slower than analytic techniques and less general but faster
than simulation.

Approximate solution techniques are sometimes used for
both analytic and numerical approaches. Even for
approximate models, useful predictions are often possible.
It is certainly usually possible to compare two alternative
designs, even if the absolute results are not accurate.

3 SOFTWARE PERFORMANCE ENGINEERING
It is widely accepted that performance analysis techniques
have suffered a lack of acceptance in the wider software
design community. Several reasons have been put forward
for this, but the most compelling is the reluctance of
designers to learn the specialised formalisms required by
queueing network analysis and Markovian numerical
solution techniques. Both stochastic Petri nets and
stochastic process algebras are attempts to move closer to a
designer's world view. Unfortunately, both remain rather
academic and appeal to limited communities, such as real

time systems designers, where there is an existing interest
in more formal approaches.

Explicit efforts to build methods and notations which
would appeal to software engineers and designers include
Smith's Software Performance Engineering [22], which
outlined a methodology for integration of performance
estimation within the software engineering process, and
Beilner's HIT [3], which introduced a notation based on
abstract data types and layered design, from which
performance estimates could be derived automatically,
using a variety of solution techniques. Hughes [13] also
introduced a notion of hierarchical decomposition of
measures, related to hierarchical design methods. These
efforts are interesting, but still require a considerable effort
on the part of the designer to understand the notations used,
which are related to but not the same as those commonly
used in software design.

In our roadmap of performance within software
engineering, shown in Figure 5, we find a continuing trend
over time to adapt ideas from software engineering to the
needs of stochastic modelling. This continues to branch as
new influences from both stochastic modelling and
software engineering enter the main highway, but then
usually re-converge as software engineering itself achieves
a new level of abstraction and expressiveness.

The most significant feature revealed is, arguably, the
failure of performance engineering ideas to influence
software engineering, however. This may have robbed
software engineering of important insights, as well as
preventing it from adopting performance analysis as a key
component of engineering.

task

ACTIVITIES

read
write
execute

io_comp compute

ACTIVITIES

disk_1 disk_2

access1

access2

access1

access2

read_io

write_io

read_io write_io compute

read write read write

Figure 3: HIT hierarchical model

There has been greater success in adapting formal and
semi-formal description languages, such as SDL [2,8] and
LOTOS [21,25]. The results have been used to derive
simulation models, HIT models and stochastic process
algebra models. The success of this approach remains
limited to the communities where these design notations are
used, however. The wider community has had little help.

Other workers have constructed integrated environments,
incorporating many model representations and solution
techniques, in an attempt to lure designers into adopting
them. Perhaps the most ambitious of these was the ESPRIT
II Integrated Modelling Support Environment (IMSE)
project [15]. Although this really failed it did establish the
importance of hiding both the modelling techniques (where
it was unsuccessful) and the details of how statistically
meaningful experiments should be run (where it succeeded
[9].

Figure 5 shows the early importance of statistics and
stochastic modelling in a purely mathematical setting. This
is rapidly overtaken by the need to allow designers to
operate at levels of abstraction much closer to their design
fromalisms. Since this has also driven formal methods
research to move from purely mathematical and logical
formalisms towards more accessible notations, we should
be unsurprised to find much progress in developing
performance based extensions to formal behavioural
notations, such as Petri nets [4] and process algebras [10].

4 DESIGN OF SOFTWARE SYSTEMS
Software design has suffered itself from a lack of
agreement on an approach and a notation which is best
suited to the creation of effective applications. Fashions
have moved on frequently, with functional, structured
approaches being challenged by object oriented and latterly
component based approaches. In some application domains
formal proof has been seen as paramount, with languages
such as LOTOS growing from formal concurrency research
using process algebras. For the performance engineering
researcher, this has meant a bewildering range of rapidly
moving targets.

Figure 5 shows influences from software engineering
driving performance analysis further towards performance
engineering. Structured methods, objects and components
and formal methods have all influenced the developments
of new ways of expressing our models. This has led to a
fragmented group of developments, with much duplication.

The rest of this paper takes an optimistic view of where
software design is going, however. This is based on an
analysis of design trends which sees convergence on three
major, closely related concepts:

Component based design provides a high level abstraction
of the building blocks used in system construction; it
allows interfaces and connections between units of the
system to be identified in a manner similar to the hardware
systems where performance analysis is already well
accepted; it allows investment in the understanding of
component behaviour, since component reuse is a major
part of this approach;

b:Board u:Umpire

yPlayer:Player

xPlayer:Player

Figure 4: UML version of a Harel Statechart and a UML collaboration diagram

Architectures and patterns at all levels of design, support
the view of systems as communicating components and
map easily onto the way performance models define
systems; design uses communicating state machines;
performance modelling uses communicating stochastic
processes;

UML [19,14] provides a widely accepted notation for a

component based approach to design, which will become
more formalised as it becomes used in critical systems;
along with a widely used notation will come widely used
computer assisted software engineering (CASE) tools. It
is apparently possible to attach performance analysis tools
to these in a relatively straightforward manner.

These ideas are presented in the context of recent research

XtoMoveXtoMoveXtoMove

YtoMove

XhasMoved

YhasMoved

move(r,c)/^umpire.validate(Ô XÕ,r,c)

move(r,c)/^umpire.validate(Ô YÕ,r,c)

valid()/^xPlayer.makeAMove()
invalid()/^xPlayer.makeAMove()

valid()/^yPlayer.makeAMove()

invalid()/^ yPlayer.makeAMove
()

in the next section.

5 INTEGRATING CURRENT DESIGN
M E T H O D S W I T H P E R F O R M A N C E
ENGINEERING

The Unified Modelling Language (UML), is a recent
attempt to merge the most widely used object oriented
design notations. It has been adopted by the industry
body, the Object Management Group (OMG), as a draft
standard. A significant effort is underway to complete and
refine this draft, with the latest version appearing in June
1999. Several major Computer Aided Software
Engineering (CASE) tool manufacturers are committed to
supporting UML, either as the main notation in their tool
or alongside their proprietary notation, guaranteeing
automatic translation. Many major industrial
organisations are adopting UML in their design standards.

The first major meeting devoted exclusively to software
performance was the 1st international Workshop on
Software and Performance (WOSP) [23], in Santa Fe in
October 1998. This concluded that the definition of an
integrated means of representing performance within
widely used design notations, notably UML, was an
essential prerequisite to wider adoption of SPE within the
software community. The recent UML '99 conference
included papers on this issue [11].

To date work in this area has explored the possibilities for
simulation of UML models [17,24], generation of
queueing network models from UML deployment
diagrams [18] and collaboration diagrams [11]. Mappings
from UML to layered queueing network models (LQNs)
[26], to stochastic Petri net models (SPNs) [12], more
specifically Trivedi's SPNP [4] tool's variant of SPNs, and
to stochastic process algebra models, particularly
Hillston's PEPA [10], have been developed. All of these
show the potential for using UML's logical and
behavioural notations to define the structure of
performance models. Others have extended the
integration of UML and simulation modelling, using tools
such as Rational's Rose CASE tool to input models [24].

Figure 4 shows a UML collaboration diagram for a simple
two player boardgame and the statechart representing the
internal behaviour of one class of object, Board, used to
build this collaboration. Annotations to the statecharts
expressing time are defined within UML today. Further
developments in incorporating timing within message
sequences and other external behaviour diagrams are
being debated. This will take us to the point shown in
Figure 5 where we have performance CASE tools. That is
todayÕs state of the art. Our problem is which way
forward from there.

6 AN AGENDA FOR PROGRESS
There has never been a more optimistic point for
expanding the use of performance engineering within the

wider software engineering community. This will be
accelerated by the emergence of much more elaborate
systems for implementation of applications. The growing
popularity of object broker architectures and World Wide
Web based applications will force users to ask developers
hard questions about response times and scalability.

Figure 5 presents an optimistic scenario, where we are
poised at the final stage in our journey. If we accept that a
fully integrated approach to software prediction within
CASE based software engineering is sufficient, this is
true. What is clear from all previous work is that this will
not really be the end of the road. Much more will then
become clear and the agenda will be extended. If we
accept that we must first reach this foreseeable goal, we
can create an agenda.

In some ways the agenda is already being set. The second
WOSP workshop will be held in 2000 in Ottawa. This
will build on a widening body of work and will aim to
drive forward a set of features for performance to
represented in UML models. The OMG has already
launched a Revision Task Force (RTF) to look at the
representation of time and performance in UML. The
community supporting WOSP 2000 is aiming at
influencing analysis tools within CASE products.

Beyond that point, more effective techniques for
performance estimation within the context of component
based designs are needed. Now that we have a large,
slowly moving target, it should be possible to tailor the
approaches used in analytic, numerical and simulation
solutions to match systems described in this way

An interesting theme within these developments is the
comparison of performance effectiveness with other
software properties, such as ease of maintenance. We
have to ask whether heuristics which talk in terms of
coherence and coupling in software design apply also to
performance goals. At first sight, it appears that these are
compatible, but research is needed to establish this.

An other pointer is the growing interest among formal
methods researchers in probabilistic notions of
equivalence and their adoption of properties couched in
probabilistic terms. While these are rarely interested in
time as a stochastic variable, the gap in understanding
between the two communities with an interest in
introducing formal mathematical analysis into software
engineering may be closing. This trend can be thought of
as the replacement of traditional finite state automata as
the formal underpinning of software engineering by the
use of Markov chains, representing non-determinism and
data dependency by probabilities and time delays by
stochastic variables.

If momentum can be maintained, we can look forward to
a true convergence of software engineering and
performance analysis within the next decade.

Figure 5: Software performance roadmap

7 CONCLUSIONS
Traditional performance modelling techniques can be
applied to component based views of software systems.
This is becoming increasingly important as object broker
and related architectures become more significant in the
development of new systems. The challenge is to bring
the world views of software engineers and performance
analysts into alignment.

For this to happen, performance analysis techniques must
be embedded within design methods and tools. Although
there is a long history of improvement in techniques for
performance analysis, there has been less success in
persuading designers to think in these terms.

As component based design is rapidly adopting UML, this
must be the current focus of such work. Results so far are
encouraging and it seems probable that a successful
synthesis can be achieved within a decade or less. From
there we enter the currently unknown territory of
automation of analysis.

The overall picture can be summarised in our five key
steps to achieve our current goals:

1. To create a well understood formalism, probably based
on UML, allowing performance annotations to design
models.

2. To create a methodology which embeds performance
questions within the software lifecycle in terms of widely
used approaches.

3. To integrate solution tools for performance measures
transparently within extended design tools, such as object
oriented CASE tools.

4. To develop ways of returning performance results from
specialised tools in terms of the design models from
which they were derived.

5. To integrate performance modelling measures within a
performance monitoring and testing framework in a
consistent manner.

We might perhaps add a desire to converge with
developments in formal methods, where stochastic
models are of increasing interest.

Simulation and
Numerical methods

Formal
Methods

Stochastic
Models

Statistics
Numerical
methods

Structured
methods

Architectures

Performance
analysis

Software
Performance
Engineering

OO
techniques

Component
based
design

Performance
annotated

formal
models

Formal
design
logics

Integrated
software

engineering

Component
based

performance
engineering

Stochastic
modelling
languages

Process logics

CASE tools
and UML

Performance
CASE tools

Efficient
solution
methods

High level
abstraction

We are

here

ACKNOWLEDGEMENTS
The ideas in this paper have benefitted from discussions
with Jane Hillston, Heinz Beilner, Peter Hughes, Peter
King, Nigel Thomas, Neil Davies and many others.. Their
contribution is gratefully acknowledged.

REFERENCES
1 . Balbo, G. and Serazzi, G. Computer Performance

Evaluation Ð Proceedings Modelling Techniques and
Tools, (Torino September 1992), Elsevier.

2. Bause F. and Buchholz, Protocol analysis using a
timed version of SDL. in Proceedings of the 3rd
International Conference on Formal Description
Techniques (FORTE '90)] (Madrid, 1991), Springer.

3. Beilner, H. and Stewing, F. Concepts and techniques
of the performance modelling tool HIT. in
Proceedings of the European Simulation
Multiconference, (Vienna March 1987), SCS Europe,
84-89.

4 . Ciardo, G., Muppala, J., and Trivedi, K. SPNP:
Stochastic Petri net package. In Proceedings of 3rd
International Workshop on Petri Nets and
Performance (Kyoto, Japan, 1989), 142--151.

5 . Davies, N. and Bradley, J. Eds. UKPEW '99,
Proceedings of the Fifteenth UK Performance
Engineering Workshop (University of Bristol, July
1999). UKPEW.

6 . Haring G. and Kotsis G. Computer Performance
Evaluation - Modelling Techniques and Tools, 7th
International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation,
Number 794 (Vienna, May 1994), LNCS 794,
Springer-Verlag

7. Haring, G. and Wabnig, H. Eds Short Papers and
Tool Descriptions, 7th International Conference on
Modelling Techniques and Tools for Computer
Performance Evaluation (Vienna, May 1994),
University of Vienna

8. Heck, E., Hogrefe, D., and M�ller-Clostermann, B.
Hierarchical performance evaluation based on
formally communication protocols. IEEE Trans.
Comp 40,4 (1991), 500-513.

9. Hillston, J. A tool to enhance model exploitation. In
Pooley R. and King P. Eds 6th International
Conference on Modelling Techniques and Tools for
Computer Performance Evaluation (Edinburgh
1993), 131-142.

10. Hillston, J. A Compositional Approach to
Performance Modelling , (1996) Cambridge
University Press.

11. K�hkipuro, P. UML based performance modeling

framework for object-oriented distributed systems. In
ÇUMLÈ Ô99 - The Unified Modeling Language:
Beyond the Standard (October 1999), 356--371.

12. King, P. and Pooley, R. Using UML to derive
stochastic Petri net models. In Davies N. and Bradley
J. Eds. UKPEW '99, Proceedings of the Fifteenth UK
Performance Engineering Workshop (Bristol, July
1999), 45-56, UKPEW.

13. Minkowitz C., Vetland V. and Hughes, P. A modular
approach to system structure and Specification. In 7th
International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation Ð
Tools upplement, (Vienna 1994), University of
Vienna, 83-86.

14. OMG, Unified Modeling Language 1.3, 1999 at
http://www.rational.com/uml/documentation.html

15. Pooley R.J. The Integrated Modelling Support
Environment. In Balbo and Serazzi Eds., Computer
Performance Evaluation Ð Proceedings Modelling
Techniques and Tools, (Torino September 1992), 1-
16, Elsevier

16. Pooley, R. and Hillston, J. Computer Performance
Evaluation - Modelling Techniques and Tools, 6th
International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation,
Number 10 in Edits (Edinburgh 1993), Edinburgh
University Press.

17. Pooley, R. and Kabajunga, C. Simulation of UML
sequence diagrams. In Pooley R. and Thomas N. Eds,
UK PEW '98 - Proceedings of 14th UK Performance
Engineering Workshop (Edinburgh, July 1998), 198-
207, UKPEW.

18. Pooley, R. and King, P. The Unified Modeling
Language and performance engineering. IEE
Proceedings Ð Software, 146, 1 (February 1999), 2-
10.

19. Pooley, R. and Stevens, P. Component Based
Software Engineering with UML, (December 1998),
Addison-Wesley.

20. Pooley, R. and Thomas, N. UKPEW '98 -
Proceedings of 14th UK Performance Engineering
Workshop (July 1998), UKPEW

21. Rico, N. and Bochmann, G. Performance description
and analysis for distributed systems using a variant of
LOTOS. In 10th International IFIP Symposium on
Protocol Specification, Testing and Validation,
(July 1990).

22. Smith, C. U. Performance Engineering of Software
Systems (1990), Addison-Wesley.

23. Smith, C., Clements, P., and Woodside, M. Eds. 1st
International Workshop on Software and
Performance (Santa Fe, October 1999), ACM.

24. Utton, P. and Martin, G. Further experiences with
software performance modelling. In WOSP '98, First
International Workshop on Software and
Performance (Santa Fe, October 1998), 14-15.

25. Valderruten, A., Hjiej, O., Benzekri, A., and Gazal,
D. Deriving queueing networks performance models
from annotated LOTOS specifications. In 6 th
International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation
(Edinburgh 1993), 120-130, Edinburgh University
Press

26. Woodside C. M., Neilson J. E. and Majumdar S.,
The Stochastic Rendezvous Network Model for
Performance of Synchronous Client-Server-like
Distributed Software. IEEE Trans. on Computers, 44,
1 (January 1995), 20-39

